ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

COMMUNICATION

Copper(II)-mediated regioselective *N*-arylation of pyrroles, indoles, pyrazoles and carbazole *via* dehydrogenative coupling

Received 00th January 20xx, Accepted 00th January 20xx

Pradeep Sadhu and Tharmalingam Punniyamurthy*

DOI: 10.1039/x0xx00000x

www.rsc.org/

A copper(II)-mediated regioselective *N*-arylation of azoles has been developed using 8-aminoquinoline amide as a directing group. This reaction shows broad substrate scope with different azoles such as pyrroles, indoles, pyrazoles and carbazole with good yields.

C-H Functionalization reactions using directing groups have emerged as more reliable synthetic tools for the regioselective construction of carbon-carbon and carbon-heteroatom bonds.^{1,2} Among them, the formation of C-N bonds³ has attracted considerable attention due to their presence in numerous compounds that are important in biological and pharmaceutical sciences. In particular, N-arylated azoles serve as versatile building blocks for the construction of nitrogencontaining structural scaffolds that exhibit interesting medicinal properties (Scheme 1).4,5 Commonly, they are prepared by the cross-coupling^{6,7} of azoles with aryl halides,⁸ aryl boronic acids,⁹ aryl bismuths¹⁰ and aryl lead reagents.¹¹ Recently, Patureau and co-workers reported a crossdehydrogenative coupling approach for the ortho-selective amination of diaryl amines with carbazole using Ru as the catalyst and Cu(OAc)₂ as the oxidant at 150 °C (Scheme 2a).¹² In this context, the development of new synthetic routes using inexpensive metal source¹³ with broad range of nitrogen heterocycles is highly desirable. Herein, we report an efficient copper(II) acetate mediated ortho-selective dehydrogenative C-N cross-coupling of arenes with pyrroles, indoles, pyrazoles and carbazole using a removable amide as a directing group (Scheme 2b), This protocol is simple, general and effective at moderate temperature (70 °C) with good yields.

First, we commenced the optimization studies with *N*-(quinolin-8-yl)benzamide **1a** and pyrrole as the model substrates using different

bases, solvents and varied amounts of Cu(OAc)₂ (Table 1). Gratifingly, the amination selectively occurred at the ortho-position to give the target product 2a in 34% yield when the substrates were stirred with 1 equiv of $Cu(OAc)_2$ at 70 °C in the presence of K_2CO_3 in DMSO (entry 1). The use of Cs₂CO₃ as the base led to an increase in the yield to 44% (entry 3), while Na₂CO₃ afforded inferior results (entry 2). Subsequent screening of the solvents led to an increase in the yield to 51% using DMF, whereas NMP, iPrOH and 1,4-dioxane were not effective (entries 4-7). Increasing the amount of Cu(OAc)₂ (1.5 equiv) and pyrrole (3 equiv) led to the further enhancement in the yield to 79% (entries 8-11). Similar results were observed using oxygen atmosphere in place of air (entry 12-13). Recrystallization of 2a in CH₃CN gave single crystal whose structure was determined by X-ray analysis (see Supporting Information). A control experiment confirmed that without Cu(OAc)₂ the formation of 2a was not observed and the starting material was recovered intact (entry 14).

Scheme 1 For some examples of the utilities of 2-(1H-pyrrol-1-yl)benzoic acid

^{a.} Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India. E-mail: tpunni@iitg.ernet.in

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available:. Supporting information for this article having experimental procedure, crystal structure and data of 2a, characterization data and NMR spectra (1 H and 13 C) of 2a-m, 3a-j, 4a-b, 5 and 7 is given via a link at the end of the document.See DOI: 10.1039/x0xx00000x

COMMUNICATION

Scheme 2 N-Arylation of azoles via dehdyrogenative cross-coupling

 Table 1 Optimization of the reaction conditions

	N N 1a	Pyrrole (2 equiv [Cu] source base solvent, temp		0 N H 2a
Entry	[Cu] (equiv)	Base	Solvent	Yield (%) ^{a,b}
1	Cu(OAc) ₂ (1)	K ₂ CO ₃	DMSO	34
2	Cu(OAc) ₂ (1)	Na ₂ CO ₃	DMSO	trace
3	Cu(OAc) ₂ (1)	Cs_2CO_3	DMSO	44
4	Cu(OAc) ₂ (1)	Cs_2CO_3	NMP	10
5	Cu(OAc) ₂ (1)	Cs_2CO_3	<i>i</i> PrOH	trace
6	Cu(OAc) ₂ (1)	Cs_2CO_3	1,4-dioxane	0
7	Cu(OAc) ₂ (1)	Cs_2CO_3	DMF	51
8	Cu(OAc) ₂ (1.5)	Cs_2CO_3	DMF	71
9	Cu(OAc) ₂ (2.0)	Cs_2CO_3	DMF	70
10 ^c	Cu(OAc) ₂ (1.5)	Cs_2CO_3	DMF	64
11^d	Cu(OAc) ₂ (1.5)	Cs_2CO_3	DMF	79
12 ^e	Cu(OAc) ₂ (1.0)	Cs_2CO_3	DMF	50
13 ^e	Cu(OAc) ₂ (0.2)	Cs_2CO_3	DMF	18
14	-	Cs_2CO_3	DMF	0

^a Reaction conditions: N-(quinolin-8-yl)benzamide **1a** (0.2 mmol), Cu(OAc)₂, pyrrole (0.4 mmol), base (0.4 mmol), solvent (1 mL), 70 °C, 21 h. ^b Isolated yield. ^c Pyrrole (0.3 mmol) was used. ^d Pyrrole (0.6 mmol) was used. ^e Using O₂ balloon.

Having the optimal conditions in hand, we sought to further explore the reaction scope with a broad range of N-(quinolin-8yl)benzamide derivatives (Scheme 3). The substrates 1b having 2-Me substituent underwent the reaction to produce the target product 2b in 84% yield. The substrates 1c-d bearing 3-Cl and 3-Me functionalities readily reacted to afford the desired products 2c and 2d in 69 and 78% yields, respectively, while 1e-i bearing electron donating and electron-withdrawing groups in the para position proceeded reaction smoothly to provide the corresponding orthoaminated products 2e-i in 61-70% yields. Heterocyclic compound, isonicotinamide 1j underwent reaction to give the aminated product 2j in 51% yield, whereas the reaction of 3,4-diMe substituted substrate 1k produced the target product 2k in 71% yield. However, the substrate 1a with substituted pyrroles, 2,4dimethylpyrrole and 1-(2-methyl-4-phenyl-1*H*-pyrrol-3-yl)ethan-1one, failed to produce the desired 2l and 2m, which might be due to Page 2 of 5

the steric hindrance of the substituents present in the pyrroles. These results suggest that the protocol is compatible with the substrates bearing substitution at *ortho, meta* as well as *para* positions. Furthermore, the substrates with electron withdrawing group **2i** exhibit greater reactivity compared to that having electron donating group **2g**. In addition, the substrates having halides such as chlorine **2c**, **2e** and iodine **2i** are tolerated under these reaction conditions.

Next, the scope of the reaction was extended to the *N*-arylation of indoles with 8-aminoquinoline amides (Scheme 4). The reactions proceeded efficiently in high yields. For examples, *N*-(quinolin-8-yl)benzamide **1a** underwent reaction to furnish the target *ortho*-aminated product **3a** in 74% yield. In addition, the reaction of the substrates **1b**, **1d** and **1h** with methyl substituent at *ortho*, *meta* and *para*-positions produced the corresponding aminated compounds **3b-d** with 69-81% yields. Furthermore, the substrate **1a** with the substituted indole, 2-(2-(1*H*-Indol-3-yl)ethyl)isoindoline-1,3-dione, furnished **3e** in 57% yield. Similarly, the reactions of **1a** with the indoles bearing 4-bromo, 5-bromo, 5-methoxy and 6-bromo substituents afforded the corresponding cross-coupled products **3f-i** in 75-81% yields, while azaindole underwent reaction to produce **3j** in 63% yield.

Pyrroles (3 equiv)

Scheme 3 Substrate scope of N-(quinolin-8-yl)benzamides with pyrrole.^{*o,b*} a Reaction conditions: N-(quinolin-8-yl)benzamide 1a (0.2 mmol), Cu(OAc)₂ (0.3 mmol), pyrrole (0.6 mmol), Cs₂CO₃ (0.4 mmol), DMF (1 mL), 70 °C. ^{*b*} Isolated yield.

Furthermore, we explored the scope of the procedure for the reactions of different azoles with *N*-(quinolin-8-yl)benzamide **1a** as

2 | J. Name., 2012, 00, 1-3

COMMUNICATION

Journal Name

the representative example (Scheme 5). These reactions exhibited superior results employing DMSO as the solvent compared to that of DMF. For examples, pyrazole underwent reaction to produce the target product **4a** in 54% yield. Similar result was observed with 3-methylpyrazole leading to the formation of **4b** in 58% yield. In addition, the reaction of carbazole furnished the desired cross-coupled product **5** in 41% yield. However, 2-phenylimidazole failed react to yield **6** and the starting materials were recovered.

Scheme 4 Substrate scope of *N*-(quinolin-8-yl)benzamides with indoles.^{a,b} ^a Reaction conditions: *N*-(quinolin-8-yl)benzamide 1a (0.2 mmol), $Cu(OAc)_2$ (0.3 mmol), indole (0.6 mmol), Cs_2CO_3 (0.4 mmol), DMF (1 mL), 70 °C. ^b Isolated yield.

Finally, the removal of the directing group was studied using compound **2a** as the representative example (Scheme 6).^{13e} The compound **2a** underwent readily hydrolysis with NaOH in ethanol at

110 °C to afford 2-(1*H*-pyrrol-1-yl) benzoic acid **7** in 84% yield, which is a key intermediate for the construction of diverse nitrogen containing structural frameworks as described in Scheme 1.⁵

Scheme 5 Substrate scope of *N*-(quinolin-8-yl)benzamide **1a** with different azoles.^{a-c} ^{*a*} Reaction conditions: *N*-(quinolin-8-yl)benzamide **1a** (0.2 mmol), Cu(OAc)₂ (0.3 mmol), azole (0.6 mmol), Cs₂CO₃ (0.4 mmol), DMSO (1 mL), 70 °C, 24 h. ^{*b*} Isolated yield. ^{*c*} Using DMF.

The proposed reaction pathway is shown in Scheme 7. In the presence of base, azole may undergo reaction with $Cu(OAc)_2$ to produce copper(II) species a,¹⁴ which may react with the substrate **1a** via ligand exchange to give copper(II) intermediate b. $Cu(OAc)_2$ -mediated oxidation of b may lead to the formation of copper(III) species c. Intramolecular C-H cupration of the aryl ring may give the intermediate d, which can provide the target product by reductive elimination followed by protonation. This proposed reaction pathway also explains the necessity of excess $Cu(OAc)_2$ and base to realize the products in good yields.

Cu(OAc); الىن Cu(OAc) Cs₂CO₃ Cs₂CO₃ CsHCO₃ CsHCO₃ b + CsOAc CsOAc Cu(OAc)₂ -Cu(OAc) Cs₂CO₂ target product CsHCO₃ AcO CsOAc с

Scheme 7. Proposed reaction pathway

In summary, we have developed an efficient copper-mediated 8-aminoquinoline amide directed N-arylation of pyrroles, indoles, pyrazoles and carbazole via intermolecular cross-dehydrogenative coupling reaction. This protocol exhibits broad substrate scope and high functional group tolerance, which may open a new avenue for further development of dehydrogenative coupling protocols for the coupling azoles with hydrocarbons.

We gratefully acknowledge Department of Science and Technology (SR/S1/OC-55/2011) and Council of Scientific and Industrial Research (02(0088)/12/EMR-II) for financial support. P. S. thanks UGC for SRF Fellowship. We also thank Central Instrumental Facility, IIT Guwahati for NMR facilities.

Notes and references

- 1 For recent reviews on C-H Funtionalization, see: (a) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev. 2010, 110, 624; (b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147; (c) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062; (d) L. Ackermann, Chem. Rev., 2011, 111, 1315; (e) J. Wencel-Delord, T. Dröge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40, 4740; (f) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879; (g) G. Rouquet and N. Chatani, Angew. Chem., Int. Ed., 2013, 52, 11726; (h) F. Zhang and D. R. Spring, Chem. Soc. Rev., 2014, 43, 6906; (i) M.-L. Louillat and F. W. Patureau, Chem. Soc. Rev., 2014, 43, 901; (j) O. Daugulis, J. Roane and L. D. Tran. Acc. Chem. Res., 2015, 48, 1053; (k) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu and Y. Zhang, Org. Chem. Front., 2015, 2, 1107.
- For some recent examples on (a) N. Schröder, J. Wencel-2 Delord and F. Glorius, J. Am. Chem. Soc., 2012, 134, 8298; (b) K. Parthasarathy and C. Bolm, Chem. -Eur. J., 2014, 20, 4896; (c) K. Shibata and N. Chatani, Org. Lett., 2014, 16, 5148; (d) X. Qin, X. Li, Q. Huang, H. Liu, D. Wu, Q. Guo, J. Lan, R. Wang and J. You, Angew. Chem., Int. Ed., 2015, 54, 7167; (e) M. Corbet and F. D. Campo, Angew. Chem., Int. Ed., 2013, 52, 9896; (f) G. Rouquet and N. Chatani, Chem. Sci., 2013, 4, 2201; (g) J. Fernández-Salas, S. Manzini, L. Piola, A. M. Z. Slawin and S. P. Nolan, Chem. Commun., 2014, 50, 6782; (h) V. S. Thirunavukkarasu, S. I. Kozhushkov and L. Ackermann, Chem. Commun., 2014, 50, 29; (i) P. Becker, D. L. Priebbenow, R. Pirwerdjan and C. Bolm, Angew. Chem., Int. Ed. 2014, 53, 269; (j) P. Lennartz, G. Raabe, C. Bolm, Adv. Synth. Catal., 2012, 354, 3237; (k) C.-G. Feng, M. Ye, K.-J

Xiao, S. Li and J.-Q. Yu, J. Am. Chem. Soc., 2013, 135, 9322; (I) P. Sadhu, S. K. Alla and T. Punniyamurthy, J. Org. Chem.,

- 2013, 78, 6104; (m) N. Dastbaravardeh, T. Toba, M. E. Farmer and J.-Q. Yu, J. Am. Chem. Soc., 2015, 137, 9877. For some examples on directed C-N bond formation, see: (a) Q. Shuai, G. Deng, Z. Chua, S. Bohle and C.-J. Li, Adv. Synth. Catal., 2010, 352, 632; (b) A. John and K. M. Nicholas, J. Org. Chem., 2011, 76, 4158; (c) M. Shang, S.-H. Zeng, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, Org. Lett., 2013, 15, 5286; (d) L. D. Tran, J. Roane and O. Daugulis, Angew. Chem., Int. Ed., 2013, 52, 6043; (e) L. Wang, D. L. Priebbenow, W. Dong and C. Bolm, Org. Lett., 2014, 16, 2661; (f) A. M. Martinez, N. Rodriguez, R. G. Arrayás and J. C. Carretero, Chem. Commun., 2014, 50, 2801; (g) Q. Li, S.-Y. Zhang, G. He, Z. Ai, W. A. Nack and G. Chen, Org. Lett., 2014, 16, 1764; (h) T. Matsubara, S. Asako, L. Ilies and E. Nakamura, J. Am. Chem. Soc., 2014, 136, 646; (i) M. Shang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc., 2014, 136, 3354; (j) D. Mahesh, P. Sadhu and T. Punniyamurthy, J. Org. Chem. 2015, 80, 1644; (k) Q. Yan, Z. Chen, W. Yu, H. Yin, Z. Liu and Y. Zhang, Org. Lett., 2015, 17, 2482.
- 4 For some examples, see: (a) G. Greco, E. Novellino, I. Fiorini, V. Nacci, G. Campiani, S. M. Ciani, A. Garofalo, P. Bernasconi and T. Mennini, J. Med. Chem., 1994, 37, 4100; (b) C. Fischer and B. Koenig, Beilstein J. Org. Chem., 2011, 7, 59; (c) T. Balle, J. Perregaard, M. T. Ramirez, A. K. Larsen, K. K. Søby, T. Liljefors and K. Andersen, J. Med. Chem., 2003, 46, 265; (d) Y. Wu, Y. Li, S. Gardner and B. S. Ong, J. Am. Chem. Soc., 2005, 127, 614; (e) M. M. M. Gee, S. Gemma, S. Butini, A. Ramunno, D. M. Zisterer, C. Fattorusso, B. Catalanotti, G. Kukreja, I. Fiorini, C. Pisano, C. Cucco, E. Novellino, V. Nacci, D. C. Williams and G. Campiani, J. Med. Chem., 2005, 48, 4367; (f) Y. Liu, M. Nishiura, Y. Wang and Z. Hou, J. Am. Chem. Soc., 2006, 128, 5592.
- 5 For some examples, see: (a) S. Rault, M. C. D. Sévricourt, A. M. Godard and M. Robba, Tetrahedron Lett., 1985, 26, 2305; (b) H. Strobel, P. Wohlfart, A. Safarova, A. Walser, T. Suzuki and R. M. Dharanipragada, PCT. Int. Appl., WO 2002064545 A1, 2002; (c) K. Burri, J. Hoffner, K. Islam and S. Mukhija, PCT. Int. Appl., WO 2002070464 A3, 2002; (d) G. Yang, H. Alan, P. John, P. Wallace, T. Andrew, Y. Taeyoung and Z. He, PCT. Int. Appl., WO 2003082826 A1, 2003; (e) S. I. Druzhinin, S. A. Kovalenko, T. A. Senyushkina, A. Demeter, R. Januskevicius, P. Mayer, D. Stalke, R. Machinek and K. A. Zachariasse, J. Phys. Chem. A, 2009, 113, 9304; (f) F. Aiello, A. Garofalo and F. Grande, Tetrahedron Lett., 2010, **51**, 6635; (g) W. K. De, L. J. R. M. Maes, L. Meerpoel, PCT. Int. Appl., WO 2012084804 A1, 2012; (h) F. Grande, A. Brizzi, A. Garofalo and F. Aiello, Tetrahedron, 2013, 69, 9951.
- 6 For selected review, see: F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954.
- For examples see: (a) J. Hassan, M. Sevignon, C. Gozzi, E. 7 Schulz and M. Lemaire, Chem. Rev., 2002, 102, 1359; (b) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400
- 8 For examples using aryl iodide, see: (a) D. W. Old, M. C. Harris and S. L. Buchwald, Org. Lett., 2000, 2, 1403; (b) J. C. Antilla, J. M. Baskin, T. E. Barder and S. L. Buchwald, J. Org. Chem., 2004, 69, 5578; (c) L. Rout, S. Jammi and Punniyamurthy, Org. Lett., 2007, 9, 3397; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. C. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107.
- 9 For some examples using aryl boronic acid, see: (a) P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett., 1998, 39, 2941; (b) S. Yu, J. Saenz and K. Srirangam, J. Org. Chem., 2002, 67, 1699.

Journal Name

- Journal Name
- 10 For example using organobismuth reagents, see: P. Petiot, J. Dansereau and A. Ganon, *RSC Adv.*, 2014, **4**, 22255.
- 11 For example using aryl lead, see: P. López-Alvarado, C. Avendaño and J. C. Menéndez, J. Org. Chem., 1995, **60**, 5678.
- 12 M.-L. Louillat, A. Biafora, F. Legros and F. W. Patureau, Angew. Chem., Int. Ed., 2014, **53**, 3505.
- 13 For some examples on the use of first row transition metals, see: (a) X. Chen, X.-S. Hao, C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 6790; (b) L. D. Tran, I. Popov and O. Daugulis, J. Am. Chem. Soc., 2012, 134, 18237; (c) A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 9797; (d) M. Corbet and F. D. Campo, Angew. Chem., Int. Ed., 2013, 52, 9896; (e) T. Truong, K. Klimovica and O. Daugulis, J. Am. Chem. Soc., 2013, 135, 9342; (f) M. Shang, H.-L. Wang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc., 2014, 136, 11590; (g) S. Wang, R. Guo, G. Wang, S.-Y. Chen and X.-Q. Yu, Chem. Commun., 2014, 50, 12718; (h) J. Liu, L. Yu, S. Zhuang, Q. Gui, X. Chen, W. Wang and Z. Tan, Chem. Commun., 2015, 51, 6418; (i) E. R.

Graphical Abstract

Fruchey, B. M. Monks and S. P. Cook, *J. Am. Chem. Soc.*, 2014, **136**, 13130; (*j*) J. Li and L. Ackermann, *Angew. Chem.*, *Int. Ed.*, 2015, **54**, 8551.

14 For some examples, see: (a) W. Zhu, D. Zhang, N. Yang and H. Liu, *Chem. Commun.*, 2014, **50**, 10634; (b) P.-F. Larsson, C.-J. Wallentin and P.-O. Norrby, *ChemCatChem*, 2014, **6**, 1277.

Copper-mediated regioselective *N*-arylation of pyrroles, indoles, pyrazoles and carbazole is described using 8-aminoquinoline amide as a directing group via dehydrogenative coupling. The protocol has broad substrate scope with good yields at moderate temperature.