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We report highly chemo- and regioselective reductive
transpositions of methyl carbonates to furnish olefin products
with complementary regioselectivity to that of established Pd-
catalysis. These Rh- and Ir- catalyzed transformations proceed
under mild conditions and enable selective deoxygenation in the
presence of functional groups that are susceptible to reduction by
metal hydrides.

Deoxygenation reactions are important transformations in
synthetic organic chemistry, finding applications in areas
ranging from biomass conversion to the preparation of
complex bioactive molecules.™ Mild, catalytic, chemoselective
reductive deoxygenation of alcohols remains underdeveloped
owing in large part to the difficulties associated with delivery
of hydride equivalents to C—O sigma bonds in preference to
C=C, C=0 or C-X bonds.®> Thus classical methods that use
stoichiometric additives such as the Barton-McCombie
reaction® or Mitsunobu reactions with diazene—precursorss’6
are still widely employed.

With specific regard to allylic Pd-based
strategies have been developed to address some of the

substrates,

limitations associated with selective deoxygenation catalysis.
For example, while deoxygenation of allylic alcohols via
Mitsunobu reaction with diazene precursors NBSH or IPNBSH
requires diethyl
and co-

stoichiometric reagents such as
(DEAD) (Fig. 1A),*

workers reported an alternative IPNBSH-mediated reductive

azodicarboxylate Movassaghi
transposition using Pd-catalysis (Fig. 1B).7’8 The regiochemical
outcome of the amination follows that expected for Pd-
catalysed allylic substitution, generally featuring substrate
steric control in the amination of a Pd-allyl species.9 Under
these conditions, terminal olefin products are formed from
both branched and linear allylic carbonates after sigmatropic
elimination of dinitrogen from a linear monoalkyl diazene (Fig.
1 B—1),10 while both formal Sy2 and Sy2’ displacement are
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observed with internal branched substrates (Fig.1 B—Z).7 Simil--
to Pd-catalysed allylic reductions employing formate,

generation of the alternative olefin regioisomers is not
reducuy -

transposition of allylic alcohol derivatives remains a significai

possible; thus complete regiocontrol of catalytic

unmet challenge. Furthermore, catalytic and chemoselectiv
diazene-mediated deoxygenation in the presence of othu -
reducible functional groups has not been demonstre* A
broadly. Herein we report a strategy to address these deficit-
by employing Ir- and Rh-catalysis (Fig. 1C). Under mild cond."i
ons, highly chemo- and regioselective reductive transposition
A. Mitsunobu Conditions (Stoichiometric Activators)
NBSH or IPNBSH

OH
PPh; DEAD 0.0
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n n
m reductive transposition gives internal olefins

IPNBSH, K,CO3
OR cat. [Rh]

FG
R J\/\.{FG — > R! W
n
= formal Sy2 substitution of internal allylic carbonates

Ir and Rh: high chemo- and regioselectivity, tolerates sensitive
reducible groups (FG = halide, carbonyl, alkene, alkyne)

Fig. 1 Overview of diazene-mediated reductive transposition of allyli~
alcohol derivatives.
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is observed for allylic methyl carbonates. This new method can
be considered a direct, catalytic alternative to stoichiometric
Mitsunobu protocols for deoxygenation of allylic alcohols
embedded within functionalised molecules."

that
functionalities, such as aliphatic chlorides are tolerated. Table

Conditions were optimized such reactive

1 highlights how simple modifications to the conditions have a
significant effect on the selectivity of the transformation when
employing bulky diazene precursors.m':lsa Under optimized
[Ir(COD)Cl],, the desired
branched N-alkyl N-sulfonyl hydrazone product formed in 91%

conditions employing 2.5 mol%

yield at room temperature with no detectable amount of the

linear allylic isomer. Rh- and Ru-based -catalysts proved
ineffective under these conditions (Table 1, entries 2 and 3). In
solvents other than MeCN product yields were significantly
lower and formation of the undesired byproducts was
observed. The hydrazine reagent NBSH provided suboptimal
yields (10%, Table 1, entry 6). Methyl carbonate is the
preferred leaving group, as use of alternative alkyl carbonates
or a phosphate ester resulted in lower yields.15b Finally, in situ
hydrolysis and sigmatropic rearrangement of the allylic
sulfonyl hydrazone at room temperature yielded the desired
¢ Of note,

using ammonium

internal olefin in 71% isolated vyield (eq 1).

under similar conditions
reducing agent

consumption of the substrate.

experiments

formate as the resulted in unselective

Both simple and functionalised alkyl-substituted allylic
carbonates can be converted to the corresponding internal
olefins in moderate to excellent vyields with very high
regioselectivities (Table 2).16 The reaction is tolerant of
substitution 3 to the carbonate (Table 2, entries 2, 3 and 7), as
well as oxygen, nitrogen, and halogen functional groups (Table
2_5).15d

in the form of an alkyne, alkene or o,p-

2, entries For substrates containing pendant
unsaturation
unsaturated ester, no over-reduction is observed allowing for
facile deoxygenation of polyunsaturated carbonates (Table 2,
6—8).17 In a

chemoselective deoxygenation, methyl carbonate reduction

entries particularly striking example of

Table 1. Effect of reaction parameters on the catalytic, chemoselective
allylic amination employing diazene precursors

0CO,Me 2.5 mol% [I(COD)CI] ArO8. -NR'

Cl 4 1.2 equiv. IPNBSH cl ; Z
MeCN (0.2 M), rt
standard conditions
entry  change from the standard conditions conv yield (%)
1 none >98 91
2 [Rh(COD)CI]; instead of [Ir(COD)Cl], 8 <2
3 RuCp*(MeCN)3 PFginstead of [I(COD)Cll, 94 10
4 THF instead of MeCN 74 15
5 CHJClI, instead of MeCN 61 12
6 NBSH instead of IPNBSH 23 10
7 CO,t-Bu instead of CO,Me 64 44

20.05 mmol scale, 24 h, conversions and yields determined by 'H NMR
using Bn,O as an internal standard.
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Table 2. Reductive deoxygenation of alkyl substituted al., <
carbonates.
1. 2.5 mol% [Ir(COD)Cl],
OCO,Me 1.2 equiv. IPNBSH, MeCN
X Me
alkyl 2. AcOH, TFE/THF/H,0 (1:2:1)  alkV!
entry substrate product yield
0CO,Me
Me
L N ph N 84%
Me OCOMe Me
2 phw ph)\/\/Me 68%?
0CO,Me 8O "
3> Bno A~ O Me 1%
0CO,Me
4 ToMeN & TeMeN "X Me 88%
0CO,Me
5 Chan A Cla At X Me %
3 3
0CO,Me M
e
— /\/\/
6 = 74<.
/\)\/ Ph
Ph
Me Me OCOMe Me Me
7 )\/\)W )\/\)\/\/ 57%
Me X =z Me Y 2 Me
0CO,Me
8 E0,c7 Z RO CTNINAMe 759,
0COMe
A0 A~ AZ AP M 6%

Yields are of isolated material. Regioisomer ratios are 295:5, E/Z ratios
are =92:8 in all cases. See Supporting Information for details. 291:9
regioisomer ratio. 5 mol% [Irf(COD)CI], callylic acetate £/Z = 85:15 in
starting material dallylic acetate E/Z = 85:15.

proceeds smoothly in the presence of an allylic acetate g1 'n
(Table 2, entry 9).18

Without the aryl-
substituted allylic carbonates are suitable substrates, allowii g

change to standard conditions,
for the synthesis of functionalised (3-methyl styrenes (Table 7 ,.
Electron-rich and electron-poor aryl-substituted carbonat__
can be deoxygenated under mild conditions. Potentia'’,
reactive functional groups that are prone to reduction und-
radical or metal hydride treatment, such as an aryl bromic -
and chloride, an allylic ether, ester, nitrile, ketone, and an an*
boronic ester, are tolerated highlighting the excelle t
chemoselectivity of the reduction.

Allylic carbonates with an internal alkene were resistar . to
IPNBSH under the standard Ir-cataly.

described optimizatio-

amination with

conditions above. Subsequent

however, revealed that the use of catalytic mixtures ¢ ¢
[Rh(COD)CI], and P(OPh); with K,COj3 led to good vyields ar.+
excellent regioselectivities (Table 4).158’ fo19
alkynyl,

deoxygenated under these Rh-catalysed conditions, providing

Aryl, alkeny!

and ethereal allylic methyl carbonates can | =

This journal is © The Royal Society of Chemistry 20xx
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Table 3. Scope of reductive deoxygenation of aryl substituted allylic
carbonates.

1. 2.5 mol% [Ir(COD)ClI],

OCO,Me 1.2 equiv. IPNBSH, MeCN
a I/\/Me
aryl 2. AcOH, TFE/THF/H,O (1:2:1) Y
entry substrate product yield (%)
OCO,Me

©/\/ Me 69

0OCO,Me
2 NC Z NC\©/\/M6 63
0CO,Me
Cl ¥~ Cl o Me
3 C(\’ 71
o/\% OV
0CO,Me
Br xn_ Me
4 Br = D/\/ 94
E F
OCOMe
= M
’ /©)\/ S se
MeO,C MeO,C
0OCO,Me
MeO MeO
0CO,Me

! O @NMe ”
Ping ~ N7 PinB
M 77
Me)K@/\/ e

Yields are of isolated material, 1.0-0.6 mmol scale. Regioisomer ratios
are 293:7 and E/Z ratios are =95:5 unless noted. See Supporting
Infomation for details. 283:17 regioisomer ratio.

a simple and mild strategy for the preparation of sensitive
skipped dienes and enynes (Table 4, entries 2 and 4). Allylic
carbonates substituted with electron-withdrawing groups,
such as an ester or ketone, also undergo amination with high
formal Sy2-selectivity, and upon reductive transposition, y-
unsaturated carbonyl compounds can be obtained (Table 4
entries 5-8). The
carbonates, such as an a-branched substrate (Table 4, entry 7).

reaction tolerates sterically demanding

Collectively, these results demonstrate an attractive means to
convert easily accessible conjugated systems into more
valuable 1,4-polyunsaturated compounds that are otherwise
difficult to prepare. In keeping with the observation of
remarkably high formal Sy2 amination selectivity, alkyl-,
heteroaryl-, and alkenyl-substituted primary allylic carbonates
generate terminal olefin products under the standard Rh-
catalysed reaction conditions (Table 4, entries 9-11).

Both of the methods reported herein proceed well on
larger scales, as demonstrated by the gram-scale syntheses of
a halogenated p-methyl styrene via Ir-catalysis (eq 2) and a y-

unsaturated ester via Rh-cataysis (eq 3)."*®

This journal is © The Royal Society of Chemistry 20xx
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Table 4. Rh-catalysed reductive deoxygenation of substitucc a
allylic carbonates.

1. 2.5 mol% [Rh(COD)CI], 10 mol% P(OPh)4

OCO,Me 1.2 equiv. IPNBSH, K,COg, MeCN, rt g
I~ RIXAp
R )\/\R 2. AcOH, TFE/THF/H,O (1:2:1)
entry substrate product yield (%)
1 0CO,Me 62
on A, Ph " Me
e
0CO,Me
2 AN AN e 57
Ar Me
Ar = 4-CICgH,
Bi BnO
nO UCOZMG L/\
a,b
3 N Me = Me 79
OCO.Me
=
4 /\)\Me /\/\ Me 64
Ph Ph
0CO,Me
N OFEt
5 Ph A~y OF o /\/\I(])/ o6
0
0OCO,Me o ~ OEt
_~__OFt Y
6 Ph N o) 71
]
0OCO,Me

_~__OEt X OEt
b

0CO,Me « "
e
8 Ph ~_Me Ph/\/\/\ror 56
(0]
gb BnO—\=/—OCOZMe BnO _~# 78
OCO,Me s P
10b S s Brm 52
Br \’
110 QCOMe ANA~F 65
[N
Ph

Yields are of isolated material, 0.7-0.3 mmol scale. Regioisomer ratios are
=295:5 and E/Z ratios are 294:6 in all cases. 2 Reaction performed at 40 °C.
b Using 5 mol% [Rh(COD)CI], and 20 mol% P(OPh)s.

OCO,Me see table 3
Br _ 1.3mol% [I(COD)CIl, Br N @
73%
F F [1.16 g]
OCOM see table 4
2Me 2.5 mol% [Rh(COD)Cll, g
Bn = "N Cogt (o
CO,Et
81%
[1.40 g]

In summary, we have developed new catalytic strategics
for the mild and selective reductive transposition of ally’ ¢
alcohol derivatives employing Ir- or Rh-based catalysts. The
deoxygenation process tolerates a wide range of functior .
groups that are susceptible to radical or hydride reduction
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regioselectivity to that of Pd-

catalyzed methodologies. The ability of this method to be used

in place of stoichiometric Mitsunobu-type deoxygenation

processes should result in widespread appeal.
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