ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Journal Name

COMMUNICATION

Chemo- and Regioselective Reductive Transposition of Allylic Alcohol Derivatives via Iridium or Rhodium Catalysis

Received 00th January 20xx, Accepted 00th January 20xx

Rylan J. Lundgren* and Bryce N. Thomas

DOI: 10.1039/x0xx00000x

www.rsc.org/

We report highly chemo- and regioselective reductive transpositions of methyl carbonates to furnish olefin products with complementary regioselectivity to that of established Pdcatalysis. These Rh- and Ir- catalyzed transformations proceed under mild conditions and enable selective deoxygenation in the presence of functional groups that are susceptible to reduction by metal hydrides.

Deoxygenation reactions are important transformations in synthetic organic chemistry, finding applications in areas ranging from biomass conversion to the preparation of complex bioactive molecules. Mild, catalytic, chemoselective reductive deoxygenation of alcohols remains underdeveloped owing in large part to the difficulties associated with delivery of hydride equivalents to C–O sigma bonds in preference to C=C, C=O or C–X bonds. Thus classical methods that use stoichiometric additives such as the Barton-McCombie reaction or Mitsunobu reactions with diazene-precursors face still widely employed.

With specific regard to allylic substrates, Pd-based strategies have been developed to address some of the limitations associated with selective deoxygenation catalysis. For example, while deoxygenation of allylic alcohols via Mitsunobu reaction with diazene precursors NBSH or IPNBSH stoichiometric reagents such azodicarboxylate (DEAD) (Fig. 1A),4 Movassaghi and coworkers reported an alternative IPNBSH-mediated reductive transposition using Pd-catalysis (Fig. 1B). 7,8 The regiochemical outcome of the amination follows that expected for Pdcatalysed allylic substitution, generally featuring substrate steric control in the amination of a Pd-allyl species. 9 Under these conditions, terminal olefin products are formed from both branched and linear allylic carbonates after sigmatropic elimination of dinitrogen from a linear monoalkyl diazene (Fig. 1 B-1), 10 while both formal S_N2 and S_N2' displacement are

B. Pd Catalysis (Alternative Regioisomer Inaccessible)

■ reductive transposition gives terminal olefins

■ formal S_N2 or S_N2' substitution of internal allylic carbonates

C. This Work: Complementary Catalytic Regiocontrol OR IPNBSH cat [Ir]

■ reductive transposition gives internal olefins

■ formal S_N2 substitution of internal allylic carbonates

Ir and Rh: high chemo- and regioselectivity, tolerates sensitive reducible groups (FG = halide, carbonyl, alkene, alkyne)

observed with internal branched substrates (Fig.1 B-2). Similar to Pd-catalysed allylic reductions employing formate, generation of the alternative olefin regioisomers is not possible; thus complete regiocontrol of catalytic reductive transposition of allylic alcohol derivatives remains a significal unmet challenge. Furthermore, catalytic and chemoselective diazene-mediated deoxygenation in the presence of other reducible functional groups has not been demonstrated broadly. Herein we report a strategy to address these deficitions, highly chemo- and regioselective reductive transposition

A. Mitsunobu Conditions (Stoichiometric Activators)

^a Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada. Email: rylan.lundgren@ualberta.ca

 $^{^\}dagger$ Electronic Supplementary Information (ESI) available: synthetic procedures and characterization data See DOI: 10.1039/x0xx00000x

Fig. 1 Overview of diazene-mediated reductive transposition of allylivalcohol derivatives.

COMMUNICATION Journal Name

is observed for allylic methyl carbonates. This new method can be considered a direct, catalytic alternative to stoichiometric Mitsunobu protocols for deoxygenation of allylic alcohols embedded within functionalised molecules. ¹³

Conditions were optimized such that reactive functionalities, such as aliphatic chlorides are tolerated. Table 1 highlights how simple modifications to the conditions have a significant effect on the selectivity of the transformation when employing bulky diazene precursors. 14,15a Under optimized conditions employing 2.5 mol% [Ir(COD)Cl]₂, the desired branched N-alkyl N-sulfonyl hydrazone product formed in 91% yield at room temperature with no detectable amount of the linear allylic isomer. Rh- and Ru-based catalysts proved ineffective under these conditions (Table 1, entries 2 and 3). In solvents other than MeCN product yields were significantly lower and formation of the undesired byproducts was observed. The hydrazine reagent NBSH provided suboptimal yields (10%, Table 1, entry 6). Methyl carbonate is the preferred leaving group, as use of alternative alkyl carbonates or a phosphate ester resulted in lower yields. 15b Finally, in situ hydrolysis and sigmatropic rearrangement of the allylic sulfonyl hydrazone at room temperature yielded the desired internal olefin in 71% isolated yield (eq 1).15c Of note, experiments under similar conditions using ammonium formate as the reducing agent resulted in unselective consumption of the substrate.

Both simple and functionalised alkyl-substituted allylic carbonates can be converted to the corresponding internal olefins in moderate to excellent yields with very high regioselectivities (Table 2). The reaction is tolerant of substitution β to the carbonate (Table 2, entries 2, 3 and 7), as well as oxygen, nitrogen, and halogen functional groups (Table 2, entries 2–5). For substrates containing pendant unsaturation in the form of an alkyne, alkene or α,β -unsaturated ester, no over-reduction is observed allowing for facile deoxygenation of polyunsaturated carbonates (Table 2, entries 6–8). 17 In a particularly striking example of chemoselective deoxygenation, methyl carbonate reduction

Table 1. Effect of reaction parameters on the catalytic, chemoselective allylic amination employing diazene precursors

entry	change from the standard conditions	conv	yield (%)
1	none	>98	91
2	[Rh(COD)Cl] ₂ instead of [Ir(COD)Cl] ₂	8	<2
3	RuCp*(MeCN) ₃ PF ₆ instead of [Ir(COD)Cl] ₂	94	10
4	THF instead of MeCN	74	15
5	CH ₂ Cl ₂ instead of MeCN	61	12
6	NBSH instead of IPNBSH	23	10
7	CO ₂ t-Bu instead of CO ₂ Me	64	44

^a 0.05 mmol scale, 24 h, conversions and yields determined by ¹H NMR using Bn₂O as an internal standard.

Table 2. Reductive deoxygenation of alkyl substituted al., carbonates.

entr	y substrate	product	yield	
entr	y substrate	product	yleid	
1	OCO ₂ Me	Ph \Me	84%	
2	Me OCO ₂ Me	Me Ph Me	68%ª	
3b	OCO ₂ Me BnO	BnOMe	71%	
4	OCO ₂ Me TsMeN	TsMeN Me	88%	
5	OCO ₂ Me	CI Me	71%	
6	OCO ₂ Me	Ph	74%	
7	Me Me OCO ₂ Me	Me Me Me	57%	
8	OCO ₂ Me	EtO ₂ C Me	75%	
9c	AcO OCO ₂ Me	AcO Me	65% ^d	
Yields are of isolated material. Regioisomer ratios are ≥95:5, E/Z ratios				

Yields are of isolated material. Regioisomer ratios are ≥95:5, *E/Z* ratios are ≥92:8 in all cases. See Supporting Information for details. ^a91:9 regioisomer ratio. ^b5 mol% [Ir(COD)CI]₂ ^callylic acetate *E/Z* = 85:15 in starting material ^dallylic acetate *E/Z* = 85:15.

proceeds smoothly in the presence of an allylic acetate gr (Table 2, entry 9). 18

Without change to the standard conditions, aryl-substituted allylic carbonates are suitable substrates, allowing for the synthesis of functionalised β -methyl styrenes (Table \widehat{z}). Electron-rich and electron-poor aryl-substituted carbonation be deoxygenated under mild conditions. Potentially, reactive functional groups that are prone to reduction under radical or metal hydride treatment, such as an aryl bromic and chloride, an allylic ether, ester, nitrile, ketone, and an aryl boronic ester, are tolerated highlighting the excelle the chemoselectivity of the reduction.

Allylic carbonates with an internal alkene were resistar to amination with IPNBSH under the standard Ir-cataly_conditions described above. Subsequent optimization however, revealed that the use of catalytic mixtures of [Rh(COD)CI]₂ and P(OPh)₃ with K₂CO₃ led to good yields are excellent regioselectivities (Table 4). ^{15e, f, 19} Aryl, alkenylalkynyl, and ethereal allylic methyl carbonates can leadeoxygenated under these Rh-catalysed conditions, providing

Journal Name COMMUNICATION

Table 3. Scope of reductive deoxygenation of aryl substituted allylic carbonates.

$$\begin{array}{c} \text{OCO}_2\text{Me} \\ \text{aryl} \end{array} \stackrel{\text{1. 2.5 mol% [Ir(COD)Cl]}_2}{\underbrace{1.2 \text{ equiv. IPNBSH, MeCN}}_{2. \text{ AcOH, TFE/THF/H}_2\text{O (1:2:1)}} \\ \text{aryl} \xrightarrow{\text{aryl}} \text{Me}$$

	,	2 ()	
entry	substrate	product	yield (%)
1	OCO ₂ Me	Me	69
2	NC OCO Ma	NC Me	63
3	OCO ₂ Me	CI	71
4	Br OCO ₂ Me OCO ₂ Me OCO ₂ Me	Br Me	94
5	MeO ₂ C OCO ₂ Me	MeO ₂ C Me	56 ^a
6	MeO OCO ₂ Me	MeO Me	45
7	PinB PinB	PinB	55
8	Me OCO ₂ Me	Me Me	77
	•	-	

Yields are of isolated material, 1.0–0.6 mmol scale. Regioisomer ratios are ≥93:7 and *E/Z* ratios are ≥95:5 unless noted. See Supporting Infomation for details. ^a83:17 regioisomer ratio.

a simple and mild strategy for the preparation of sensitive skipped dienes and enynes (Table 4, entries 2 and 4). Allylic carbonates substituted with electron-withdrawing groups, such as an ester or ketone, also undergo amination with high formal S_N 2-selectivity, and upon reductive transposition, γ unsaturated carbonyl compounds can be obtained (Table 4 entries 5-8). The reaction tolerates sterically demanding carbonates, such as an α -branched substrate (Table 4, entry 7). Collectively, these results demonstrate an attractive means to convert easily accessible conjugated systems into more valuable 1,4-polyunsaturated compounds that are otherwise difficult to prepare. In keeping with the observation of remarkably high formal S_N2 amination selectivity, alkyl-, heteroaryl-, and alkenyl-substituted primary allylic carbonates generate terminal olefin products under the standard Rhcatalysed reaction conditions (Table 4, entries 9-11).

Both of the methods reported herein proceed well on larger scales, as demonstrated by the gram-scale syntheses of a halogenated β -methyl styrene via Ir-catalysis (eq 2) and a γ -unsaturated ester via Rh-cataysis (eq 3).

Table 4. Rh-catalysed reductive deoxygenation of substitutes allylic carbonates.

OCO₂Me

R

1. 2.5 mol% [Rh(COD)Cl]₂ 10 mol% P(OPh)₃
1.2 equiv. IPNBSH, K₂CO₃, MeCN, rt

R

R

R

R

R

R

R

R

R

R

R

entry	substrate	product	yield (%)
1 ^a Ph	OCO ₂ Me	Ph Me	62
2 ^a Ar	OCO ₂ Me	Ar \longrightarrow Me Ar = 4-CIC ₆ H ₄	57
Br 3 ^{a,b}	OCO ₂ Me	BnO	79
4 ^a Pr	OCO ₂ Me Me	Ph	64
5 Pr	OCO ₂ Me OEt	Ph OEt	66
6 Pt	OCO ₂ Me	Ph OEt	71
7 ^b (OCO ₂ Me OEt	OEt	69
8 Ph	OCO ₂ Me Me	Ph Me	56
gb Bi	nOOCO ₂ Me	BnO 📈	78
10 ^b Br	OCO ₂ Me	Br	52
11 ^b	OCO ₂ Me	Ph ~	65

cepted

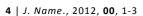
Yields are of isolated material, 0.7–0.3 mmol scale. Regioisomer ratios are ≥95:5 and *E/Z* ratios are ≥94:6 in all cases. ^a Reaction performed at 40 °C. ^b Using 5 mol% [Rh(COD)CI]₂ and 20 mol% P(OPh)₃.

$$\begin{array}{c} \text{OCO}_2\text{Me} \\ \text{F} \end{array} \begin{array}{c} \text{See table 3} \\ \text{1.3 mol% [Ir(COD)CI]}_2 \\ \text{F} \end{array} \begin{array}{c} \text{Br} \\ \text{F} \end{array} \begin{array}{c} \text{Me} \\ \text{[1.16 g]} \end{array} \end{array} \tag{2}$$

In summary, we have developed new catalytic strategies for the mild and selective reductive transposition of ally calcohol derivatives employing Ir- or Rh-based catalysts. The deoxygenation process tolerates a wide range of function are groups that are susceptible to radical or hydride reduction

COMMUNICATION Journal Name

provides complementary regioselectivity to that of Pd-catalyzed methodologies. The ability of this method to be used in place of stoichiometric Mitsunobu-type deoxygenation processes should result in widespread appeal.


Acknowledgments

We thank NSERC Canada (Discovery Grant, Research Tools and Infrastructure Grant), the Canadian Foundation for Innovation, the University of Alberta, and faculty within the Department of Chemistry for generous donations of equipment and chemicals. Chris Godwin is acknowledged for assistance with substrate synthesis

Notes and references

- 1 For a review see: J. M. Herrmann, B. König, Eur. J. Org. Chem. 2013, 2013, 7017-7027.
- For select recent examples of new deoxygenation methods see: (a) L. L. Adduci, T. A Bender, J. A. Dabrowski, M. R. Gagné, Nature Chem. 2015, 7, 576-581; (b) H. Dang, N. Cox, G. Lalic, Angew. Chem. Int. Ed. 2014, 53, 752-756; (c) L. L. Adduci, M. P. McLaughlin, T. A. Bender, J. J. Becker, M. R. Gagne, Angew. Chem. Int. Ed. 2014, 53, 1646-1649; (d) M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2013, 52, 12905-12909; (e) J. Cornella, E. Gómez-Bengoa, R. Martin, J. Am. Chem. Soc. 2013, 135, 1997-2009.
- 3 For reviews that discuss such problems in modern organic chemistry see: (a) J. Mahatthananchai, A. M. Dumas, J. W. Bode, *Angew. Chem. Int. Ed.* **2012**, *51*, 10954-10990; (b) N. A. Afagh, A. K. Yudin, *Angew. Chem. Int. Ed.* **2010**, *49*, 262-310.
- For a review see: (a) S. W. McCombie, W. B. Motherwell, M. J. Tozer, The Barton-McCombie Reaction. In *Org. React. Vol. 77*, John Wiley & Sons, Inc.: **2012**; for recent applications in complex molecule synthesis see: (b) H. Sugimura, S. Sato, K. Tokudome, T. Yamada, *Org. Lett.* **2014**, *16*, 3384-3387; (c) M. Zhang, N. Liu, W. Tang, *J. Am. Chem. Soc.* **2013**, *135*, 12434-12438; (d) B. S. Fowler, K. M. Laemmerhold, S. J. Miller, *J. Am. Chem. Soc.* **2012**, *134*, 9755-9761; (e) M. Bian, Z. Wang, X. Xiong, Y. Sun, C. Matera, K. C. Nicolaou, A. Li, *J. Am. Chem. Soc.* **2012**, *134*, 8078-8081.
- For diazene mediated alcohol reduction with sulfonyl hydrazine reagents see: (a) M. Movassaghi, O. K. Ahmad, J. Org. Chem. 2007, 72, 1838-1841; (b) A. G. Myers, M. Movassaghi, B. Zheng, J. Am. Chem. Soc. 1997, 119, 8572-8573; (c) A. G. Myers, B. Zheng, J. Am. Chem. Soc. 1996, 118, 4492-4493; (d) A. G. Myers, B. Zheng, Tetrahedron Lett. 1996, 37, 4841-4844.
- For selected applications of reductions employing sulfonyl hydrazine reagents in complex molecule synthesis see: (a) D. Yang, G. C. Micalizio, J. Am. Chem. Soc. 2012, 134, 15237-15240; (b) M. Shan, E. U. Sharif, G. A. O'Doherty, Angew. Chem. Int. Ed. 2010, 49, 9492-9495; (c) M. Movassaghi, G. Piizzi, D. S. Siegel, G. Piersanti, Angew. Chem. Int. Ed. 2006, 45, 5859-5863; (d) M. G. Charest, C. D. Lerner, J. D. Brubaker, D. R. Siegel, A. G. Myers, Science 2005, 308, 395-398.
- 7 M. Movassaghi, O. K. Ahmad, Angew. Chem. Int. Ed. 2008, 47, 8909-8912.
- 8 For acid catalysed substitution reactions of activated propargylic substrates with sulfonyl hydrazines to generate allenes see: (a) Z. Liu, P. Q. Liao, X. Bi, *Chem. Eur. J.* **2014**, *20*, 17277-17281; (b) D. A. Mundal, K. E. Lutz, R. J. Thomson, *J. Am. Chem. Soc.* **2012**, *134*, 5782-5785.

- 9 For a detailed discussion of the topic see: B. S. Kim, M. . Hussain, P. O. Norrby, P. J. Walsh, *Chem. Sci.* **2014**, *5*, 124¹ 1250 and references therein.
- 10 A. Jabbari, E. J. Sorensen, K. N. Houk, *Org. Lett.* **2006**, *δ*, 3105-3107.
- 11 For a review see: (a) J. Tsuji, T. Mandai, Synthesis 1996, 1-2 strong hydride donors such as DIBAL-H or Sml₂ can afford the opposite regioisomers, but these reagents would exhit a minimal chemoselectivity in the presence of reducible groups. For more recent examples of Pd-catalyzed formative reduction see: (b) A. Chau, J.-F. Paquin, M. Lautens, J. On Chem. 2005, 71, 1924-1933; (c) T. Konno, T. Takehanna, M. Mishima, T. Ishihara, J. Org. Chem. 2006, 71, 3545-3550; in very rare cases, select substrates can be converted to the internal alkene, see: (d) H. Cheng, C. Sun, D. Hou, J. Org. Chem. 2007, 72, 2674-2677;
- 12 For the phosphine-catalysed reduction of allylic bromides with LiAlH(OtBu)₃ to terminal olefins see: K. D. Reichl, N. Dunn, N. J. Fastuca, A. T. Radosevich, *J. Am. Chem. Soc.* **201** , 137, 5292-5295.
- 13 For an unselective Ir-catalysed deoxygenation pro-(alkenes are also reduced) employing hydrazine at 160 oc see: J. L. Huang, X. J. Dai, C. J. Li, Eur. J. Org. Chem. 2000, 6496-6500.
- 14 For early examples of Ir- and Rh-catalysed allylic amination see: (a) P. A. Evans, J. E. Robinson, J. D. Nelson, *J. Am. Cher i. Soc.* **1999**, *121*, 6761-6762; (b) R. Takeuchi, N. Ue, K. Tanabe, K. Yamashita, N. Shiga, *J. Am. Chem. Soc.* **2001**, *123*, 9527 9534. For Ir-catalysed allylation of hydrazines at hydrazones see: c) R. Matunas, A. J. Lai, C. Lee, *Tetrahedron* **2005**, *61*, 6298-6308.
- 15 Notes: (a) the stable, crystalline reagents NBSH and IPNBS. are commercially available, or readily synthesized decagram scale; (b) for additional optimization data see the supporting information; (c) hydrolysis was performed by removal of MeCN prior to addition of THF/TFE/H2O (2:1:1, and AcOH, direct addition of TFE/H₂O without THF resulted ~10% lower yields; (d) electron-rich aryl meth. · carbonates are prone to rearrangement to the linear isomer, pyridine and quinoline substrates are aminated effective y but undergo reduction with low yield and regioselectivity, cyclic allylic methyl carbonates are not viable substrates, as is generally observed in Ir- and Rh-catalysed a vic functionization; (e) see supporting information for details on optimization of internal allylic substrates; (f) these conditions are effective for terminal allylic carbonates, however the reactions proceeds with slightly diminished branched/line r selectivity compared to the use of [Ir(COD)Cl]₂; (g) 10 glovebox is required for these reactions, see the supportion information.
- 16 Aside from being useful chemical building blocks, methysubstituted olefins are found in numerous bioactie molecules, such as cyclosporines, corallopyronins ar penibruguieramide A.
- 17 Free diazene generated from sulfonyl hydrazines can redue olefins, for examples see: (a) B. J. Marsh, D. R. Carbery, J. Org. Chem. 2009, 74, 3186-3188; (b) M. H. Haukaas, G. A. O'Doherty, Org. Lett. 2002, 4, 1771-1774.
- 18 Secondary allylic acetates are less reactive substrates. Unucline standard Ir-catalysed conditions with the acetate versic of the substrate in Table 3, entry 1, 27% (>20:1 b/l) product is observed, compared to >95% for the allylic methol carbonate substrate, (the isolated yield of olefin is lower ducto volitility of the product). Under the standard Rh-catalyse conditions 34% (20:80 b/l) product is observed.
- 19 For the Rh-catalyzed allylation of sulfonamides see: P. A Evans, J. E. Robinson, K. K. Moffett, Org. Lett. 2001, 3, 326 -3271.

