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Access to side-chain carbon information in deuterated solids un-
der fast MAS through non-rotor-synchronized mixing
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We demonstrate the accessibility of aliphatic 3¢ side chain
chemical shift sets for solid-state NMR despite perdeuteration and
fast MAS using isotropic, non-rotor-synchronized 3B mixing.
Combined with amide proton detection, we unambiguously and
sensitively detect whole side chain to backbone correlations for
two proteins using around 1 mg of sample.

A fundamental step for analysis of structure and dynamics in
proteins by NMR spectroscopy is resonance assignment for the
different nuclei. Countless types of multidimensional NMR
experiments have been developed for isotopically labeled
proteins, typically with the focus on 3¢ and N nuclei in the
solid-state. Backbone chemical shifts deliver important infor-
mation about the secondary structure, molecular packing of
the protein, mobility and many other parameters. Side chain
chemical shifts, on the other hand, provide equally important
information specific for the residue type and play an essential
role in reporting amino acid interactions with neighboring
amino acids, other proteins, small molecules, and lipids or
water. Moreover, side-chain chemical shifts are also sensitive
to conformational changes of the protein. In particular, side-
chain dihedral angles x; can be defined from chemical shifts
and can be used in structure calculation of the protein.l'3 Ex-
ploitation of carbon side chain chemical shifts has proved
fundamental in solid-state NMR.*® One of the crucial building
blocks of such experiments is the mixing of magnetization
among side chain nuclei, which is elicited mostly by proton-
driven spin diffusion PDSD 7, dipolar-assisted rotational reso-
nance mixing DARR & or other schemes exploiting the strong
proton-dipolar coupling network. Such mixing schemes are
crucial for residue type identification in the course of protein
assignment and for structural information from side chain
carbon-carbon through-space correlations.
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Proton-detected solid-state NMR on the other hand has been -
rapidly expanding approach having grown to a worldw.uc
standard recently.9'13 In conjunction with extensive ’H labeling
(perdeuteration), proton-detected solid-state NMR now ¢

bles solution NMR-like correlations™**®. In presence of “ultr.

fast” Magic-Angle Spinning (using 1.3 mm rotors or smaller’
and 100% back-exchange of labile protons, proton-detecte '
solid-state NMR represents an eight-fold increase in sensitivi -
per amount of protein compared with 3¢ detection.”” The
sensitivity advantages are even increased in combination wia
paramagnetic relaxation enhancement, which can overcome
slow 'H and **c longitudinal T; relaxation and enable fast rec -
cling of the experiments in the absence of high-power decou-
pling.ls' 19

fast MAS becomes especially useful for proteins which are
20-22

Thus, proton detection in combination with ultr -

difficult to produce in large amounts.
Unfortunately, the price to pay for overcoming the hurdles of a
strong proton-proton dipolar-coupling network by fast spi-

ning and particularly by deuteration is the inaccessibility .~
“proton-dependent” conventional mixing schemes like DARR,®
PDSD,” or CHHC.” Utilization of deuterons has been suggested
423 if an additional (fourth) deuteriu.n
Radio-frequency-driven recouplit g
RFDR,”*® HORROR,” and symmetry-based sequences28 can be

as a potential remedy
channel is available.
an option for replacing PDSD and DARR experiments. Howeve ,
under fast MAS, such sequences can face limitations in tern >
of maximum radio frequency power that can be tolerated L,
the sample. This becomes increasingly problematic as spinnir
speeds are increased. Thus, the mentioned elements tend u

be limited to short mixing times, which significantly redu-=s
the available options for getting the long-range correlat »ns
necessary for identifying side chain resonance sets. As demos.

strated by studies employing low-power variants of the esta’ -
2932 there is a growing incentiv _
to find homonuclear mixing schemes amenable for the rapid’.
increasing MAS rates.

Here we demonstrate the effectiveness of an isotropic homt

nuclear mixing scheme from solution NMR, MOCCA,33'35 fe

amide proton-detected NMR approaches at sample spinnine « €

lished recoupling sequences,
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55 kHz. We have previously demonstrated the feasibility of
MOCCA mixing for traditional 2D carbon-carbon correlations
for partially (30%) back-exchanged, deuterated proteins at
moderate spinning speed.g'6
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Figure 1. (A) Schematic representation of the pulse sequence for the ‘H-detected 3D
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(H)CX(CA)NH experiments with one or two Bebe isotopic mixing building blocks.
Narrow black and white open bars represent hard 90 and 180-degree pulses, respec-
tively. The "H-"C CP contact time was set to 2100 us. For the *"N-">CA CP, rf fields
were set to 36.7 kHz and 24.4 kHz on °C and "N, respectively, with a contact time of 9
ms. For the "N-"H CP, rf fields of 54.23 kHz and 14.4 kHz were used with a contact
time of 300 us. The phase cycles employed are: d; =X, =X, d2 =V, -y, 3=V, Y, Y, V,-Y,-Y,-
VY, Do =X, X, X, X, =X, =X, =X, =X, &s = X,X,X,X, $s = §7 =X, X, X, X, X, X, X, X, X, -X, X, -X, X,
X, X, X, D12 =X, X, X, X, X, X, X, X, Orec1.2 = X,7%,X, X, =X, X, X, X, X, X, X, =X, X, -X, -X, X.

Isotropic Be e mixing in the context of proton-detected NMR
at “ultra-fast” spinning (rotor diameters of 1.3 mm and small-
er) enables us to obtain proton-detected side-chain carbon
spectra on uniformly N, 3¢, 2H-labeled proteins back-
exchanged in 100% HZO:17 For methods development, we
employed the SH3 domain of oc—spectrin.4 We then applied the
approach to obtain side chain assignments from functional
amyloid rodlets composed of a fungal hydrophobin protein37'
. Hydrophobin rodlets are characterized by a structured core
together with substantial sample heterogeneity.40 In the ab-
sence of a dipolar-coupling network and high magnetic field at
ultra-fast MAS, the solution NMR sequence proves capable of
establishing connectivites between the protein backbone and
the entire sets of side chain carbon resonances in 3D CCCANH-
type experiments, without compromising sample integrity by
sample heating. Although heterogeneous samples usually tend
to require 4D and 5D experimental setup to overcome the
resonance overlap, here near-complete aliphatic side-chain
resonance assignments could be obtained using a single 3D
CCCANH experiment.

First, we tailored MOCCA conditions and optimized the CO-
PORADE approach41 for ultra-fast MAS. Secondly, we used
MOCCA as a building block for 3D CCCANH experiments to
obtain residue-specific side-chain chemical-shift information.
Depending on the sample-dependent doping characteristics,
see below, we could use either one mixing block (before fre-
quency encoding, Fig. 1A) or two mixing blocks (before and
after frequency encoding, Fig. 1B) to access intra-residual
connectivites in the absence of side-chain protons.

2 | J. Name., 2012, 00, 1-3

MOCCA mixing involves optimization of two parameters, .. _
180° pulse length and the delay between the pulses (Fig. 1°
and S1. First, we optimized the 180° pulse length using RFD >
conditions without phase cycling the RFDR pulse. (See the Sl
for details.) In the next step, we evaluated the performance ~f
MOCCA at different mixing times and compared with RFDR :

an example of a well-established rotor-synchronized rr

coupling sequence as shown for exemplary residues in Fig. 2~
and S3 (SlI). It is evident from the figure that we could use
longer mixing times amounting to similar amounts of eneryy
dissipated into the probe with MOCCA in comparison to RFDR.
Although the RFDR buildup behavior is slightly faster than
MOCCA, the latter performs well with mixing times as long 7 _
ms. This enables relayed transfers providing many high

intensity cross peaks with improved performance particular: *
for 2- or 3- bond transfers (Figs. 1A and S3). A comparison of
2D correlation spectra with extensive mixing times for bo 1
RFDR and MOCCA is shown in Fig. S4. Taking into account the
feasibility of long mixing times using MOCCA with very low -
longitudinal magnetization loss (Fig. S5), the approach migh+
be useful for other applications like long-range magnetiza.._..
transfer through 3 couplings or similar. In contrast, carbonyl
and aromatic buildup is less efficient than with RFDR. ™" °

might be due to the faster buildup for RFDR, which wou 1
mean sufficient mixing even for partial DD introduction in the
presence of off-resonance effects. Similar observations a 2
made with moderate MAS up to 25 kHz with 30% proton.

backexchanged samples.36
10
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Figure 2. (A). 2D Bc-B¢ correlation experiments using MOCCA with the COPORADF
approach® (see Fig. $10), highlighting aliphatic side-chain carbons of the SH3 domain 1t
55.5 kHz MAS. The experiment was recorded with a MOCCA isotropic mixing time of =
ms and a total experimental time of 3 hours. (B) 2D experimental optimization of t'
delay, A, between the 180° degree pulses of MOCCA for efficient multiple-bond tranc
fer. The total experimental time for each 2D experiment was 3 hours. The optin 1l
experimental delays are shown in dark and light green colors. (C) Experimental build- o
curves of signal intensity for MOCCA (blue) and RFDR (red), adhering to similar limi
tions for power dissipation: Examples of BeBe transfer efficiency for three-bon-
magnetization transfer. The radiofrequency pulse strength for RFDR and MOCCA w s
set to 59.5 kHz. The 180-degree pulse was set 8.37 pus and the delay between the
pulses, A, was set to 61.5 ps and 9.63 ps for MOCCA and RFDR, respectively.

After determining the optimized conditions for MOCCA at fa..
MAS, we incorporated this mixing sequence into a 3D CCCAN .,
(or (H)CX(CA)NH) experiment in order to assign side-cha’
resonances in conjunction with proton detection for increase
resolution and sensitivity. Here, we used the COPORADE ar
proach, which enables both effective backbone and sidecha.
carbon polarization in deuterated samples, with paramagnet’

This journal is © The Royal Society of Chemistry . Mxx
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doping for fast relaxation and shortened recycle delays. Corre-
sponding 3D sequences are shown in Figs. 1A and B using one
or two mixing blocks, respectively. For a crystalline sample like
SH3, paramagnetic chelates can travel throughout the protein
lattice, and it has been shown that doping very effectively
reduces the spin-lattice relaxation times of 'H and 2c.”® The
resulting relaxation enhancement for both nuclei ensures high
sensitivity with fast repetition rates. For this kind of samples,
abundant side-chain *C polarization even for those carbons
that are too far away from HY to be polarized by H-C CP has
been shown to be available in the indirect dimensions with
one mixing block.”* For a 3D (H)CX(CA)NH spectrum recorded
on the SH3 domain, representative strips are depicted in Fig. 3.
The strips demonstrate the highly resolved side chain 3¢ cor-
relations dispersed by their amide 'H and °N chemical shifts.
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Figure 3. lllustrative strip plot from a ‘H-detected 3D (H)CX(CA)NH experiment, yielding
side chain to backbone correlations for uniformly-labelled BN, 13C, 2H SH3 domain
(100% proton back exchanged). A 2D HN projection is shown on the bottom. Mixing
time applied in the experiment is 32.5 ms.

For many microcrystalline proteins like SH3, good "H-°N-
resolution spectra are obtained, which enables an effective
dispersion of side chain 3¢ strips. By contrast, as expected it is
more challenging to study amyloids, where a low amide reso-
lution is found due to sample heterogeneity (see Fig. S10).
Here we applied the experimental approach to hydrophobin
rodlets. This protein generates a hydrophobic coating on fun-
gal spores, which improves their wettability characteristics.?®
39 The overall behavior of the rodlet samples is dominated by
severe heterogeneity of the sample for both proton- and car-
bon-detected experiments as shown by Morris et al.** and has
so far remained a challenge for solid-state NMR characteriza-
tion. This can be derived from their amide spectral dispersion
and sensitivity (see Fig. S10). In addition, a lower overall acces-
sibility of the protein to the paramagnetic agent due to the
packing in the fibrillar, amyloid state'® than in the crystalline
state with solvent channels, give rise to large carbon T; values
despite identical dopant concentrations. Whereas C* can still
be sufficiently polarized by H-C CP, the 3¢ Boltzmann polariza-
tion required for side chain carbons distant from HY at the
chosen recycle delay is low. However, we could partially allevi-
ate this problem by inserting an additional MOCCA mixing

This journal is © The Royal Society of Chemistry 20xx
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block before chemical shift encoding (Fig. 1B) to mix protu -
polarized C* magnetization into the side chain before the fir .
chemical shift evolution. Even though this way we still mai
tain higher C* peaks, we observe an effective increase of ¢
chain polarization by initial CA-to-CX mixing.

Apart from access to single side chain chemical shifts, tt 2
value of the access to aliphatic carbon resonance sets by
MOCCA mixing is apparent from the spectra obtained on tt 2
heterogeneous hydrophobin sample. Fig. 4 shows strips from
the 3D (H)CX(CA)NH NMR experiment, effectively overcoming
the intrinsic sample heterogeneity in conjunction with the low
amount of sample required. Overall, using the side chain * .
backbone correlation approach, we managed to identify ar
assign individual contributions of many assigned residues *
the HN plane by their side-chain carbon chemical shifts wit. -
out going to higher spectral dimensions. The side chain st °
effectively help to deconvolve and unambiguously assign the
protein despite a lack of HN resolution.

Side-chain carbon shift accessibility is important for determin-
ing hydrophobic contacts within protein structures and v "
other molecules. Side-chain carbon shifts are also sensitive 2
many factors including tertiary structural contacts, inter-
molecular contacts, ring currents, as well as rotamer confc -
mations. Apart from the possibility of resolving overlappirg
correlations for assignment purposes as shown for this hydrc-
phobin rodlet sample, we thus expect manifold applicatior s
arising from the accessibility of side chain carbon chemic._.
shifts in conjunction with the sensitivity provided from protor

detected solid-state NMR studies.
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Figure 4. Strip plots from a ‘H-detected 3D (H)CX(CA)NH experiment on 100% v
exchanged EAS,;5s hydrophobin rodlets. All experimental conditions are similar to th-
SH3 protein, however relying on out-and-back mixing of C* magnetization, hence t. =
low cross-peak-to-diagonal peak ratio. Mixing time is 60.7 ms. The experimental tii e
was around 48 hours. The strip plots of 39Q, 52T, 63A are shown with slightly high
contour levels.

We have shown that by using a non-rotor-synchronized car-
bon-carbon liquid-state mixing sequence based on J-coupling s
together with low power requirements, we are able to obtain

J. Name., 2013, 00, 1-3 | 3
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amide-resolved proton-detected sidechain-to-backbone corre-
lations despite fast MAS and in the absence of side-chain pro-
tons. We demonstrate the sensitive access to side-chain reso-
nances from only 1 mg of protein material for a microcrystal-
line protein as well as for a functional amyloid known to pose
significant hurdles to solid-state NMR due to its inhomogenei-
ty. As a J-coupling-based sequence with extremely low duty,
MOCCA does not require rotor synchronization, allows long
mixing times and multiple-bond transfers without major power
dissipation at fast MAS. MOCCA provides access to the sets of
side chain carbon shifts from a heterogeneous protein sample
in spite of spectral overlap in the HN plane even in three di-
mensions, strongly facilitating unambiguous resonance as-
signment and reporting manifold local biophysical parameters.
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