ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

CROYAL SOCIETY OF CHEMIS

COMMUNICATION

CF₃-Substituted semisquarate: A pluripotent building block for the divergent synthesis of trifluoromethylated functional molecules⁺

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Y. Yamamoto,^a T. Kurohara^a and M. Shibuya^a

www.rsc.org/

The first synthesis of a CF₃-substituted semisquarate was accomplished via nucleophilic trifluoromethylation using CF₃SiMe₃ and subsequent rhenium-catalyzed allylic alcohol rearrangement. The short-step skeletal-divergent synthesis of trifluoromethylated functional molecules was successfully achieved using the CF₃-substituted semisquarate as the platform.

Strategic introduction of a CF₃ group into biologically active molecules has gained increasing importance in drug development.¹ This is because the CF₃ group can dramatically modulate the biological activities of drug molecules:² the high lipophilicity of the CF₃ group improves membrane permeability, and the electrostatic/hydrophobic interactions of the CF₃ group also increase the binding ability of drugs with target receptors. Therefore, new methods have been sought for the efficient synthesis of highly valuable trifluoromethylated functional molecules.³

The synthesis of trifluoromethylated functional molecules has been conducted according to two major strategies.³ One is the building-block approach, which utilizes а small trifluoromethylated starting material to assemble the target molecule.⁴ Although this approach has long played a central role in synthesizing trifluoromethylated functional molecules from readily available and inexpensive precursors containing a CF₃ group, lengthy multistep synthetic operations are required and hence, it is less atom- and step-economically efficient. The alternative strategy is late-stage trifluoromethylation, which developed utilizes recently mild and selective trifluoromethylation techniques.⁵ Although this method enables streamlining of the overall synthetic scheme, expensive reagents and/or promoters are often required and the scope of each trifluoromethylation reaction is confined to a specific class of substrates, lacking skeletal diversity.

+ Footnotes relating to the title and/or authors should appear here

Thus, we envisioned that a strained small-ring compound equipped with a CF₃ group would serve as a novel pluripoter platform for a short-step, skeletal-divergent synthesis of trifluoromethylated functional molecules (Fig. 1). Moder drug-discovery campaigns rely on high-throughput screening of diverse molecular libraries. In this vein, the synth ... chemistry community has focused on diversity-oriented synthetic methodologies to expand the chemical space for the exploration of novel drug leads.⁶ However, diversity-oriented synthesis of trifluoromethylated compounds is current underdeveloped. Herein, we present our endeavors to develo CF₃-substituted semisquarate **1** as a novel trifluoromethylated small-ring platform for the verasatile skeletal-diverger t synthesis of CF₃-containing functional molecules.

To realize this unprecedented strategy, we focused on the synthesis of CF₃-substituted semisquarates **1** from semisquarates **3**. This is because various ring transformations of semisquarates have been developed to provide via the routes to valuable functional molecules and complex national products.^{7,8} Thus, the efficient synthesis of **1** would open up extremely feasible routes to diverse trifluoromethylate 1 functional molecules that are unavailable with other method. According to the reports,⁷ the desired **1** can be obtained from 4-hydroxycyclobutenones **2** (E = H) by allylic alcohor rearrangement followed by extrusion of alcohols (Scheme 1). In turn, precursors **2** can be prepared by nucleophil and the second s

^a Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

organolithium or Grignard reagents have been conventionally used for the derivatization of squarates, the corresponding trifluoromethylation has not been reported. Thus, we selected commercially available CF₃SiMe₃ (Ruppert–Prakash reagent) as the trifluoromethylation agent because it is reported to enable selective nucleophilic trifluoromethylation of various carbonyl compounds under mild reaction conditions.⁹ However, the 1,2vs 1,4-addition selectivity (path a vs. b, Scheme 1) is highly important for trifluoromethylation of **3** with a crossed vinylogous ester system: 1,4-addition directly produces 1, which has a higher reactivity than 3, resulting in undesirable polyaddition. Moreover, the transposition of the hydroxyl group of 2 is anticipated to be infeasible under acidic conditions due to the strong electron-withdrawing effect of the CF₃ group hampering formation of a cationic intermediate, although acid-catalyzed transformation of 4-hydroxy-2cyclobutenones is a general method to provide semisquarates.⁷ With these concerns in mind, we investigated the synthesis of CF_3 -semisquarate 1.

CF₃SiMe₃ was investigated (Scheme 2a). Mukaiyama and c workers previously reported that trifluoromethylation aldehydes efficiently proceeded in DMF at 0 °C with an ace salt promoter (5 mol %).¹⁰ They also showed that the sam. reaction could be performed in THF with comparable efficiency when ⁿBu₄NOAc was used as the promoter. This method was expected to be applicable to squarates. Thus, the desired product 2a was obtained in 65% yield after desilylation with tetrabutylammonium fluoride (TBAF) when commercially available diisopropyl squarate 3a was treated with CF₃SiMe₃ (1.5 equiv) and NaOAc (0.1 equiv) in DMF at 25 °C for 20 min. Because a readily removable solvent was desired for furthe studies (see below), we conducted the trifluoromethylatic reaction in THF. In the presence of NaOAc (0.1 equiv) and ⁿBu₄NCl (0.1 equiv), **3a** reacted with CF₃SiMe₃ in THF for 3 min to afford 2a in a comparable yield (69%). Moreo di(tert-butyl) ester 3b also underwent trifluoromethylation under the same conditions to afford **2b** in a higher yield (90

The successful trifluoromethylation of 3 is quite surprising

At the outset of this study, the trifluoromethylation of 3 with

because trifluoromethylation of vinylogous esters u CF₃SiMe₃ was reported to be unsuccessful.¹ The problematic allylic rearrangement of hydroxycyclobutenones 2 was investigated next. anticipated, acidic conditions using aqueous HCl, triflic acid, trifluoroacetic anhydride/pyridine, TiCl₄, or Ti(O'Pr)₄ failed ເວ convert 2a into 1a. Therefore, we turned to transition-met 1 oxo-complex catalysts because they promote transposition U. allylic alcohols without the intermediacy of an unfavorab', allylic cation intermediate. Although the use of vanadium and molybdenum catalysts (VO(OSiPh₃)₃ (10 mol %)^{12a} MoO₂Cl₂/NaO^tBu (10 mol %)^{12b} in CH₂Cl₂ at 25 °C) resulted in no reaction, rhenium-based catalysts exhibited remarkab'. catalytic activity.¹³ Upon treatment with $Ph_3SiOReO_3$ (2, mol %) in MeCN at 25 °C, 2a was completely consumed within 1 h and the desired semisquarate 1a was isolated in 78% y. by distillation (Scheme 2b). Moreover, 1a was quantitatively obtained when Re₂O₇ (3 mol %), the precursor of Ph₃SiOReO₃, was used as the catalyst in CH₂Cl₂, albeit with a longer reactic time (10 h).‡ In striking contrast, di(tert-butyl) ester 2. decomposed under the same reaction conditions. T streamline the preparation of 1a, we performed th trifluoromethylation of 3a and subsequent allvl rearrangement in one pot, without purification of 2a, and 1 was obtained in 84% yield over two-steps on a 3 g scale (Scheme 2c).

With the preparative method of **1a** established, we demonstrated the potential of **1a** for the synthesis of trifluoromethylated functional molecules. First, we focused the synthesis of trifluoromethylated quinones because the typical synthesis requires a multistep process and/or a expensive trifluoromethylation agent.¹⁴ Moreover, despite their biological importance, the scope of the previous synthesis is confined to relatively simple benzo- ar **1** naphthoquinones and there is no example of the synthesis of heterocyclic derivatives to the best of our knowledge. The transformation starts with the addition of an organometaluc

Journal Name

Journal Name

ⁱPrO CF₃ ⁱPrO 2 equiv PhMgBr Et₂O, -90 °C slow addition (20 mL/h) ÓН then 15 min 1a 5a 78% **O**^{*i*}Pr 1) p-xylene, 140 °C, 10 min 2) 3 mol% Fe(pc), O2 AcOH, rt, 60 min **6a** 85% Scheme 3 Synthesis of trifluoromethylated naphthoquinone 6a from 1a.

reagent to afford 4-hydroxy-2-cyclobutenones (Scheme 3). Although aryllithium reagents have been generally used for this purpose,⁸ the use of milder Grignard reagents under carefully controlled conditions was required to suppress overaddition due to the string electrophilicity of the CF₃-substituted cyclobutenedione system. Thus, PhMgBr (2.0 equiv) was added to a solution of **1a** in Et₂O via a syringe pump (20 mL/h) for 30 min at -90 °C and selectively afforded **5a** in 78% yield. Thermolysis of **5a** in *p*-xylene at 140 °C for 10 min, followed by aerobic oxidation in the presence of an iron phthalocyanine (pc) complex (3 mol%)¹⁵ afforded the desired naphthoquinone **6a** in 85% yield.‡

The scope of the quinone synthesis is summarized in Table 1. To streamline the synthetic procedure for quinones **6**, addition of the Grignard reagent to **1a** and subsequent ring expansion and aerobic oxidation were performed in one pot without purification of hydroxycyclobutenone **5**. As a result, naphthoquinones 6a-6g were obtained in 49-73% yields over three steps. Both electron-donating and electron-withdrawir groups were compatible with the reaction conditions. particular, a reactive ester functional group was tolerate this three-step procedure. Phenanthrenequinone 6h could also be synthesized by using 2-naphthyl Grignard reagent. A significance of this method is the applicability to heterocycl systems. Thus, heterocyclic quinones 6i-6m, containing furan, benzofuran, thiophene, benzothiophene, and protected indo a rings, were obtained in good yields. Among these heterocyclic quinones, 6m is particularly interesting as a possible intermediate for the synthesis of a trifluoromethylated analo $_{\mathbf{5}}$ of carbazomycin G.¹⁶ A good quality single crystal of **6m** w obtained, and X-ray diffraction analysis was performed t confirm that the initial Grignard reagent added to the mor electrophilic carbonyl group conjugated with the CF_3 grou (see Supplementary Information). Benzoquinone 6n was obtained using an alkenyl Grignard reagent, albeit in a moderate yield.

Having elucidated the feasibility of **1a** as a platform for the synthesis of trifluoromethylated quinones, we carried to other ring-expansion reactions to demonstrate the skelet diversity of the manifolds available from **1a**. Thus, the Grignard addition products were further treated with Pb(OAc)₄ (2 equi 1) in toluene at room temperature.¹⁷ As a result, oxidative radicol ring expansion efficiently proceeded to afford tetronate derivatives**7a–e** in 62–77% overall yields (Scheme 4).‡ In addition to Grignard reagents used above, organolithiu... reagents **8** derived from heteroaromatic compounds could build for the transformation of **1a** (Scheme 4). For example, 2

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

pyridyllithium (1.1 equiv) was added to 1a at -90 °C, then workup with acetic anhydride afforded 4acetoxycyclobutenone, which was directly subjected to thermolysis in p-xylene at 100 °C for 30 min without isolation.^{18a} As a result, 4H-quinolizin-4-one 9a was successfully obtained in 54% overall yield.‡ Similarly, the use of lithiated thiazole and N-methylimidazole delivered 5Hthiazolo[3,2-a]pyridine-5-one **9b** and 1-methylimidazo[1,2a]pyridine-5(1H)-one **9c** in 48% and 49% yields, respectively. On the other hand, addition of an imidoyl lithiate 10 derived from tert-butylisonitrile and n-butyllithium to 1a at -78 °C for 30 min^{18b} and quenching with aqueous NH₄Cl afforded 2amino-4-cyclopentene-1,3-dione 11 in 50% yield.‡

In conclusion, we have successfully achieved the efficient synthesis of an unprecedented CF₃-substituted semisquarate by (1) nucleophilic silyltrifluoromethylation of commercially available diisopropyl squarate, and (2) oxorhenium-catalyzed transformation of the resultant hydroxycyclobutenone to the targeted CF₃-substituted semisquarate. Moreover, skeletaldiversified ring transformations of the CF₃-substituted semisquarate were successfully implemented by selective addition of Grignard and organolithium reagents at low temperatures and subsequent ring expansion of the intermediate products. Consequently, a variety of CF3substituted functional molecules including quinones, butenolides, heterocycles, nitrogen and aminocyclopentenedione were synthesized in a short synthetic sequence.

This research is partially supported by the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Ministry of Education, Culture, Sports, Science (MEXT) and Japan Agency for Medical Research and development (AMED).

Notes and references

‡ Plausible mechanisms are provided in ESI.

- 1 J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A.
- Sorochinsky, S. Fustero, V. A. Soloshonok, and H. Liu, Cher Rev., 2014, 114, 2432.
 (a) K. Müller, C. Faeh, and F. Diederich, Science, 2007, 31,
- (a) K. Muller, C. Faen, and F. Diederich, *Science*, 2007, **317**, 1881.
 (b) S. Purser, P. R. Moore, S. Swallow, and V. Gouverneur, *Chem. Soc. Rev.*, 2008, **37**, 320.
- 3 (a) M. Shimizu and T. Hiyama, Angew. Chem. Int. Ed., 2005,
 44, 214. (b) K. L. Kirk, Org. Proc. Res. Dev., 2008, 12, 305.
- 4 (a) J.-P. Bégué, D. Bonnet-Delpon, B. Crousse, and J. Legros, *Chem. Soc. Rev.*, 2005, **34**, 562. (b) M. Schlosser, *Angew Chem. Int. Ed.*, 2006, **45**, 5432. (c) K. Uneyama, T. Katagi . and H. Amii, *Acc. Chem. Res.*, 2008, **41**, 817. (d) J. Nie, H.-C. Guo, D. Cahard, and J.-A. Ma, *Chem. Rev.*, 2011, **111**, 455. (e) C. B. Kelly, M. A. Mercadante, and N. E. Leadbeater, *Cher Commun.*, 2013, **49**, 11133.
- Selected recent reviews: (a) O. A. Tomashenko and V. Grushin, *Chem. Rev.*, 2011, **111**, 4475. (b) X.-F. Wu, I...
 Neumann, and M. Beller, *Chem. Asian J.*, 2012, **7**, 1744. (c) F.
 Egami and M. Sodeoka, *Angew. Chem. Int. Ed.*, 2014, **5** 8294-8308. (d) E. Merino and C. Nevado, *Chem. Soc. Rev.* 2014, **43**, 6598. (e) J. Charpentier, N. Früh, and A. Tc., *Chem. Rev.*, 2015, **115**, 650.
- 6 (a) S. L. Schreiber, *Science*, 2000, **287**, 1964. (b) M. D. Bunner, and S. L. Schreiber, *Angew. Chem. Int. Ed.*, 2004, **43**, 46. (c) C. J. O'Conner, H. S. G. Beckmann, and D. R. Spring, *Chem. Soc. Rev.*, 2012, **41**, 4444.
- 7 (a) L. S. Liebeskind, *Tetrahedron*, 1989, **45**, 3053. (b) H. W.
 Moore and B. R. Yerxa, *Chemtracts–Org. Chem.*, 1992, **5**, 27° (c) M. Ohno, Y. Yamamoto, and S. Eguchi, *Synlett*, 1998, 116 (d) L. A. Paquette, *Eur. J. Org. Chem.*, 1998, 1709.
- For selected examples, see: (a) B. M. Trost, O. R. Thiel, and H.-C. Tsui, J. Am. Chem. Soc., 2003, 125, 13155. (b) D. C. Harrowven, D. D. Pascoe, D. Demurtas, and H. O. Bourne Angew. Chem. Int. Ed., 2005, 44, 1221. (c) D. Knueppel and S. F. Martin, Angew. Chem. Int. Ed., 2009, 48, 2569.
- 9 (a) I. Ruppert, K. Schlich, and W. Volbach, *Tetrahedron Lett.*, 1984, 25, 2195. (b) G. K. S. Prakash, R. Krishnamurti, and G. Olah, *J. Am. Chem. Soc.*, 1989, 111, 393. (c) X. Liu, C. Xu, N. Wang, and Q. Liu, *Chem. Rev.*, 2015, 115, 683.
- 10 T. Mukaiyama, Y. Kawano, and H. Fujisawa, *Chem. Lett.*, 20(5, 34, 88.
- D. V. Sevenard, V. Y. Sosnovskikh, A. A. Kolomeitsev, M. H. Königsmann, and G.-V. Röschenthaler, *Tetrahedron L* 2003, 44, 7623.
- 12 (a) H. Pauling, D. A. Andrews, and N. C. Hindley, *Helv. Chim. Acta*, 1976, **59**, 1233. (b) J. Belgacem, J. Kress, and J. A Osborn, *J. Am. Chem. Soc.*, 1992, **114**, 1501.
- 13 I. Volchkov and D. Lee, Chem. Soc. Rev., 2014, 43, 4381.
- 14 (a) N. Van Tuyen, B. Kesteleyn, and N. De Kimp-Tetrahedron, 2002, 58, 121. (b) D. A. Lanfranchi, D. Belorgev T. Müller, H. Vezin, M. Lanzer, and E. Davioud-Charvet, Or. Biomol. Chem., 2012, 10, 4795. (c) H. Matsubara, Maegawa, Y. Kita, T. Yokoji, and A. Nomoto, Org. Biomc Chem., 2014, 12, 5442. (d) N. O. Ilchenko, P. G. Janson, and Y J. Szabó, Chem. Commun., 2013, 49, 6614. (e) X. Wang, Y. Y. G. Ji, Y. Xu, S. Zhang, J. Feng, Y. Zhang, and J. Wang, Org. Lett., 2013, 15, 3730.
- 15 H. Grennberg and J. E. Bäckvall, Acta Chem. Scand., 1993, **17**, 506.
- 16 Y. An, Y. Wang, and X. Hu, Eur. J. Org. Chem., 2014, 3715.
- 17 Y. Yamamoto, M. Ohno, and S. Eguchi, J. Am. Chem. Soc. 1995, **117**, 9653.
- 18 (a) A. G. Birchler, F. Liu, and L. S. Liebeskind, J. Org. Chem., 1994, **59**, 7737. (b) L. Sun and L. S. Liebeskind, J. Org. Chem 1994, **59**, 6856.

Journal Name