ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/x0xx00000x

Coordination-directed self-assembly of a simple benzothiadiazole-fused tetrathiafulvalene to lowbandgap metallogels

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Anneliese M. Amacher, ^a Josep Puigmartí-Luis, ^{b,c} Yan Geng, ^a Victor Lebedev, ^b Vladimir Laukhin, ^{b,d} Karl Krämer, ^a Jürg Hauser, ^a David B. Amabilino, ^{*b,e} Silvio Decurtins ^a and Shi-Xia Liu^{*a}

Coordination-driven gelation of a benzothiadiazole-fused tetrathiafulvalene (TTF) is demonstrated. This is the first work reporting highly stable metallogels based on a donor-acceptor conjugate with such a simple structure for the construction of new low-bandgap materials with various functional properties and novel nanostructures.

Molecular gels have applicability in a wide variety of interesting mechanical, electrical, and biological systems. They can potentially form highly ordered self-assembled structures in a bottom up strategy, facilitating fast and easy fabrication of molecular electronic devices. Potential application in organic electronics has driven research into new molecular materials containing electron donors, acceptors, or combined donor-acceptor moieties. The interaction between donor and acceptor allows the specification and control of energy levels, critical aspects that dramatically influence performance. There has been a relative dearth, however, of donor-acceptor compounds incorporated into metallogels that assemble through π - π stacking or metal-ligand interactions. Depending on the metal centres, coordination geometry and coordinating ligands, metallogels offer intriguing spectroscopic, catalytic and redox properties. 3,4

Our interest in both electron donor-acceptor materials and supramolecular systems motivated us to explore the possibility of supramolecular organization created from a benzothiadiazole (BTD)-fused tetrathiafulvalene (TTF), as shown in Figure 1. To our surprise, we found that 1 acts as a low molecular weight gelator (LMWG) in the presence of certain transition metal halide salts. This self-assembly process is mainly driven by coordination ability of the BTD moiety to metal ions. Although TTF-based LMWGs^{6,7} as well as supramolecular self-assembled structures of TTF ligands with some transition metal ions have been reported in the literature, no

metallogels of them are known. On the other hand, all of the reported TTF gelators have specific structural characteristics that a frequently employed to drive gelation; for example, the inclusion of amide or other hydrogen-bonding moieties as well as long fat to chains to increase van der Waals interactions. The present work represents the first example of low-bandgap metallogels based on a TTF gelator with a very simple structure. We describe various microscopic and spectroscopic techniques used to characterize the metallogels, which are both more pure and more facile to synthesiz than metallopolymers formed through covalent bonds.

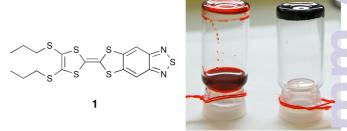


Fig. 1 (Left) chemical structure of the gelator 1; (Right) photograph showing, the left vial, the control experiment of 1 in chloroform and ethanol with no messalt added and in the right vial, upon addition of CuCl₂.

The gelator 1 was obtained by a phosphite-mediated or sscoupling reaction of 4,5-bis(propylsulfanyl)-1,3-dithiol-2-thione and [1,3]dithiolo[4,5-f]-2,1,3-benzothiadiazole-6-one in 61% yield. complexes with MX_2 (M(II) = Cu, Cd, Co; $X = Cl^-$ and Br^-) to g^\prime solvents forming multi-component supramolecular metallopolymer As illustrated in Figure 1, gelation occurred in less than five minutes upon mixing an ethanol solution of copper chloride (1 equiv.) to a solution of 1 in CHCl₃; the gel is very stable to inversion and is self-

COMMUNICATION Journal Name

sustaining. Upon gelation, a dramatic colour change from clear red to dark blue was observed. The effect of solvent on gelation was tested. The critical gel concentration of 1 in different solvents when combined with CuCl₂ in ethanol is as follows: chloroform, 0.02 M; dichloromethane, 0.04 M; chlorobenzene, 0.03 M; and *o*-dichlorobenzene, 0.04 M. The gelation was not effective in non-halogenated solvents.

To further explore the role of metal salts, different metal cations (Table S1) and counterions (Table S2) were chosen for the gelation studies. The result was that MX_2 with M(II) = Cu, Cd, Co (X = CI, Br) can form dark blue gels, but not in the cases of Zn(II), Mn(II) and Fe(II). The anion clearly plays a role on the gelation, as fluoride and perchlorate copper salts do not form gels. The halide ions show high propensity to form gels, very probably ascribed to their ability to form metal clusters via halide bridges, 10 and here we focus on these salts.

It has to be noted that the metallogels exhibit high stability as evidenced by the fact that the sol-gel transformation cannot be tuned by external chemical stimuli. For example, differential scanning calorimetry (DSC) measurements of the CuCl₂ xerogel (Figure S1) indicate three irreversible endothermic transitions, very probably due to the loss of solvents and the solid-state-like phase transition. It appears that the gel is thermo-irreversible as it remains intact when heated up to 70 °C while it is gradually fragmented with increasing of the temperature, finally leading to a dark blue precipitate in solution. It is neither responsive to a metal trapping reagent - such as ethylene diamine tetraacetic acid (EDTA) - nor to oxidation. Additionally, the reversibility of the gelation process did not occur through mechanical stimuli either. When shaking breaks a gel, the appearance of the system becomes one that is composed of fibres dispersed in solvent. This effect is irreversible. All these results demonstrate that metallogels possess a rigid rather than flexible suprastructure.

The UV-visible absorption spectra of 1 in CHCl₃ solution and as a film as well as of a CuCl2 gel are shown in Figure 2. According to our previous results of analogues, 11 the intense absorption band peaking at 488 nm in solution corresponds to an intramolecular charge-transfer transition from the HOMO localized on the TTF core to the LUMO localized on the BTD moiety. A slight red-shift of this optical absorbance in the film is attributed to strong intermolecular interactions. The copper chloride gel shows an even larger red-shift extending into the near-IR region giving rising to a low bandgap (< 1.2 eV), indicative of the coordination of Cu(II) by the nitrogen atoms on the BTD portion of 1. These results are consistent with the ¹H NMR data of the CdBr₂ gel (Figure S2). Upon gelation, the signals due to the benzene ring and propyl groups of 1 become broad and are shifted upfield. Additionally, FTIR spectra of 1 and its MCl₂ xerogels (Figure S3) indicate slight shifts of the vibration frequencies for the BTD aromatic ring in a range of 1200 cm⁻¹ and 1500 cm⁻¹ upon gelation. All these observations imply that the coordination bonds are primary driving forces to form the fibers while the π - π stacking between BTD-fused TTF units and noncovalent van der Waals interactions play an important role in the entanglement of fibers and the capture of solvent.

Powder X-ray diffraction patterns of a xerogel from $CuCl_2$ and 1 as well as of monomer 1 on its own are shown in Figure S4. The gel shows some amorphous as well as crystalline character, as evidenced by the presence of both broad and sharp peaks. The gel spectrum exhibits some similarity to 1 but also new features that do not correspond to either pure $CuCl_2$ or 1, indicating that the self-organization in the gel is not simply precipitated monomer, but a new hybrid of both metal ions and 1.

Magnetic susceptibility (SQUID) measurements (Figure S5) also determined that there was 8.3% of copper(II) in the xerogel, which is

close to the expected value of 11% for a 1:1 ratio of 1 to copper(II) in the bulk gel. Moreover, the magnetic susceptibility data show that there is a pronounced antiferromagnetic coupling between neighbouring Cu(II) ions. These results indicate that the Cu(II) involved in the gelation and not just a precipitate dispersed in the generative.

Scanning electron microscopy (SEM) was used to visualize the morphology of the xerogels formed under different conditions. Adepicted in Figure S6, the gels have a wavy suprastructure in less polar solvents, such as chloroform and chlorobenzene, and more fit structures in more polar solvents, such as o-dichlorobenzene and dichloromethane. The 3-D network has a woven appearance with belt-like fibers of about 50 nm in diameter, which shows some alignment over several tens of microns. Similar features, albeit with some subtle differences, were observed in the SEM images of other metallogels (Figure S7).

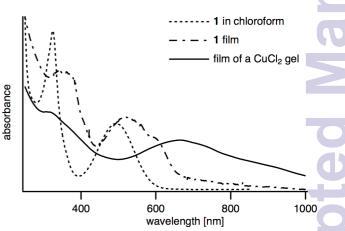


Fig. 2 UV-vis spectra of 1 in solution, film, and as a CuCl₂ gel.

The gels show an intriguing response to washing (Figure S8). The material washed away depends upon the washing solvent. The day. blue xerogel is initially rinsed with ethanol, which washes awa metal salt and changes the colour to that of 1, red. This observation can be confirmed by energy-dispersive X-ray spectroscopy (EDX For instance, the atomic ratio of S:Cu changes from 70:10 for the as synthesized gel to 96:2 for the gel washed with ethanol. Also SFM images reveal the variation of the fibrous nature of the gel washing (Figure S9). The as synthesized gel shows a columnar structure with overlying parallel wavy features. When the gel is washed with ethanol, however, what remains appears very similar pure 1, suggesting the removal of CuCl₂. When the gel is further rinsed with dichloromethane, the layers of 1 are removed from the gel surface, and the gel returns to a dark blue colour. This process or selectively washing away portions of the gel by alternating solven 3 is indicative of the formation of a stable layered suprastructur (Figure S10) with a lamellar structural sequence during the gelatio process. This structural feature is not beneficial to the penetration of the solid EDTA into the gel, which accounts for the aforemention 1 failure of EDTA to uptake Cu(II) from the gel.

While bulk gels are an interesting curiosity, electronically active materials require easy processability into thin films for useful defice manufacture. To that end effort was focused on creat. homogeneous thin films. Ideally, spin coating or drying over thermal gradient would be a favourable method for it, however, due to the gel-like consistency of the material we probed another rout. Loose gels, made from a mixture of a solution of 1 in dichlorobenzene and a solution of CuCl₂ in ethanol, we sandwiched between two microscope slides, which were the

Journal Name COMMUNICATION

pressed together to blend the green gelatinous particulates (visible under optical microscope) into an amorphous green film. The glass slides were then slid laterally apart. The resulting films were allowed to dry, whereupon they darkened. When viewed under a polarizing optical microscope, a homogeneous film of uniform alignment responded to the polarized light, indicating the parallel alignment of the chromophoric units. A SEM image of the resulting film (Figure S11) shows that there are features on the scale of 500 nm to 1 µm.

A doped thin film of the CuCl₂ xerogel was prepared after exposure to iodine vapors for two minutes and further investigated as a conductor. Electron paramagnetic resonance (EPR) spectroscopy is useful for exploring the electronic characteristics of this kind of material.^{6d} As illustrated in Figure S12, the un-doped xerogel is EPR signal silent whereas the doped one exhibits a clear EPR signal with a peak-to-peak linewidth (ΔHpp) of 30 G. This EPR signal corresponds to the formation of the cation radical of 1.12 Surprisingly, when the doped xerogels were subjected to an annealing cycle, an irreversible decrease of the peak-to-peak linewidth was observed from 30 G to 6 G. During the annealing process (Figure S13), the samples were heated up to 200 °C and subsequently cooled down to room temperature. This change of ΔHpp can be attributed to an irreversible solid-state-like transition to a new structural phase, as reported previously. 6d This phase transition was observed when doped samples were heated up to 200 °C. Interestingly, a peak-to-peak linewidth of 6 G is characteristic of oxidized TTF-based organic conductors.¹³ Therefore, four-probe DC resistance measurements on doped CuCl₂ xerogels were carried out to study the electrical properties of the two phases and, further, to control the change of the electrical properties during the phase transition. In a typical experiment, a freshly doped xerogel sample was introduced into an oven that was previously set at 200 °C while a four-probe DC measurement of the sample resistance was conducted at the same time. Clearly, we observed typical semiconductor behaviour in the doped xerogel sample, as the resistance decreased with increasing temperature (Figure 3).6d,14 However, around 150 °C, a change in the slope of the resistance versus temperature curve was observed, hence underpinning the phase transition studied with EPR spectroscopy. Also, the low angle X-ray powder diffraction patterns of undoped and doped Cu xerogels as a function of temperature (Figure S14) clearly indicate different phase transitions between 100 °C and 175 °C. Even though the room temperature resistivity is practically the same for the two phases (around 1.8±0.2 Ωcm), their topography changed considerably indicating the irreversible nature of the phase transition (Figure S15). While smooth wire-like morphologies were observed for freshly doped xerogel samples, needle-like structures appeared after an annealing cycle was conducted. This change in morphology clearly emphasizes the effect of temperature on the metallo-supramolecular

The electrical properties of the doped film of the CuCl₂ xerogel of 1 were also studied by current sensing atomic force microscopy (CS-AFM). Typical images show regions of high conductivity that have an acicular shape (Figure 4). These features do not necessarily coincide with the points of greatest height in the film of the xerogel, a feature that rules out any topographic anomaly. In general, scaly features can be appreciated in the topography and the conducting regions are approximately 300 nm wide and up to a micron long, although it is clear that the bulk material is a conductor, otherwise no imaging would be possible. (The contact is made through the graphite substrate.) The I/V sweeps at different locations show the clear presence of a gap, characteristic of a semiconducting material.

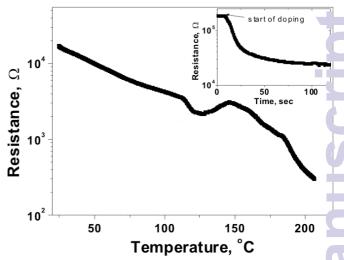
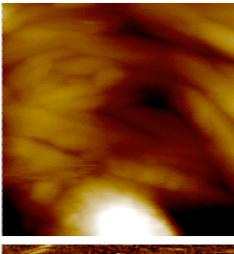
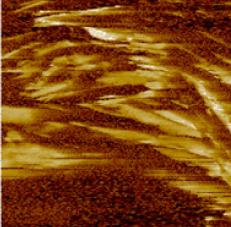




Fig. 3 (a) Temperature dependence of the resistance for a doped CuCl₂ xerogel 1 during the annealing (main panel). Top inset shows typical dependence of resistance vs time during doping by iodine vapor at room temperature.

Fig. 4 Topography (top) and current (bottom, bias voltage 1.1 V) images from C^c AFM of the same region (3×3 microns) of a CuCl₂ xerogel of **1** on highly oriented pyrolytic graphite. The brighter regions in the current map correspond to high conductivity. The independence of the responses is highlighted by the insulative bump in the topographic image.

COMMUNICATION Journal Name

In summary, we have investigated gelation behaviour of a simple BTD-fused TTF primarily through coordination bonds of MX_2 (M(II) = Cu, Cd, Co; $X = Cl^-$ and Br^-) with the BTD moiety. Among the tested transition metal ions, Cu(II) is most likely to undergo self-sustaining gelation. The morphologies of the metallogels depend upon the solvent used to dissolve 1. Furthermore, EPR and four-probe DC resistance measurements confirm that these doped CuCl2 xerogels can undergo a hightemperature phase transition to a new phase with similar electronic properties to the as-prepared conducting xerogels. This is the first work reporting TTF-based metallogels and opens up an avenue for the construction of new low-bandgap materials with various functional properties and novel nanostructures. It is envisaged that such intensely coloured metallopolymers represent a promising class of materials for photovoltaic applications.

This work was supported by the Swiss National Science Foundation (No. 200021-147143). JPL thanks MINECO for a Ramón y Cajal contract (RYC-2011-08071); DBA thanks MINECO, Spain (project CTQ2010-16339).

Notes and references

- ^a Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland. E-mail: liu@dcb.unibe.ch
- ^b Institut de Ciència de Materials de Barcelona (ICMAB-CSIC),Campus Universitari de Bellaterra, 08193, Catalonia, Spain.
- ^c Empa, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
- ^d ICREA, Barcelona, Spain.
- ^e School of Chemistry, the University of Nottingham, University Park, Nottingham, NG7 2RD, UK. E-mail: David.Amabilino@nottingham.ac.uk
- † Footnotes should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

Electronic Supplementary Information (ESI) available: Single crystal structure of 1, IR and NMR spectra, Temperature-dependent powder X-ray diffraction measurements, thermal analysis, magnetic susceptibility measurement, SEM images and EPR measurements. See DOI: 10.1039/b0000000x/

- Functional Molecular Gels, (Eds: B. Escuder and J. F. Miravet), Cambridge, Royal Society of Chemistry (RSC Soft Matter Series), 2014.
- a) Y. Matsuo, M. Maruyama, S. S. Gayathri, T. Uchida, D. M. Guldi, H. Kishida, A. Nakamura and E. Nakamura, *J. Am. Chem. Soc.*, 2009, 131, 12643; b) J. M. Lehn, *Proc. Natl. Acad. Sci. USA*, 2002, 99, 4763; c) J. Roncali, *Chem. Rev.*, 1997, 97, 173.
- 3 a) C. Qin, Y. Fu, C.-H. Chui, C.-W. Kan, Z. Xie, L. Wang and W.-Y. Wong, *Macromol. Rapid Commun.*, 2011, 32, 1472; b) C. Jia, S.-X. Liu, C. Ambrus, A. Neels, G. Labat and S. Decurtins, *Inorg. Chem.*, 2006, 45, 3152; c) W.-Y. Wong, X.-Zh. Wang, Z. He, K.-K. Chan, A. B. Djurišić, K.-Y. Cheung, C.-T. Yip, A. Man-Ching Ng, Y. Y. Xi, C. S. K. Mak and W.-K. Chan, *J. Am. Chem. Soc.*, 2007, 129, 14372.
- 4 a) W. Y. Wong and C. L. Ho, Acc. Chem. Res., 2010, 43, 1246; b) A. Y. Tam and V. W. Yam, Chem. Soc. Rev., 2013, 42, 1540; c) I. Imaz,

- M. Rubio-Martínez, W. J. Saletra, D. B. Amabilino and D. Maspoch, J. Am. Chem. Soc., 2009, 131, 18222.
- 5 a) G. S. Papaefstathiou, A. Tsohos, C. P. Raptopoulou, A. Terzis, V. Psycharis, D. Gatteschi and S. P. Perlepes, *Cryst. Growth Des.*, 200.
 1, 191; b) G. S. Papaefstathiou, S. P. Perlepes, A. Escuer, R. Vicente A. Gantis, C. P. Raptopoulou, A. Tsohos; V. Psycharis, A. Terzis at 1 E. G. Bakalbassis, *J. Solid State Chem.*, 2001, 159, 371.
- 6 a) T. Kitahara, M. Shirakawa, S.-I. Kawano, U. Beginn, N. Fujita at S. Shinkai, J. Am. Chem. Soc., 2005, 127, 14980; b) C. Wang, L. Zhang and D. Zhu, J. Am. Chem. Soc., 2005, 127, 16372; c) J. Canevet, A. Perez del Pino, D. B. Amabilino and M. Sall, Nanoscale, 2011, 3, 2898; d) J. Puigmarti-Luis, V. Laukhin, A. Perez del Pino, J. Vidal-Gancedo, C. Rovira, E. Laukhina and D. Amabilino, Angew. Chem. Int. Ed., 2007, 46, 238.
- 7 a) C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang, N. Zhao and D. Zhu, *J. Am. Chem. Soc.*, 2010, **132**, 3092; b) J. Puigmarti-Luis, A. Perez del Pino, V. Laukhin, L. N. Feldborg, Rovira, E. Laukhina and D. B. Amabilino, *J. Mater. Chem.*, 2010 **20** 466.
- a) B. Chen, Z.-P. Lv, C. F. Leong, Y. Zhao, D. M. D'Alessandro and J.-L. Zuo, Cryst. Growth Des., 2015, 15, 1861; b) Y.-D. Huang, P. Huo, M.-Y. Shao, J.-X. Yin, W.-C. Shen, Q.-Y. Zhu and J. Dai. Inorg. Chem., 2014, 53, 3480; c) Y. Qiao, Y. Lin, S. Liu, S. Zhan, H. Chen, Y. Wang, Y. Yan, X. Guo and J. Huang, Chem. Commun., 2013, 49, 704; d) S. Bivaud, J.-Y. Balandier, M. Chas, M. Allain, Goeb and M. Salle, J. Am. Chem. Soc., 2012, 134, 11968.
- 9 Y. Geng, R. Pfattner, A. Campos, J. Hauser, V. Laukhin, Puigdollers, J. Veciana, M. Mas-Torrent, C. Rovira, S. Decurtins ar S.-X. Liu, *Chem. Eur. J.*, 2014, 20, 7136.
- 10 a) U. Englert, Coord. Chem. Rev., 2010, 254, 537; b) S. Samai and K. Biradha, Chem. Mater., 2012, 24, 1165.
- a) C.-Y. Jia, S.-X. Liu, C. Tanner, C. Leiggener, A. Neels, I Sanguinet, E. Levillain, S. Leutwyler, A. Hauser and S. Decurtin. *Chem. Eur. J.*, 2007, 13, 3804; b) Y. Geng, C. Fiolka, K. Krämer, J. Hauser, V. Laukhin, S. Decurtins and S.-X. Liu, *New J. Chem.*, 201 38, 2052; c) F. Pop, A. Amacher, N. Avarvari, J. Ding, L. M. Lawson Daku, A. Hauser, M. Koch, J. Hauser, S.-X. Liu and S. Decur., *Chem. Eur. J.*, 2013, 19, 2504; d) H.-P. Jia, J. Ding, Y.-F. Ran, S.-X. Liu, C. Blum, I. Petkova, A. Hauser and S. Decurtins, *Chem. Asian. J.*, 2011, 6, 3312; e) A. Amacher, H. Luo, Z. Liu, M. Bircher, N. Cascella, J. Hauser, S. Decurtins, D. Zhang and S.-X. Liu, *RSC Adv.* 2014, 4, 2873.
- 12 E. E. Laukhina, V. A. Merzhanov, S. I. Pesotskii, A. G. Khomenko E. B. Yagubskii, J. Ulanski, M. Kryszewski and J. K. Jeszka, *Synt. Met.*, 1995, 70, 797.
- 13 a) J. Puigmarti-Luis, A. Pérez del Pino, E. Laukhina, J. Esquena, V. Laukhin, C. Rovira, J. Vidal-Gancedo, A. G. Kanaras, R. J. Nicho, M. Brust and D. B. Amabilino, *Angew. Chem. Int. Ed.*, 2008, 47, 1861; b) J. Puigmarti-Luis, E. Laukhina, V. N. Laukhin, A. Pérez del Pino, N. Mestres, J. Vidal-Gancedo, C. Rovira and D. B. Amabi. 20. *Adv. Funct. Mater.*, 2009, 19, 934; c) Y. Tomkiewicz and A. R. Taranko, *Phys. Rev. B*, 1978, 18, 733; d) R. B. Somoano, A. Gupt. V. Hadek, T. Datta, M. Jones, R. Deck and A. M. Hermann, *J. Chem. Phys.*, 1975, 63, 4970.
- 14 M. Luo, T. Ishida, T. Nogami and A. Kobayashi, *Synth. Met.*, 199 96, 97.