ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

COMMUNICATION

Design isolated iron species for Fenton reaction: lyophilization beat calcination treatment

Leitao Zhang, Hui Ye, Lizhi Zhao, Lei Zhang, Lili Yao, Yuzhong Zhang,* and Hong Li

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

www.rsc.org/

Lyophilization is used to prepare Fenton catalyst containing predominant amount of isolated Fe^{3+} species with 8.90 % iron content, which shows higher catalytic rate and H_2O_2 utilization efficiency but lower iron leaching in phenol degradation, compared with the calcination sample.

Bio-recalcitrant wastewater has become a pervasive problem afflicting people throughout the world due to negative impacts for ecosystems and humans.^{1,2} Among abatement technologies for wastewater, Fenton system is the most attractive method because of its fast reaction rate, low toxicity, and simplicity to control.³ Nevertheless, a main drawback of Fenton reaction is the need of stoichiometric amounts of iron salts.⁴ To conquer the drawback, various solid matrixes⁵⁻⁹ have been developed as heterogeneous Fenton catalysts supports in recent decades. Zeolites are widely used in catalysis due to their uniform, small pore size, large internal surface area, flexible frameworks, and controlled chemistry.¹⁰ However, these iron oxide-containing zeolite materials suffer from iron agglomeration and leaching (from 6 to 100wt %) in Fenton-like reaction.¹¹ Additionally, H_2O_2 is an expensive commodity,¹² and its excess must be greatly reduced. But little attention is paid to the utilization efficiency of H_2O_2 in Fenton reaction.

It is established that the tetrahedrally coordinated and atomically isolated [MO₄] (M=Fe, Co, etc.) species play a favourable role in zeolite catalysis.¹³⁻¹⁸ Ye et al.¹⁵ and Timofeeva et al.¹¹ reported that atomically isolated Fe³⁺ sites exhibited higher catalytic activity than small iron oxide clusters and particles and were responsible for the iron anti-leaching during the catalytic reactions. Wang et al.¹⁶ pointed that the catalyst with predominant isolated Cu²⁺ sites manifested the most excellent catalytic activity and highest H₂O₂ efficiency in phenol hydroxylation process, whereas the one containing the most copper oxide clusters showed the lowest rate

+ Footnotes relating to the title and/or authors should appear here.

This journal is © The Royal Society of Chemistry 20xx

and utilization efficiency of H_2O_2 . In addition, zeolites containing isolated tetrahedral $[MnO_4]^{17}$ and $[CoO_4]^{18}$ species were active ... selective catalytic oxidation or reduction. However, it was found that only with low metal content (<2 wt. %) in these catalysts, ... majority of total metal species were present in form of isolate $[MO_4]$ (M=Fe, Co, etc.) sites.^{11,19}

Freeze-drying is a drying method often encountered in fool processing as well as in the pharmaceutical industry usually free preservation purposes.²⁰ Although there have been some literatures on the application of freeze drying in cataly, t preparation, the aim of lyophilization is to pretreat the catalyst precursors and to control the nanoparticle distribution uniformity.^{20,21} In this work, to the best of our knowledge, lyophilization is first used to prepare Fenton catalyst containing predominant amount of isolated Fe³⁺ species with 8.90 wt. % iron content, which is the maximum metal content in catalys s containing predominant amount of isolated metal sites so far. Compared with the calcination sample, the lyophilization catalyr shows higher catalytic rate and H₂O₂ utilization efficiency but lowiron leaching in phenol degradation.

Scheme 1 illustrates the preparation process. Catalyst precursor with 8.90% iron content is firstly obtained through the blend of 10 7 4A zeolite and 500ml 2000mg/L FeCl₃ solution. Then the catalyst

Scheme 1 Synthesis of F-55-48 and T500-6 catalysts and the suppositional existence state of tetrahedral $[TO_4]$ (Fe, Al and 5 , sites.

J. Name., 2013, 00, 1-3 | 1

State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387 (P.R. China).

E-mail: zhangyz2004cn@vip.163.com

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

precursor is lyophilized at -55°C for 48h and labelled as F-55-48. By contrast, T500-6 is obtained through catalyst precursor calcination at 500°C for 6h (Experimental details are available in ESI⁺). XPS characterizations (Fig. S6, ESI⁺) provide detailed information about the oxidation state of iron element, suggesting that only Fe³⁺ exists in all catalysts. Compared with neat surface of 4A zeolite (Fig. S4, ESI⁺), the SEM images show the surface of the catalysts becomes rough with iron loading on the zeolite (Fig. 1a, b). The TEM images (Fig. 1c, d and Fig. S5a, b, c, ESI⁺) exhibit few iron oxide aggregates in F-55-48 material but large amount of aggregates display a lattice spacing of 0.368nm (Fig. 1f), corresponding to the (012) plane, and are attributed as α -Fe₂O₃, in good parallel with the XRD analysis (Fig. S3, ESI⁺).

UV/Vis spectrum is extensively employed to characterize the nature and coordination environment of iron species in ironcontaining silicate materials (Fig. 2). The comparison of the 4A zeolite and iron-containing catalysts indicates that the enhanced adsorption in catalysts arises from the presence of iron species. The spectra can be divided into three parts: wavelengths at $200<\lambda<300$ nm, $300<\lambda<400$ nm and >400 nm.¹⁹ According to the Tanabe and Sugano diagram,²² the two bands observed at ca. 209 nm and 276 nm are attributed to the $t_1 \rightarrow t_2$ and $t_1 \rightarrow e$ transitions involving Fe³⁺ in the [FeO₄] tetrahedral group, respectively. The bands at $300<\lambda<400$ nm are assigned to small oligomeric Fe_xO_y clusters inside pores and bands >400 nm are assigned to large Fe₂O₃ particles.¹⁹ According to

Fig. 1 SEM images of a) F-55-48, and b) T500-6. TEM images of c, d) F-55-48 (inset: EDS element analysis) and e, f) T500-6 (inset: exploded view (top) and EDS element analysis).

Fig. 2 UV/Vis spectra of 4A zeolite, T500-6 and F-55-48 catalyst.

the Kubelka-Munk representation,²³ it can be calculated rount¹, that about 85.87% Fe sites are isolated iron species in lyophilized catalyst but only 41.57% isolated iron sites remain in contrastive sample. In addition, the transverse vibrations (Eu) at 450 cm attributed to the Fe-O-Fe stretching mode²⁴ appears in T500-6 bu. not in F-55-48 material (Fig. S10a, ESI⁺). All these data, combine with the TEM images analysis, suggest that predominant amount c. iron species in F-55-48 are isolated iron sites but those in T5C⁻ catalyst are iron oxide aggregates. The EPR spectra provide further evidence for predominated amount of isolated iron sites in F-55-4.² catalyst and iron oxides in T500-6 sample (detailed analysis in S3.4 part, ESI⁺). Additionally, the comparison of the metal content (<2 1) wt. %) with other literatures^{11,14,15,17,19,20} suggests that this is the maximum metal content (8.90 wt. %) in catalysts containin ⁷ predominant amount of isolated metal sites so far.

The IR spectra (Fig. S10a, ESI⁺) confirm the external linkages (f 4A zeolite are destroyed, but the internal [TO₄] (T=Si, Al) tetrahedral primary units are still reserved. The XPS spectra (Fig. S10b, F^{c+}, demonstrate that 74.73% [AlO₄] primary building units still exist m F-55-48 sample but only 5.24% is remained in T500-6 catalyst (Table 1). Scheme 1 shows the suppositional existence state of [TO₄] (T=Fe Al and Si elements) units in different materials (detailed analysis m S3.6, ESI⁺). The N₂ adsorption-desorption isotherms infer that the specific surface area of the as-prepared material with lyophilization is 126.01m²g⁻¹, which is far larger than T500-6 sample (9.04 m² g⁻¹, There appear mesopores (4.31 nm) in the F-55-48 catalyst where s the mean-pore size of T500-6 is only 1.39 nm (Table 1).

Concerning the reason of the tremendous differences between 55-48 and T500-6 material, the two steps in catalyst preparation

Table 1 Physical properties of 4A zeolite, F-55-48 and T500-6.				
Samples	Surface area ^[a]	Pore size (nm)	[AlO ₄]/total Al ^{ld}	
	(m ² g ⁻¹)		(At. %/At. %)	
4A zeolite	573.00	0.41	100.00%	
F-55-48	126.01	4.31 ^[b]	74.73%	
T500-6	9.04	1.39 ^[c]	5.24%	Q

[a] Obtained by BET measurement. [b] Calculated by BJH method. [c] Calculated by DFT analysis. [d] Obtained by XPS analysis (Se detailed analysis in S3.4 part, ESI⁺).

Journal Name

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

Journal Name

process need to be analysed. Firstly, the crystalline structure of 4A zeolite disappears after mixing with FeCl₃ solution (Fig.S2, ESI⁺) because of the acid leaching²⁵ and the exchange of Al³⁺ and Fe³⁺ (detailed analysis in S5, ESI⁺). The acid leaching creates mesopores¹⁰ and the ion exchange leads to [FeO₄] tetrahedrons²⁶ in the precursor. Secondly, the lyophilization process only sublimates the "ice template"²⁷ insides pores and holds the mesoporous structure, whereas high temperature forces not only the water out of the pores but also framework iron and aluminium species into extraframework clustered iron or aluminium oxides. The migration leads to the decrease in the amount of tetrahedral [FeO₄] and [AlO₄] units in catalysts. And these forming clustered oxides species obstruct the channels and result in the decrease of the specific surface area and pore size of T500-6 catalyst.

The catalytic performance of as-prepared materials is evaluated for the phenol degradation (Fig. 3). The adsorption study indicates that there is no phenol adsorption on catalysts (Fig. S23, ESI⁺). In Fig.3a, for F-55-48 catalyst, with initial pH=2.00, nearly 97.15% of the phenol is degraded within 13.5 min, whereas 110 min is needed for T500-6 to achieve the same degradation efficiency. This results from the difference of induction period¹⁶ which is the unique feature of radical-type mechanism confirmed by tert-butanol and DMSO²⁸ quenching experiments (Fig. S14, ESI⁺). The induction period is an activation process of iron species²⁹ and shorter induction time infers higher catalytic activity of F-55-48 catalyst (detailed mechanism in S6.3, ESI⁺). Phenol degradation under different pH conditions verifies again the high catalytic activity of F-55-48 catalyst (Fig. S15, ESI⁺). We further confirm the effectiveness of lyophilization in catalyst preparation by the comparison of other freeze-dried and calcination catalysts (Fig. S18a, ESI⁺).

Fig. 3 (a) Phenol degradation in the presence of F-55-48 and T500-6 catalysts. (b) The influence of the absence or presence of phenol on H_2O_2 degradation with different catalysts: b1) no phenol, F-55-48; b2) no phenol, T500-6; b3) phenol, T500-6; b4) phenol, F-55-48. Red arrow indicates the time of phenol complete degradation. (c) Iron leaching in phenol degradation with different catalysts. (d) Successive recycling experiment of F-55-48 for phenol degradation at initial pH=6.30. Other conditions: Phenol=200 mg/L, 100 mL; H_2O_2 /Phenol=12.75 (molar ratio); Catalyst=0.10 g; Initial pH=2.00±0.01; T=25 °C

COMMUNICATION

During phenol degradation, the concentration of H_2O_2 is detected to study the H₂O₂ utilization efficiency. Fig.3b shows the change (residual H₂O₂ concentration in phenol degradation with differen catalysts. In the presence of phenol, after phenol complete degradation, one can observe that residual H₂O₂ concentration higher with F-55-48 than the one with T500-6 (Fig.3b, b3 and b4). This infers that F-55- 48 shows higher H₂O₂ utilization efficien than T500-6. To shed light on this reason, we perform twin experiments in which the degradation of H_2O_2 in the absence fphenol by F-55-48 and T500-6 (Fig.3b, b1 and b2). The twin experiments uncover T500-6 catalyst containing large amount of iron oxide aggregates disproportionates hydrogen peroxide into non-productive oxygen molecular, which leads to the low H_2 efficiency. The other results indicate that all lyophilization catalys exhibit higher H₂O₂ efficiency than calcination samples as outline in Table S3.

The stability of freeze-dried catalysts is evaluated by measurement of iron leaching and successive recycling experiment. Fig. 3c shows the average iron leaching of F-55-48 catalyst is aro 11.14mg L¹ in phenol degradation process, whilst the value of T500-6 catalyst is 2.37mg L¹. Similarly, the other lyophilization catalysts exhibit lower iron leaching in catalytic process (Fig. S18b and Tab S1, ESI⁺). This means that the freeze-dried samples may have better stability than calcination catalysts. Six successive recycling experiments are carried out at initial pH=6.30 (Fig.3d) and the experiment results and the characterizations of used catalyst (detailed information in S8, ESI⁺) further show good stability of 55-48 catalyst. However, T500-6 catalyst appears poorer stabilit, for phenol degradation in three successive tests (S10, ESI⁺).

As mentioned before, the freeze-dried catalysts hav, predominant amount of isolated Fe^{3+} species with 8.90% irc, content and the isolated Fe^{3+} sites have highly catalyth, performance, so it can be supposed that the presence of predominant amount of isolated iron species is the dominan, reason why lyophilization catalysts display superior catalytic performance than calcination ones. Besides, the generation of mesopores³⁰ and larger specific surface area, and more tetrahedral [AlO₄] sites^{31,32} in lyophilization materials may be beneficial to its enhanced catalytic activity. Besides, the fact that catalysts prepare at room temperature show weak catalytic performance for phen degradation due to their poor dispersion in reaction mediu further manifests the advantages of lyophilization in cataly preparation (more information in S7, ESI⁺).

In conclusion, lyophilization is used to prepare Fenton catalystic containing predominant amount of isolated Fe^{3+} species with 8.90 wt. % iron content, which is the maximum metal content catalysts containing predominant amount of isolated metal sites so far. Compared with calcination catalysts, the as-prepared sam les exhibit higher catalytic degradation rate and H_2O_2 efficiency phenol but lower iron leaching in catalytic reaction. The lyophilization method only removes the water in catalyst precursoand reserves predominant amount of isolated iron sites which plar a key role in enhancing catalytic performance. Nevertheless, the migration of isolated iron/aluminum sites caused by calcinatic 1 from framework positions to extraframework clusters or particles leads to disadvantages. This study identifies a promising ne r

Journal Name

strategy for engineering practical catalysts for environment remediation.

This work is supported by the National Natural Science Foundation of China (No. 51503146, 51173132, 51373120, and 21204064), Science and Technology Commission Foundation of Tianjin (No.15JCZDJC37600, and 14JCQNJC03900), Public Science and Technology Research Funds Projects of Ocean (201305004-5), and Research Fund for the Doctoral Program of Higher Education (Funding No.20111201110003).

Notes and references

COMMUNICATION

- 1 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, *Nature*, 2008, **452**, 301.
- 2 A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault and H. Kochkar, *Appl. Catal., B*, 2015, **163**, 404.
- N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X. S. Zhao and J. C. Diniz da Costa, *Chem. Commun.*, 2015, **51**, 9291.
- 4 S. Navalon, M. Alvaro and H. Garcia, *Appl. Catal., B*, 2010, **99**, 1.
- 5 S. Navalon, A. Dhakshinamoorthy, M. Alvaro and H. Garcia, *ChemSusChem*, 2011, **4**, 1712.
- 6 J. Herney-Ramirez, M. A. Vicente and L. M. Madeira, *Appl. Catal., B*, 2010, **98**, 10.
- 7 A. Dhakshinamoorthy, S. Navalon, M. Alvaro and H. Garcia, *ChemSusChem*, 2012, **5**, 46.
- 8 H. Lim, J. Lee, S. Jin, J. Kim, J. Yoon and T. Hyeon, *Chem. Commun.*, 2006, DOI: 10.1039/B513517F, 463.
- 9 H. Sun, Y. Wang, S. Liu, L. Ge, L. Wang, Z. Zhu and S. Wang, Chem. Commun., 2013, 49, 9914.
- Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, *Chem. Rev.*, 2006, 106, 896.
- 11 M. N. Timofeeva, M. S. Melgunov, O. A. Kholdeeva, M. E. Malyshev, A. N. Shmakov and V. B. Fenelonov, *Appl. Catal.*, *B*, 2007, **75**, 290.
- 12 S. Navalon, R. Martin, M. Alvaro and H. Garcia, *Angew. Chem.*, 2010, **122**, 8581.
- 13 Y. Sun, S. Gao, F. Lei and Y. Xie, *Chem. Soc. Rev.*, 2015, **44**, 623.
- 14 S. Yashnik and Z. Ismagilov, *Appl. Catal., B*, 2015, **170–171**, 241.
- 15 Y. Wang, Q. Zhang, T. Shishido and K. Takehira, *J. Catal.*, 2002, **209**, 186.
- 16 G. Zhang, J. Long, X. Wang, Z. Zhang, W. Dai, P. Liu, Z. Li, L. Wu and X. Fu, *Langmuir*, 2009, **26**, 1362.
- 17 Y. Meng, H. C. Genuino, C.-H. Kuo, H. Huang, S.-Y. Chen, L. Zhang, A. Rossi and S. L. Suib, *J. Am. Chem. Soc.*, 2013, **135**, 8594.
- 18 J. Janas, T. Machej, J. Gurgul, R. P. Socha, M. Che and S. Dzwigaj, *Appl. Catal., B*, 2007, **75**, 239.
- 19 M. Santhosh Kumar, M. Schwidder, W. Grünert, U. Bentrup and A. Brückner, J. Catal., 2006, **239**, 173.
- 20 T. M. Eggenhuisen, P. Munnik, H. Talsma, P. E. de Jongh and K. P. de Jong, *J. Catal.*, 2013, **297**, 306.
- 21 G. Chen and W. Wang, Drying Technol., 2007, 25, 29.
- 22 S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola and G. Vlaic, *J. Catal.*, 1996, **158**, 486.
- 23 P. Boroń, L. Chmielarz and S. Dzwigaj, *Appl. Catal., B*, 2015, **168**, 377.
- 24 R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses, John Wiley & Sons, 2006.
- 25 A. H. Janssen, A. J. Koster and K. P. de Jong, *Angew. Chem., Int. Ed.*, 2001, **40**, 1102.

- 26 E. Díaz, S. Ordóñez, A. Vega and J. Coca, Appl. Catal., B, 20, 56, 313.
- 27 W. Chen, Y.-X. Huang, D.-B. Li, H.-Q. Yu and L. Yan, RSC Adv 2014, 4, 21619.
- 28 S. Enami, Y. Sakamoto and A. J. Colussi, PNAS, 2014, 11, 623.
- 29 L. Xu and J. Wang, J. Hazard. Mater., 2011, 186, 256.
- 30 S. Van Donk, A. H. Janssen, J. H. Bitter and K. P. de Jon *Catal. Rev.*, 2003, **45**, 297.
- 31 N. Musselwhite, K. Na, S. Alayoglu and G. A. Somorjai, J. Am Chem. Soc., 2014, **136**, 16661.
- 32 A. L. T. Pham, C. Lee, F. M. Doyle and D. L. Sedlak, Environ. Sci. Technol., 2009, 43, 8930.

Accepted ncomn