# ChemComm

# Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/chemcomm

# ChemComm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

# **Regioselective Synthesis of Multisubstituted Isoquinolones and Pyridones** *via* **Rh(III)-Catalyzed Annulation Reactions**<sup>†</sup>

Liangliang Shi,<sup>a</sup> Ke Yu,<sup>a</sup> and Baiquan Wang<sup>\*,a,b,c</sup>

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A mild and efficient Rh(III)-catalyzed regioselective synthesis of isoquinolones and pyridones has been developed. The protocol uses readily available N-methoxybenzamide or Nmethoxymethacrylamide and diazo compounds as the starting materials. The process involving tandem C-H activation, cyclization, and condensation steps proceeds under mild conditions, and

10 the corresponding isoquinolone and pyridone derivatives were obtained in good to excellent yields with excellent regioselectivities. The process provides a facile approach for the construction of isoquinolone and pyridone derivatives containing various functional groups.

Recently, great progress has been made in the Rh(III)catalyzed C-H bond functionalization, which has become a 15 useful tool for building various C-C, C-X bond, and afforded a streamlined and step-economical method for building desired valuable heterocycles without preactiviton of the coupling partner.<sup>1</sup> Over the past several years, Rh(III)-catalyzed C-H activation/annulation has focused on coupling amides, amines, 20 oximes, and anilines with alkyne, alkene, and allene to obtain

isoquinolones,<sup>2</sup> pyridones,<sup>2d,3</sup> isoquinolines,<sup>4</sup> pyridines,<sup>4f,4p,5</sup> indoles,6 and pyrroles derivatives.6d,7

Rh-catalyzed C-H bond activation based on carbene migratory insertion has been developed as a fascinating strategy 25 toward C-H functionalization.<sup>8,9</sup> In 2012, Yu and co-workers first reported Rh(III)-catalyzed carbene migratory insertion into arene C-H bonds with diazomalonates.9a Recently, Rovis, Yu, and

- Cramer groups developed the cyclization of benzamides and diazo compounds to access isoindolinones via Rh(III)-catalyzed <sup>30</sup> C–C/C–N bond formation (Scheme 1, eq 1).<sup>9b-d</sup> Meanwhile, some
- interesting reactions of Rh(III)-catalyzed cyclization employ diazo compounds as coupling/cyclization partners have been reported by Cui, Glorius, Wan and Li, Wang, Xu and Yi, and other groups.9 In 2014, our group reported Rh(III)-catalyzed
- 35 cyclization of 2-acetyl-1-arylhydrazines with diazo compounds via tandem C-H activation, cyclization, and condension steps to synthesize 1-aminoindole derivatives (Scheme 1, eq 2).<sup>9</sup> Very recently, Bolm's group described Rh(III)-catalyzed cyclization of S-aryl sulfoximines and diazo compounds to construct 1,2-<sup>40</sup> benzothiazines through similar steps (Scheme 1, eq 3).<sup>9t</sup>

Isoquinolones and pyridinons are widely occurred in natural products and biologically active molecules. They are privileged scaffolds for the design and discovery of drugs and many of them exhibit potent biological activities.<sup>10</sup> Some approaches to

45 isoquinolones and pyridinons have been developed,<sup>2,3,11</sup> however, these synthesis methods frequently require specific pre-activated C-X bond or restricted to regioselectivity.



Scheme 1. Rh(III)-catalyzed C-H activation/annulations using diaz 50 compounds as cyclization partners.

Continuing interest in heterocycle building,9i,12 herein, we report an efficient Rh(III)-catalyzed approach to multisubstituted isoquinolones and pyridinons via cascade reactions of Nmethoxybenzamides and N-methoxymethacrylamides with diaz 55 compounds under mild conditions (Scheme 1, eq (4)).

As shown in Table 1, reaction of *N*-methoxybenzamide (1) with ethyl diazoacetoacetate (2a) was used as the model to optimize reaction conditions including the solvents, additives, and catalysts system. The initial experiments were performe 60 with N-methoxybenzamide (1a) (0.2 mmol) and ethy diazoacetoacetate (2a) (0.24 mmol) in the presence of [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (5 mol%), and AgSbF<sub>6</sub> (20 mol%) as catalyst system at 60 °C under Ar atmosphere in MeCN (2 mL) for 12 h as given in Table 1. This condition indeed accessed desired target

This journal is © The Royal Society of Chemistry [year]

[journal], [year], **[vol]**, 00–00

Table 1Rh(III)-catalyzedC-Hactivation/annulationofN-methoxybenzamide 1a and ethyl diazoacetoacetate  $2a^a$ 

|                                                                                                                        | N OMe +                                 | $N_2$ OEt $\frac{c}{s_0}$                            | at., additive |          | OMe        |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|---------------|----------|------------|
|                                                                                                                        | 1a                                      | 2a                                                   |               | 3aa      |            |
| Entry                                                                                                                  | Catalyst Sys                            | tem                                                  | Solvent       | Additive | Yields     |
| -                                                                                                                      |                                         |                                                      |               |          | $[\%]^{b}$ |
| 1                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | MeCN          |          | 65         |
| 2                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | $CH_2Cl_2$    |          | 77         |
| 3                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | DCE           |          | 75         |
| 4                                                                                                                      | [Cp*RhCl <sub>2</sub> ]                 | <sub>2</sub> /AgSbF <sub>6</sub>                     | THF           |          | <b>92</b>  |
| 5                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | dioxane       |          | 86         |
| 6                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | MeOH          |          | 79         |
| 7                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | $H_2O$        |          | 59         |
| 8                                                                                                                      | AgSbF <sub>6</sub>                      |                                                      | THF           |          | 0          |
| 9                                                                                                                      | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    |                                                      | THF           |          | 0          |
| 10                                                                                                                     | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | THF           | AgOAc    | 92         |
| 11                                                                                                                     | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | THF           | NaOAc    | 91         |
| 12                                                                                                                     | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | THF           | CsOAc    | 90         |
| 13                                                                                                                     | [Cp*RhCl <sub>2</sub> ] <sub>2</sub>    | /AgSbF <sub>6</sub>                                  | THF           | HOAc     | 89         |
| 14                                                                                                                     | [Cp*Rh(Me0                              | $CN_{3}][(SbF_{6})_{2}]$                             | THF           |          | 87         |
| 15                                                                                                                     | [(p-cymene)]                            | RuCl <sub>2</sub> ] <sub>2</sub> /AgSbF <sub>6</sub> | THF           |          | Trace      |
| 16                                                                                                                     | [Cp*IrCl <sub>2</sub> ] <sub>2</sub> /2 | AgNTf <sub>2</sub>                                   | THF           |          | 41         |
| <sup>a</sup> Reaction conditions: <b>1a</b> (0.2 mmol), <b>2a</b> (0.24 mmol), [Cp*RhCl <sub>2</sub> ] <sub>2</sub> (5 |                                         |                                                      |               |          |            |
| mol%), AgSbF <sub>6</sub> (20 mol%), additive (0.06 mmol), solvent (2 mL), 60                                          |                                         |                                                      |               |          |            |

°C, 12 h, under Ar atmosphere. <sup>b</sup>Isolated yield.

product **3aa** in 65% yield. The structure of **3aa** was confirmed by <sup>5</sup> <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, high-resolution mass spectrometry (HRMS). Encouraged by this result, first, effect of solvents was investigated (compare entries 1–7), and THF gave the best result, as the yield of **3aa** increased to 92% yield (Table 1, entry 4). Control experiment uncovered that no target product <sup>10</sup> was accessed in the absence of [Cp\*RhCl<sub>2</sub>]<sub>2</sub> or AgSbF<sub>6</sub> (entries

- 8–9). Several additives were screened (Table 1, entries 10–13), but the yields were slightly reduced than the yield in the absence of an additive (Table 1, entry 4). The use of [Cp\*Rh(MeCN)<sub>3</sub>][(SbF<sub>6</sub>)<sub>2</sub>] as the catalyst afforded a slightly
- <sup>15</sup> lower yield to those obtained using the [Cp\*RhCl<sub>2</sub>]<sub>2</sub>/AgSbF<sub>6</sub> catalyst system (Table 1, compare entry 4, 14). The transformation did not occur by using [(*p*-cymene)RuCl<sub>2</sub>]<sub>2</sub>/AgSbF<sub>6</sub> as a catalyst system (Table 1, entry 15). When [Cp\*IrCl<sub>2</sub>]<sub>2</sub>/AgNTf<sub>2</sub> were employed instead of <sup>20</sup> [Cp\*RhCl<sub>2</sub>]<sub>2</sub>/AgSbF<sub>6</sub>, the yield of **3aa** declined to 41% yield
- (Table 1, entry 16). Under the obtained optimum reaction conditions above, we

Under the obtained optimum reaction conditions above, we explored the applicability of a scope of diversely substituted N-methoxybenzamide. Ethyl diazoacetoacetate (**2a**) was kept as a

- <sup>25</sup> representative reaction partner (Table 2). The tested isoquinolones provided good to excellent yields. Various *N*methoxybenzamide having substituents at the *para*- position with electron-donating substituents (e.g. Me, OMe, and 'Bu) reacted to access the desired products **3ba-da** in 95–96% yields. Probably
- <sup>30</sup> because of the electrophilic C–H activation process,<sup>12</sup> substrates with strong electron-withdrawing groups (e.g. NO<sub>2</sub>, and CO<sub>2</sub>Me) at the same position inhibited the reaction, affording products **3ia** and **3ja** in slight lower respective yields of 78% and 77%. It is noteworthy that the halo-substituted (e.g. F, Cl, Br, and I)





<sup>a</sup>Reaction conditions: **1** (0.2 mmol), **2** (0.24 mmol),  $[Cp*RhCl_2]_2$  (5 mol%), AgSbF<sub>6</sub> (20 mol%), THF (2 mL), 60 °C, 12 h, under Ar atmosphere, isolated yields are shown. <sup>b</sup>Using AgOAc (0.06 mmol) as additive.

substrates performed well to afford the corresponding products in good yields. Ortho-methyl-substituted benzamide als <sup>40</sup> participated in the reaction, providing the product **3ka** in 77% yield. Unexpected, the completely regioselective coupling occurred at the less hindered position for the *meta*-substituted substrate (**3la**). C-H cyclization referring to 3,4-dimethoxysubstituted benzamide reacted at the less hindered position, gave <sup>45</sup> **3ma** as the single isomer in 98% yield. Naphthalene and heterocyclic derivatives were also tested in this annulation reations, and moderate to good yields of the corresponding products **3na**, **3oa**, and **3pa** were obtained.

Further, we investigated the scope of diazo compounds with <sup>50</sup> *N*-methoxybenzamide (**1a**) as the reaction partner. Diazo substrates contain substituents such as alkyl, ether, ketone, phenyl chloromethyl, and phenylsulfone accessed the desired product **3ab–ak** in 82–97% yields, except the low yield of 34% for **3al**. Among them, unsymmetrical diketone (**2i**) reacted under the <sup>55</sup> optimal conditions to give only one regioisomer of **3ai** in 92% yield. Similarly, 1-diazo-1-tosylpropan-2-one (**2k**) underwent the desired reaction to give product **3ak** in 82% yield. Interestingly, 2-diazo-5,5-dimethylcyclohexane-1,3-dione (**2l**) reacted with **1a** to give the corresponding product **3al** in 34% yield. Unexpectedly,

2 | Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

### ChemComm





<sup>*a*</sup>Reaction conditions: **1** (0.2 mmol), **2** (0.24 mmol),  $[Cp*RhCl_2]_2$  (5 mol%), AgSbF<sub>6</sub> (20 mol%), THF (2 mL), 60 °C, 12 h, under Ar atmosphere, isolated yields are shown. <sup>*b*</sup>Using AgOAc (0.06 mmol) as additive.

the reaction provided **3al'** as the major product under the standard <sup>5</sup> conditions.

This cyclization was also extended to pyridones synthesis by using N-methoxymethacrylamide and diazo compounds as starting materials. We were delighted to find that reaction of Nmethoxy-2-phenylacrylamide (4a) and ethyl diazoacetoacetate

- <sup>10</sup> (2a) afforded the target product 5aa in 94% yield under the standard conditions. Varieties of alkenyl amides 4b-g also accessed corresponding products 5ba-ga in 57–95%. Other diazo compounds such as methyl 2-diazo-3-oxobutanoate (2b), 3-diazopentane-2,4-dione (2e), 2-diazo-1,3-diphenylpropane-1,3-
- <sup>15</sup> dione (**2j**), and 2-diazo-1-tosylbutane-1,3-dione (**2k**) reacted smoothly with the *N*-methoxy-2-phenylacrylamide to afford the corresponding cyclization products in 76–95% yields.

In order to further confirm the structure of the product **3aa**, the methoxy group of **3aa** was removed by treating with 3 equiv

<sup>20</sup> of sodium hydride in DMF at 120 °C for 2 h, and isoquinolin-1(2*H*)-one **6** was obtained in 55% yield (Scheme 2).<sup>13</sup> The <sup>1</sup>H and <sup>13</sup>C NMR spectra and HRMS of **6** were consistent with literature.<sup>11</sup>

On the basis of literature reports, <sup>9f,i,u</sup> a plausible mechanism <sup>25</sup> was proposed (Scheme 3). First, *N*-methoxybenzamide or *N*methoxymethacrylamide reacts with Cp\*Rh(III) through directed C–H cleavage to form intermediate **I**, which is followed by generation of Rh(III)-carbene **II**. Subsequently, migratory insertion of the carbene into the Rh–C bond accesses rhodacycle

<sup>30</sup> intermediate III. Protonolysis of III leads to the intermediate IV, and releases the Rh(III) catalyst, which starts a new catalytic cycle. Then tautomerization of intermediate IV generates in situ enol intermediate V, which undergoes ring-closing elimination of water to give the final product.



**Scheme 3.** Possible mechanism for Rh(III)-catalyzed activation/annulations of *N*-methoxybenzamides or <sup>40</sup> methoxymethacrylamides and diazo compounds.

In summary, we have developed a mild and efficient Rh(III)catalyzed synthesis of multisubstituted isoquinolones a pyridones. The protocol uses readily available *N*methoxybenzamide or *N*-methoxymethacrylamide and diaz. <sup>45</sup> compounds as the starting materials, [Cp\*RhCl<sub>2</sub>]<sub>2</sub>/AgSbF<sub>6</sub> as catalyst system, thus providing target products in high yields wit excellent regioselectivities. This intermolecular annulation procedure undergoes domino C–H activation, cyclization, an condensation steps, releases H<sub>2</sub>O and N<sub>2</sub> as byproducts.

The authors wish to thank the National Natural Scienc Foundation of China (Grant Nos. 21372122 and 21421062) for financial support.

## Notes and references

[a] State Key Laboratory of Elemento-Organic Chemistry, College of

55 Chemistry, Nankai University, Tianjin 300071, P. R. China. Phone/Fax: +86 (22) 23504781, E-mail: bqwang@nankai.edu.cn. [b] Collaborative Innovation Center of Chemical Science and

Engineering, Tianjin 300071, P. R. China

- [c] State Key Laboratory of Organometallic Chemistry, Shanghai
- 60 Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

† Electronic Supplementary Information (ESI) available: Full experimental details, characterization and NMR spectra of the targe products are provided. See DOI: 10.1039/b000000x/

- For recent reviews on Rh(III)-catalyzed C-H activation, see: (a 1. Satoh, and M. Miura, Chem. Eur. J., 2010, 16, 11212; (b) F. V Patureau, J. Wencel-Delord, and F. Glorius, Aldrichimica Acta 2012, 45, 31; (c) S. Chiba, Chem. Lett. 2012, 41, 1554; (d) G. Song, F
- <sup>70</sup> Wang, and X. Li, *Chem. Soc. Rev.* 2012, **41**, 3651; (*e*) N. Kuhl, N Schörder, and F. Glorius, *Adv. Synth. Catal.*, 2014, **356**, 1443; (*f*) G Song, and X. Li, *Acc. Chem. Res.*, **2015**, 48, 1007; (*g*) B. Ye, and N. Cramer, *Acc. Chem. Res.*, **2015**, 48, 1308.
- 2 (a) N. Guimond, C. Gouliaras, and K. Fagnou, J. Am. Chem. Soc., 201
- 75 **132**, 6908; (b) T. K. Hyster, and T. Rovis, J. Am. Chem. Soc., 2010

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00

75

Page 4 of 4

**132**, 10565; (c) S. Mochida, N. Umeda, K. Hirano, T. Satoh, and M. Miura, *Chem. Lett.*, 2010, **39**, 744; (d) G. Song, D. Chen, C.-L. Pan, R. H. Crabtree, and X. Li, *J. Org. Chem.*, 2010, **75**, 7487; (e) N. Guimond, S. I. Gorelsky, and K. Fagnou, *J. Am. Chem. Soc.*, 2011,

- 133, 6449; (f) F. Wang, G. Song, Z. Du, and X. Li, J. Org. Chem., 2011, 76, 2926; (g) X. Xu, Y. Liu, and C.-M. Park, Angew. Chem., Int. Ed., 2012, 51, 9372. (h) H. Wang, C. Grohmann, C. Nimphius, and F. Glorius, J. Am. Chem. Soc., 2012, 134, 19592; (i) N. Quiñones, A. Seoane, R. García-Fandiño, J. L. Mascareñas, and M. Gulías, Chem.
- Sci., 2013, 4, 2874; (j) J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-L. Hwang, and M. M. Bio, J. Am. Chem. Soc., 2013, 135, 14492; (k) D.-G. Yu, F. de Azambuja, T. Gensch, C. G. Daniliuc, and F. Glorius, Angew. Chem., Int. Ed., 2014, 53, 9650; (l) Y. Fukui, P. Liu, Q. Liu, Z.-T. He, N.-Y. Wu, P. Tian, and G.-Q. Lin, J. Am. Chem. Soc., 2014,
- 136, 15607; (m) N. J. Webb, S. P. Marsden, and S. A. Raw, Org. Lett., 2014, 16, 4718; (n) G. Tan, X. Huang, Q. Wu, L.-Q. Zhang, and J. You, RSC Adv., 2014, 4, 49186; (o) T. K. Hyster, T. Rovis, Synlett, 2014, 53, 9650.
- 3 (a) Y. Su, M. Zhao, K. Han, G. Song, and X. Li, *Org. Lett.*, 2010, 12, 5462; (b) T. K. Hyster, and T. Rovis, *Chem. Sci.*, 2011, 2, 1606.
- 4 (a) T. Fukutani, N. Umeda, K. Hirano, T. Satoh, and M. Miura, *Chem. Commun.*, 2009, 5141; (b) N. Guimond, and K. Fagnou, *J. Am. Chem. Soc.*, 2009, **131**, 12050; (c) P. C. Too, Y.-F. Wang, and S. Chiba, *Org. Lett.*, 2010, **12**, 5688; (d) X. Zhang, D. Chen, M. Zhao, J. Zhao, A. Jia,
- and X. Li, Adv. Synth. Catal., 2011, 353, 719; (e) Y.-F. Wang, K. K. Toh, J.-Y. Lee, and S. Chiba, Angew. Chem., Int. Ed., 2011, 50, 5927; (f) T. K. Hyster, and T. Rovis, Chem. Commun., 2011, 47, 11846; (g) K. Morimoto, K. Hirano, T. Satoh, and M. Miura, Chem. Lett., 2011, 40, 600; (h) P. C. Too, S. H. Chua, S. H. Wong, and S Chiba, J. Org.
- <sup>30</sup> Chem., 2011, **76**, 6159; (*i*) X. Wei, M. Zhao, Z. Du, and X. Li, Org. Lett., 2011, **13**, 4636; (*j*) L. Zheng, J. Ju, Y. Bin, and R. Hua, J. Org. Chem., 2012, **77**, 5794; (*k*) D.-S. Kim, J.-W. Park, and C.-H. Jun, Adv. Synth. Catal., 2013, **355**, 2667; (*l*) S.-C. Chuang, P. Gandeepan, and C.-H. Cheng, Org. Lett., 2013, **15**, 5750; (*m*) W. Liu, X. Hong, and B.
- Xu, Synthesis, 2013, 45, 2137; (n) B. Liu, F. Hu, and B.-F. Shi, Adv.
   Synth. Catal., 2014, 356, 2688; (o) J. Jayakumar, K. Parthasarathy, Y.-H. Chen, T.-H. Lee, S.-C. Chuang, and C.-H. Cheng, Angew. Chem., Int. Ed., 2014, 53, 9889; (p) H. Lee, Y.-K. Sim, J.-W. Park, and C.-H. Jun, Chem. Eur. J., 2014, 20, 323; (q) D. Zhao, F. Lied and F. Glorius,
- 40 Chem. Sci., 2014, 5, 2869; (r) J. Zhang, H. Qian, Z. Liu, C. Xiong, and Y. Zhang, Eur. J. Org. Chem., 2015, 8110; (s) X.-C. Huang, X.-H. Yang, R.-J. Song, and J.-H. Li, J. Org. Chem., 2014, 79, 1025; (t) W. Han, G. Zhang, G. Li, and H. Huang, Org. Lett., 2014, 16, 3532.
- 5 (a) P. C. Too, T. Noji, Y. J. Lim, X. Li, S. Chiba, Synlett, 2011, 2789;
  (b) D. Wang, F. Wang, G. Song, and X. Li, Angew. Chem., Int. Ed., 2012, 51, 12348; (c) J. M. Neely, and T. Rovis, J. Am. Chem. Soc., 2013, 135, 66; (d) J. M. Neely, and T. Rovis, J. Am. Chem. Soc., 2014, 136, 2735.
- 6 (a) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess, and K.
  <sup>50</sup> Fagnou, J. Am. Chem. Soc., 2008, 130, 16474; (b) D. R. Stuart, P. Alsabeh, M. Kuhn, and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 18326; (c) J. Chen, G. Song, C.-L. Pan, and X. Li, Org. Lett., 2010, 12, 5426; (d) M. P. Huestis, L. Chan, D. R. Stuart, and K. Fagnou, Angew. Chem., Int. Ed., 2011, 50, 1338; (e) C. Wang, H. Sun, Y. Fang, and Y.
- <sup>55</sup> Huang, Angew. Chem., Int. Ed., 2013, **52**, 5795; (f) D. Zhao, Z. Shi, and F. Glorius, Angew. Chem., Int. Ed., 2013, **52**, 12426; (g) B. Liu, C. Song, C. Sun, S. Zhou, and J. Zhu, J. Am. Chem. Soc., 2013, **135**, 16625; (h) M. Kim, J. Park, S. Sharma, S. Han, S. H. Han, J. H. Kwak, Y. H. Jung, and I. S. Kim, Org. Biomol. Chem., 2013, **11**, 7427; (i) A.
- <sup>60</sup> Cajaraville, S. López, J. A. Varela, and C. Saá, Org. Lett., 2013, 15, 4576; (*j*) C. Wang, and Y. Huang, Org. Lett., 2013, 15, 5294; (*k*) K. Muralirajana, and C.-H. Cheng, Adv. Synth. Catal., 2014, 356, 1571; (*l*) Y. Hoshino, Y. Shibata, and K. Tanaka, Adv. Synth. Catal., 2014, 356, 1577; (*m*) G. Zhang, H. Yu, G. Qin, and H. Huang, Chem. Commun.,
- 65 2014, **50**, 4331; (*n*) X. Zhang, Y. Li, H. Shi, L. Zhang, S. Zhang, X. Xu, and Q. Liu, *Chem. Commun.*, 2014, **50**, 7306; (*o*) P. Tao, and Y. Jia, *Chem. Commun.*, 2014, **50**, 7367; (*p*) S. Kathiravana, and I. A. Nicholls, *Chem. Commun.*, 2014, **50**, 14964; (*q*) L. Zheng, and R. Hua, *Chem. Eur. J.*, 2014, **20**, 2352; (*r*) B. Zhou, J. Du, Y. Yang, and Y. Li,
- 70 Chem. Eur. J., 2014, 20, 12768; (s) H. Sun, C. Wang, Y.-F. Yang, P. Chen, Y.-D. Wu, X. Zhang, and Y. Huang, J. Org. Chem., 2014, 79,

11863; (*t*) B. Zhou, Y. Yang, H. Tang, J. Du, H. Feng, and Y. Li, *Org. Lett.*, 2014, **16**, 3900; (*u*) D. Y. Li, H. J. Chen, and P. N. Liu, *Org. Lett.*, 2014, **16**, 6176; (*v*) T. Matsuda, Y. Tomaru, *Tetrahedron Lett.*, 2014, **55**, 3302.

- 7 (a) S. Rakshit, F. W. Patureau, and F. Glorius, J. Am. Chem. Soc., 2010, 132, 9585; (b) J. Du, B. Zhou, Y. Yang, and Y. Li, Chem. Asian. J. 2013, 8, 1386.
- 8 For reviews on catalytic carbene insertion into C-H bonds, see: (a) H.
  M. L. Davies, and R. E. J. Beckwith, *Chem. Rev.*, 2003, 103, 2861; (b)
  H. M. L. Davies, J. R. Manning, *Nature*, 2008, 451, 417; (c) M. P.
  Doyle, R. Duffy, M. Ratnikov, and L. Zhou, *Chem. Rev.*, 2010, 110, 704; (d) H. M. L. Davies and D. Morton, *Chem. Soc. Rev.*, 2011, 40, 1857; (e) Q. Xiao, Y. Zhang, and J. Wang, *Acc. Chem. Res.*, 2015, 46, 236. (d) F. Hu, Y. Xia, C. Ma, Y. Zhang, and J. Wang, *Chem.*
- 250. (a) F. Hu, T. Xia, C. Ma, T. Zhang, and J. Wang, Chen Commun., 2015, 51, 7986.
   (c) W.W.Cheng, S.F. Le, Z. Zhan, and W. Y. Yu. L Am. Chem. Soc.
- X. Li, J. Org. Chem., 2013, 78, 5444; (h) F. Hu, Y. Xia, F. Ye, Z. Liu, C. Ma, Y. Zhang, and J. Wang, Angew. Chem., Int. Ed., 2014, 53 1364; (i) Y. Liang, K. Yu, B. Li, S. Xu, H. Song, and B. Wang, Chen. Commun., 2014, 50, 6130; (j) J. Shi, Y. Yan, Q. Li, H. E. Xu, and W. Yi, Chem. Commun., 2014, 50, 6483; (k) W. Ai , X. Yang, Y. Wu, X Wang, Y. Li, Y. Yang, and B. Zhou, Chem. Eur. J., 2014, 20, 17653; (1) Y. Zhang, J. Zheng, and S. Cui, J. Org. Chem., 2014, 79, 6490; (m) J. Jeong, P. Patel, H. Hwang, and S. Chang, Org. Lett., 2014, 16, 4598; (n) J. Shi, J. Zhou, Y. Yan, J. Jia, X. Liu, H. Song, H. E. Xu, and W. Yi, Chem. Commun., 2015, 51, 668; (o) X. G. Li, M. Sun, K. Liu, Q. Jin, and P. N. Liu, Chem. Commun., 2015, 51, 2380; (p) J. Zhou, J. Shi, X. Liu, J. Jia, H. Song, H. E. Xu, and W. Yi, Chem. Commun., 2015, 51, 5868; (q) S. Yu, S. Liu, Y. Lan, B. Wan, and X. Li, J. Am. Chem. Soc., 2015, 137, 1623; (r) J.-Y. Son, S. Kim, W. H. Jeon, and P. H. Lee, Org. Lett., 2015, 17, 2518; (s) S. Sharma, S. H. Han, S. Han, W. Ji, J. Oh, S.-Y. Lee, J. S. Oh, Y. H. Jung, and I. S. Kim, Org. Lett., 2015, 17, 2852; (t) M. Choi, J. Park, N. K. Mishra, S.-Y. Lee, J. H. Kim, K. M. Jeong, J. Lee, Y. H. Jung, I. S. Kim, Tetrahedron Lett., 2015, 56, 4678; (u) Y. Cheng, and C. Bolm, Angew. Chem., Int. Ed., 2015, 127, DOI: 10.1002/anie.201501583.
- <sup>115</sup> 10 (a) C. D. Hufford, B. O. Oguntimein, J. Nat. Prod., 1982, **45**, 337; (b) T. Matsui, T. Sugiura, H. Nakai, S. Iguchi, S. Shigeoka, H. Takada, Y. Odagaki, Y. Nagao, Y. Ushio, K. Ohmoto, H. Iwamura, S. Yamazaki, Y. Arai, M. Kawamura, J. Med. Chem., 1992, **35**, 3307; (c) J. F Rigby, U. S. M. Maharoof, and M. E. Mateo, J. Am. Chem. Soc., 2000,
- 122, 6624; (d) G. R. Pettit, Y. Meng, D. L. Herald, K. A. N. Graham, R. K. Pettit, and D. L. Doubek, *J. Nat. Prod.*, 2003, 66, 1065; (e) P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, K. Averill, D. M. T. Chan, A. Comb, *Synlett* 2000, 674; (f) T. Takahashi, F.-Y. Tsai, Y. Li, H. Wang, Y. Kondo, M. Yamanaka, K. Nakajima, and M. Kotora, *J. Am. Chem. Soc.*, 2002, 124, 5059.
  - 11 F. Wang, H. Liu, H. Fu, Y. Jiang, and Y. Zhao, Org. Lett., 2009, 11, 2469.
- 12 (a) B. Li, H. Feng, S. Xu, and B. Wang, Chem. Eur. J., 2011, 17, 12573; (b) B. Li, H. Feng, N. Wang, J. Ma, H. Song, S. Xu, and B. Wang, Chem. Eur. J., 2012, 18, 12873; (c) X. Tan, B. Liu, X. Li, B. Li, S. Xu, H. Song, and B. Wang, J. Am. Chem. Soc., 2012, 134, 16163; (d) B. Li, J. Ma, N. Wang, H. Feng, S. Xu, and B. Wang, Org. Lett., 2012, 14, 736; (e) N. Wang, B. Li, H. Song, S. Xu, and B. Wang, Chem. Eur. J., 2013, 19, 136; (f) B. Li, N. Wang, Y. Liang, S. Xu, and S. Yang, S. Xu, and S. Yang, Y. Liang, S. Xu, and Yang, Yan
- B. Wang, Org. Lett., 2013, **15**, 358; (g) Z. Shu, W. Li, and B. Wang, ChemCatChem, 2015, **7**, 605; (h) Q. Ge, B. Li, H. Song, and B. Wang, Org. Biomol. Chem., 2015, **13**, 7695.
  - 13 H. Zhong, D. Yang, S. Wang and J. Huang, *Chem. Commun.*, 2012, 48, 3236.

4 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]