This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
An alternative synthesis of the breast cancer drug Fulvestrant (Faslodex®): Catalyst control over C-C bond formation

Diego Caprioglioa,b and Stephen P. Fletchera

DOI: 10.1039/x0xx00000x

Fulvestrant (Faslodex®) was synthesized in four steps (35% overall yield) from 6-dehydroandrosterone acetate. Catalyst controlled, room temperature, diastereoselective 1,6-addition of the zirconocene derived from commercially available 9-bromonon-1-ene was used in the key C-C bond forming step.

Breast cancer is the most frequently diagnosed cancer and is common in women from all regions of the world.1 Faslodex® (active ingredient, fulvestrant, 1) is a breast cancer drug with a unique mechanism of action; it is a selective estrogen receptor (ER) downregulator with antiestrogenic and antiproliferative, but not estrogen agonist, activity.2 Approved by the FDA in 20023 and more recently in Europe (2010)4 and Japan (2011),5 Faslodex® had 2014 sales of US$720 million.6 The drug is prescribed to postmenopausal women with advanced, tamoxifen resistant, or metastatic ER-positive breast cancer. It may also be used as a first-line treatment2,7 with results comparable to tamoxifen and anastrozole.8 1 has no significant adverse effects and the efficacy and ease of fulvestrant administration (three times 1-week/month, then once per month) is attractive9 and offers options for combination treatments.10,11

Around 1990, ICI (now part of AstraZeneca) pharmaceuticals research on 7α-alkylated estradiol analogues with pure antiestrogenic activity12 led to 1,13 which is used as a mixture of sulfoxide isomers.12,14

The commercial-scale manufacturing route to 1 (Scheme 1) represents a tour-de-force in process development, and has produced tonne quantities of material.15 The synthesis relies on selective addition of a Grignard reagent, which raises significant practical challenges. While these were ultimately overcome in the AZ manufacturing route, we became intrigued by the possibility of simplifying the synthesis of 1 by avoiding the use of highly reactive premade organometallic species. The route to 1 could (at least potentially) be improved by: A) shortening the length of the synthesis of (or finding an alternative to) 2; B) improving the stereoselectivity, and conditions used, in the key C-C bond forming step; and C) eliminating impurities observed in the final product, which are generated by use of impure 2 and by side-reactions resulting from the use of the Grignard reagent derived from 2.

“Fulvestrant bromide” 2 is precursor to Grignard reagent 3, which undergoes substrate controlled diastereoselective 1,6-conjugate addition to the steroidal dienone 4.15 The industrial scale routes, initially mediated by stoichiometric copper, and later refined into a catalytic process, require high purity 2. Bromide 2 is produced in several steps followed by vacuum distillation using a wiped film evaporator (Scheme 1A). Generation of Grignard reagent 3 requires temperature sensitive (maintaining ~45 °C) portion-wise addition, and the optimized conjugate 1,6-addition to form 5 involves slow addition of 4 in THF over 3.5 h at ~34 °C. Using this procedure, 5 is produced in 90-95% yield with an α:β ratio of 2.5:1 (yield of 5α ~64-68%), with the isomers being separated at the end of the synthesis.

As detailed elsewhere,16,17 such Cu-catalyzed reactions are extremely sensitive to solvent, temperature, concentration, method of addition and the presence of additive. Additionally, compatibility of the Grignard reagent with other functional groups limits the options available for "Fulvestrant bromide" 2 is precursor to Grignard reagent 3, which undergoes substrate controlled diastereoselective 1,6-conjugate addition to the steroidal dienone 4.15 The industrial scale routes, initially mediated by stoichiometric copper, and later refined into a catalytic process, require high purity 2. Bromide 2 is produced in several steps followed by vacuum distillation using a wiped film evaporator (Scheme 1A). Generation of Grignard reagent 3 requires temperature sensitive (maintaining ~45 °C) portion-wise addition, and the optimized conjugate 1,6-addition to form 5 involves slow addition of 4 in THF over 3.5 h at ~34 °C. Using this procedure, 5 is produced in 90-95% yield with an α:β ratio of 2.5:1 (yield of 5α ~64-68%), with the isomers being separated at the end of the synthesis.

As detailed elsewhere,16,17 such Cu-catalyzed reactions are extremely sensitive to solvent, temperature, concentration, method of addition and the presence of additive. Additionally, compatibility of the Grignard reagent with other functional groups limits the options available for
reaction/sequence design. In this case, a delicate purification of 2 is required to obtain high purity material, which is essential to both generating 3 effectively, and minimizing the formation of several impurities (6 to 10).

Synthesis of Fulvestrant Bromide

Fulvestrant early synthesis: stoichiometric copper catalyzed Grignard 1,6-addition

Optimized synthesis: catalytic copper catalyzed Grignard 1,6-addition

Impurities of the process

Scheme 1 AstraZeneca’s synthesis of Fulvestrant Bromide, diastereoselective additions to form 5, and then Fulvestrant, and the main impurities of these processes.

As part of research programme aimed at using alkenes as premade alkyl-metal equivalents in catalytic asymmetric additions, we have reported that 1,4 and 1,6-additions to steroid derivatives can occur at room temperature. Here we use this approach in a streamlined four-step synthesis of 1 from two commercially available starting materials.

We examined a hydrometallation–copper-catalyzed 1,6-addition sequence using alkene 11, bearing an alkyl bromide. This functional group is generally incompatible with Grignard reagents and is readily functionalized. Reactions were performed using previously optimized conditions with a combination of CH₂Cl₂ (for hydrometallation) and Et₂O (for conjugate addition), but we have shown that alkylzirconium additions are remarkably tolerant to changes in the solvent system, so other combinations can likely be used.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Copper source</th>
<th>T</th>
<th>d.r.</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>CuBr·Me₂S</td>
<td>r.t.</td>
<td>1:3</td>
<td>40% α</td>
</tr>
<tr>
<td>2</td>
<td>PPh₃</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:6</td>
<td>30% α</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:6</td>
<td>60% α</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:2</td>
<td>31% β</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:4</td>
<td>19% α</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:2</td>
<td>20% α</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:6</td>
<td>28% α</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>CuCl·AgOTf</td>
<td>r.t.</td>
<td>1:6</td>
<td>46% α</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>CuCl·AgOTf</td>
<td>0 ºC</td>
<td>1:6</td>
<td>0% α</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>CuCl·AgOTf</td>
<td>40 ºC</td>
<td>1:6</td>
<td>46% α</td>
</tr>
</tbody>
</table>

a Reaction conditions: Ligand (10% mmol), Copper (10% mmol), 11 (2.5 eq), Cp₂ZrCl₂ (2.0 eq), TMSCl (5.0 eq). b Crude diastereometric ratio (cristallized) determined by %i NMR spectroscopy. c Isolated yield of pure isomer.

In situ hydrozirconation of commercially available 3-bromonon-1-ene 11 provides an alkylzirconium species which undergoes copper catalysed 1,6-addition to 4. Using CuBr·Me₂S or Ph₃P as achiral ligands, allows addition (Table 1, Entries 1 and 2) at room temperature but poor crude ratios (~1:3:1 and ~1:6:1) of isomers of 12. However, pure desired 7α-isomer was easily isolated by flash chromatography with yields of 40 and 30% respectively. We found we could increase the stereoselectivity in the 1,6-addition using phosphoramidite ligands in combination with...
Journal Name

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx

\[\text{In situ} \text{ hydrolysis of (4,4,5,5)-pentafluoropentyl ethanethiolate 14} \]

\[\text{at 40 °C liberates the thiol, displacing the bromide and giving 15} \]

\[(80\%); \text{these conditions avoid isolation of malodorous (4,4,5,5)-pentafluoropentanethiolic and remove the acetate protecting group on the 17β alcohol moiety.} \]

\[\text{Oxidation to sulfoxides 1 (35% H2O2, AcOH, EtOAc, 40 °C) gave no observable overoxidation, and Fulvestrant 1 as a ~ 1 : 1 mixture of isomers (observable by 13C NMR) in 95% yield.} \]

Scheme 2 Synthesis of Fulvestrant

Notes and references