ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ARTICLE

Biologically Inspired Non-Heme Iron-Catalysts for Asymmetric Epoxidation; Design Principles and Perspectives

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Olaf Cussó, Xavi Ribas and Miquel Costas^{*} Iron coordination complexes with nitrogen and oxygen donor ligands have have long since bee

oxygenases. Research efforts during the last decade have uncovered basic principles and structural coordination chemistry motifs that permit to control over the chemistry that evolves when these complexes react with peroxides, in order to provide powerful metal-based, but at the same time selective, oxidising agents. Oxidation methodologies with synthetic value are currently emerging f this approach. The current review focuses on asymmetric epoxidation, a reaction which has large value in synthesis, and where iron/H₂O₂ based methodologies may represent not only a sustainable choice, but may also expand the scope of state-of-the-art oxidation methods. Basic principles the underlay catalyst design as well as H₂O₂ activation are discussed, whilst limitations and future perspectives are also revieweu

Introduction

Iron is the most commonly found metal at the active site of metalloenzymes that participate in metabolic O₂ activation and oxygenation reactions. The fascinating oxidation properties of heme-based enzymes such as cytochrome P450's and peroxidases were rapidly recognized and served as a model for oxidation designing synthetic catalysts based on metalloporphyrins.¹⁻³ Besides hemes,³⁻⁸ a growing number of iron dependent oxygenases are being discovered that do not rely on a heme-based active site, but instead contain iron centers ligated to imidazole and carboxylate (aspartate or glutamate) protein residues.⁹⁻¹⁶ These enzymes can also reductively activate O₂ to form oxidizing species that engage in chemo, regio and stereoselective oxidations. Looking at the active site of these enzymes from the perspective of a coordination chemist, one can naïvely consider that their coordination structure should not differ substantially from the simple coordination complexes that can be prepared in a synthetic laboratory by combining iron salts, amines and carboxylic acids (See Figure 1).

Institut de Química Computacional I Catàlisi (IQCC) and Departament de Química, Universitat de Girona; Facultat de Ciències, Campus de Montilivi, 17071, Girona, Spain. Miquel.costas@udg.edu

Figure 1. Schematic diagram of the active site of non-heme iron oxyger and how and apocarotenoid oxygenase (NDO)¹ and apocarotenoid oxygenase (ACO), illustrating the presence of imidazol (histidine, N_{His}), carboxylate (aspartate, Asp) and water molecules in their first coordination sphere.

Continuing with this analogy, these simple compounds may le capable of performing challenging oxidation reactions, analogous to those occurring in the enzyme active sites. enzymes, the use of O_2 , a four electron oxidant, to perform two electron oxidation reactions such as monoxygenations require a very precise controlled injection of protons and electror either from an electron transport chain or from a co-substrat. This represents a significant challenge from a practical synthetic chemistry perspective that has prompted the development of coordination compounds that could use other oxidants such as peroxides, peracids and hypervalent iodir reagents to generate metal based oxidizing species. Amor these, complexes that can catalytically utilise H₂O₂ to oxidiz organic substrates constitute the most interesting cases becaus of the benign nature of this oxidant. In this work we review th recent progress in the development of these ideas for designin non-heme catalysts for asymmetric epoxidation. Τh

organization of the discussion is based on the oxidant employed. We pay particular attention to catalysts that use H_2O_2 , whilst the few examples reported that use O_2 and relevant examples that rely in other oxidants such as peracids and iodosyl benzene are discussed later. To the best of our knowledge, iron catalyzed asymmetric epoxidation so far has only been documented with these oxidants. These oxidants We focus on asymmetric epoxidation because of the important role of this reaction in organic synthesis. Optically active epoxides are very interesting molecules because they are versatile synthons and high-potential precursors for more elaborated products that have significant interest in the pharmaceutical and chemical industries, amongst other fields.¹⁹⁻²² Several methodologies for asymmetric epoxidation are already well established; however, iron-catalyzed epoxidation has been since long regarded as a potentially very attractive alternative because of the availability and low toxicity of this metal.²³⁻³⁶ The delivery of an oxygen atom in a stereoselective manner constitutes a remarkable accomplishment in the frame of biologically inspired catalysis, because it requires exquisite control over the nature of the oxidant, calling for fine control of the mechanism of O-O activation (presumably via its lysis) when peroxides are employed. Nature employs sophisticated processes to control O-O lysis, and to discover simple conditions or reagents that can exert analogous control is therefore a scientifically remarkable goal, with important consequences in chemical synthesis. Consequently, it is not surprising that the reaction has received significant attention and has experienced rapid progress over the last decade.

ARTICLE

Iron catalysts for asymmetric epoxidation employing H₂O₂.

One of the main challenges of iron catalyzed asymmetric epoxidation with H_2O_2 is to avoid the Fenton reaction. This reaction generates highly reactive oxygen centered radicals, for which stereoselectivity could not be expected. Therefore, the design of selective oxidation reactions based on iron coordination compounds and H_2O_2 as oxidant requires the discovery of tools for governing the activation of this oxidant and the lysis of the O-O bond, so that metal based oxidants are formed, and production of oxygen centered radicals are avoided or at least minimized.

One of the first examples in the literature describing the application of non porphyrinic iron catalysts and H_2O_2 in asymmetric epoxidation was reported by Jacobsen and coworkers, pursuing a combinatorial approach.³⁷ A large set of chiral peptides, devised as ligands was combined with multiple metal salts, resulting in a library of 5760 metal-ligand complexes that were tested for activity in the epoxidation of *trans-β*-methylstyrene as a model substrate. It was found that iron complexes provided the best yields of epoxide (up to 78% in the best case, using FeCl₂), although only modest enantioselectivities of up to 20 % ee were obtained (Scheme 1). The coordination structure of the catalyst was not established but it is possible to recognize a common N₂O triad with the best peptides, presumably forming a N₂OFeCl₂ complex.

Scheme 1. Asymmetric epoxidation of trans-6-methylstyrene with peptide N - N3 ligands using H_2O_2 as oxidant. 3

Beller and co-workers have developed iron based practic.¹ methods to epoxidize alkenes at room temperature and aerobic conditions. This example employs commercially available benchtop stable reagents: FeCl₃·6H₂O as metal source, 1 combination with pyridine-2,6-dicarboxylic acid and simple amines such as pyrrolidine, benzylamines or imidazoles to 1 situ assemble the catalyst, that activates H_2O_2 to epoxidize a wide array of alkenes.³⁸ A chiral version was designed throug the use of a chiral 1,2-diphenyl-ethylene-1,2-diamine (Scheme 2, top, N4).³⁹ The system epoxidizes *trans*-stilbene derivatives with moderate to excellent yields and enantioselectivities (up to 92 % and 97 % ee, respectively, Scheme 2). Identification of the iron catalyst operating in these systems is difficult, and ... fact translates into further difficulties to elucidate the reaction mechanism.⁴⁰ Nevertheless it is very interesting to notice that this system is built from the combination of carboxylic acies and amines, and therefore from a coordination chemistry poi c of view it can be regarded as a minimalistic approach towards a biomimetic non-heme catalyst.

This journal is © The Royal Society of Chemistry 20xx

A system with improved definition, from the point of view of coordination chemistry, is a non heme iron catalyst based on a hexapyridine ligand containing pinene groups attached at two pyridine rings (Spp ligand), which in combination with two equivalents of FeCl₂ provides the diiron complex $[Fe^{III}_2(\mu O(Cl)_4(Spp)$] (C1) (Figure 2). The complex epoxidizes styrenes with H_2O_2 in the presence of acetic acid. Up to 43 % ee was obtained for styrene in only 3 minutes (Table 1).41 When peracetic acid was employed as oxidant, no epoxide product was observed, suggesting that the combination of hydrogen peroxide and acetic acid doesn't form peracetic acid in situ, which could be considered to be the final oxidant.

[Fe^{III}2(µ-O)(CI)4(Spp)] (C1)

Figure 2. Proposed structure for $[Fe^{III}_2(\mu-O)(CI)_4(Spp)]$ (C1)

Table 1. Asymmetric epoxidation of styrene derivatives using cat C1 and H_2O_2 as oxidant. 41

	$R^1 \bigvee R^2 R^3$	Cat. С1 H ₂ O ₂ (1 СӉ ₃ СО СӉ ₃ СМ	(2 mol%) I.5 equiv.) I₂H (20 mo	$R^{1\%.)}$ R^{1} R^{2} R^{3}	
Entry	R^1	R ²	R³	Conv/Yield (%)	ee (%)
1	Ph	Н	Н	100/95	43(<i>R</i>)
2 ^a	p-MeO-C ₆ H ₄	н	н	100/100	15 (<i>R</i>)
3ª	p-Me-C ₆ H ₄	н	н	100/100	30 (<i>R</i>)
4	Ph	Me	н	94/90	37 (<i>1R,2S</i>)
5	Ph	Н	Me	62/62	40 (<i>1S,2R</i>)
al Joing 1.2 n	no10/ of antalyst				

Arguably the most successful family of iron catalysts developed so far for asymmetric epoxidation are those based on tetradentate ligands with a bis-amine-bis-pyridine (or related heterocycle) structure (Scheme 3). Upon binding to the metal, they form three five-membered ring chelate cycles, which confer high stability to the complexes. Unlike many other Fe based catalytic alkene epoxidation systems ample structural and spectroscopic information of the complexes in solid state and in solution exist. These ligands can bind to an octahedral metal center via three different topologies (Scheme 4). Of these, the cis-a topology has proven the most suitable so far for asymmetric epoxidation catalysts. This topology is C2 symmetric, with the two pyridine donors trans to each other, and the two aliphatic diamines cis- to each other. This leaves two coordination sites at the iron site, which could be used to activate H₂O₂. The presence of two labile sites in relative cisposition also appears to be a crucial element in dictating the catalytic ability of this type of non-heme iron complex in hydrocarbon oxidation reactions.⁴² Complexes that contain trans-labile sites appear to be much less active.43 Octahedral coordination complexes with this type of ligand are chiral at u metal (Δ or Λ), and this chirality is in turn determined by the chirality of the aliphatic diamine part of the ligand. Thu chirality at the backbone is translated into a well-defined chirality space in the proximity of the labile coordination sites when H₂O₂ activation takes place.

Scheme 4. Top) Three possible topologies for iron complexes with linear tetradentate ligands. Bottom) Enantiomeric forms of the $[\text{Fe}(\text{OTf})_2(\text{mcp})]$ catalyst.

The ability of these kind of complexes to activate H₂O₂ ar perform metal based oxidation of olefins was studied in ... detail in the mechanistic work reported by Que and c workers.⁴³ In parallel, their use as aliphatic alkene epoxidatic catalysts useful in preparative scale was described by Jacobse and co-workers.⁴⁴ High epoxide yields (60-90%) were obtaine in short reaction times in acetonitrile using 3 mol $[Fe^{II}(men)(CH_3CN)_2](SbF_6)_2$, (C15) 1.5 equiv. of H_2O_2 and acetic acid as a key additive to ensure high product yi ids (Scheme 5).

ARTICLE

 $\mbox{Scheme 5}.$ Epoxidation of aliphatic alkenes using $\mbox{C15}$ with hydrogen peroxide and acetic acid on gram scale

Initial use of (R, R')-[Fe(OTf)₂(MCP)] (C2) in asymmetric epoxidation with H₂O₂ met with little success, with epoxidation of trans-2-heptene providing the corresponding epoxide in a modest 12% ee.⁴⁵ A more recent study by Sun and co-workers demonstrated improved activity in the epoxidation of transchalcones using C2. Additionally, the authors also studied more elaborated catalyst structures where aromatic groups were installed in pseudobenzylic positions (C3-C4, Figure 2). Reactions with catalyst C4 were carried out using hydrogen peroxide and acetic acid, obtaining an improvement in both yield and enantioselectivities for trans-chalcone (up to 77 % ee compared with 54 % ee obtained with C2 (Table 2)). The best enantioselectivity reported was 87 % ee, obtained when using the para-fluoro trans-chalcone substrate. Peracetic acid is also an efficient oxidant for use with these catalysts, but the yields and enantioselectivities of the resulting epoxides slightly decrease in comparison with those obtained with hydrogen peroxide and acetic acid are used. The principal limitation appears to be that the system appears to be applicable only for epoxidation of aromatic trans- $\alpha_{,\beta}$ -enones.⁴⁶

Table 2. Asymmetric epoxidation of trans-chalcone using catalysts C2-C4 with H_2O_2 as oxidant 46

h h	Ph -	Cat. C2- 0 AcOH (5 H ₂ O ₂ (2 o CH ₃ CN,	C4 (2 mol%) equiv.) aquiv.) rt. 2h Ph	PI
	Entry	Cat	Yield/ee (%)	
	1	C2	47/54	
	2	C3	45/71	
	3	C4	47/72	
	4 ^a	C4	53/77	
	5 ^b	C4	57/55	

E

^aAt -15^oC. ^b 1.2 eq of AcOOH (8%) instead of H₂O₂/AcOH at room temperature

Bryliakov and co-workers explored the reactivity of (S,S')- $[Fe(OTf)_2(PDP)]$ (C9) (Scheme 3), an iron complex that was earlier pioneered by White in C-H oxidation reactions.⁴⁷ These studies showed that replacement of the cyclohexyldiamine by a bis-pyrrolidine backbone led to a catalyst with improved enantioselectivities in the epoxidation of chalcones. For example, the epoxidation of trans-chalcone improved from 54 % ee with 2 mol % of C2 up to 71 % ee when 1 mol % of C9 was used. Of significant interest, Bryliakov demonstrated that different alkyl carboxylic acids (CA) could be used in place of acetic acid, having an impact on the stereoselectivity of the size of the carboxylic acid and epoxidation. The enantioselectivities appear to be directly related. It was observed that the larger the substituent at the alpha carbon of the carboxylic acid, the higher the enantioselectivity, strongly suggesting that the carboxylic acid participates in defining the structure or electronic properties of the oxygen atom transfer (OAT) species. For instance, in the case of trans-chalcone enantioselectivity was improved up to 86 % ee using ethylhexanoic acid instead of acetic acid (Table 3).⁴⁸ Tu , methodology was successfully applied to other substrates successfully applied to other substrates

 Table 3. Asymmetric epoxidation of trans-chalcone using C9 and different carboxylic

 acids. 48

A proline derived diamine was more recently introduced by Sun and co-workers. This diamine differs fro^r 1 cyclohexadiamine and bipyrrolidine because it is not C2symmetric, and forms $cis-\alpha$ complexes with C₁ symmetric (Scheme 3, C5). Yields and enantioselectivities for the pyridy. based system C5 remain moderate for *trans*-chalcone, (68 vield and 56 % ee) but replacement of the pyridines b benzylimidazoles resulted in catalysts (Scheme 3, C6-C) providing outstanding enantioselectivities for two kinds of substrates; trans-chalcones and tetralone derivatives which a. epoxidized with up to 99 % yield, with 97 % ee and 99 % yield, with 98 % ee, respectively (Tables 4 and 5).49

Table 4. Asymmetric epoxidation of trans-chalcone using C5-C8 catalysts with hydrog peroxide and acetic acid. ⁴⁹

o	∽Ph	Cat. AcOI H ₂ O ₂ CH ₃	C5-C8 (2 mol%) H (3 equiv.) (1.2 equiv.) CN, -20°C, 2h	Ph
	Entry	Cat	Yield/ee (%)	_
	4	C5	68/56	
	5	C6	89/92	
	6	C7	90/88	
	7	C8	83/86	

Table 5. Asymmetric epoxidation of $\mathit{trans}\xspace$ -chalcones and trisubstituted enones derivatives using C6 as $\mathit{catalyst}\xspace^{49}$

Ph

0 ⊥⊥ R²	$R^{1} \frac{\begin{array}{c} \text{Cat. 0} \\ \text{AcOH} \\ \text{H}_{2}\text{O}_{2} \\ \text{CH}_{3}\text{C} \end{array}$	C6 (2 mol%) H (3 equiv.) (1.2 equiv.) N, -20℃, 2h	
Entry	R^1	R ²	Yield/ee (%)
1	p-Me-C ₆ H ₄	Ph	90/91
2	m-Me-C ₆ H ₄	Ph	99/95
3	o-Br-C ₆ H ₄	Ph	96/94
4	Ph	p-Cl-C ₆ H ₄	96/87
5	Ph	o-Cl-C ₆ H ₄	78/91
6	Ph	p-MeO-C ₆ H ₄	78/80

This journal is © The Royal Society of Chemistry 20xx

^a 2 mol% of complex C7 .	
^b CH ₃ CN (1.5 mL) and CH ₂ Cl ₂ (1.0 mL) as solvent.	

Costas and co-workers studied the impact of modifying the electronic properties of tetradentate aminopyridine ligands on the catalytic properties of the corresponding iron complexes with the aim to discover fundamental elements that could affect the H₂O₂ activation mechanism. A series of catalysts of general formula (S,S')-[Fe(OTf)₂(^XPDP)] were prepared and studied as epoxidation catalysts (C10-C14) (Scheme 3).⁵⁰ Taking cis-βmethylstyrene as a model substrate, the complexes were tested 1 as epoxidation catalysts, providing a dependence between product yields and stereoselectivities with the electron-donating 2^a nature of the ligand. For example, in the case of the epoxidation of $cis-\beta$ -methylstyrene, as the electron donating properties of the ligand increase along the C10-C14 series, enantioselectivity improved from 16% ee to 62% ee and yields from 13% to 87%. Interestingly, in the case of C10, the complex containing the most electron donating ligand, chemoselectivity and stereoselectivity of the epoxidation reaction remained unaltered when acetic acid was used in only catalytic amounts (1.5 equiv. with respect to the iron catalyst). Instead, less electron rich catalysts such as C14 experience important erosion in yield when acetic acid loading is decreased (Table 6). Since in the case of catalyst C10 carboxylic acids can be used in catalytic 6 amounts, the range of examples that can be explored has virtually no limit. Among a series of CA's explored, S-7 Ibuprofen (S-Ibp) and 2-ethylhexanoic (2-eha) acid displayed the best enantioselectivities in the epoxidation of a wide array of substrates. A Hammet analysis by plotting the log(ee) vs Hammett parameters of the electronic groups in the catalyst showed a linear correlation with four different substrates, showing that the stereoselectivity is consistently improved as the catalyst becomes more electron rich.

\bigcirc	Cat C AcOl H2O2 CH3C	89-C14 (1 mol%) H (3 mol%) ₂ (1.6 equiv.) CN, -30 °C, 30 min	→ ⁰
Entry	Catalyst	Conv.(Yield) %	ee (%)
1	C14	31(13)	21
2	C13	32(15)	16
3	C9	49(26)	19
4	C12	31(17)	30
5	C11	38(26)	38
6 ^ª	C10	100(87)	62
7 ^{a,b}	C10	100(85)	61
8 ^{a,b}	C14	11(22)	10

ARTICLE

Table 7. Substrate scope for the asymmetric epoxidation using C10, H₂O₂ and S-lbp or 2-eha as carboxylic acid co-ligand. 50

	a as carsony.	ie dela co liganal			
	Entry	Substrate	CA	Conv.(Epox. Is Yield, %)	ol. ee (%)
1	Ph	R R = Me	S-ibp	100(97)a	86
2 ^a		R = CO2Et	S-ibp	91	97
3ª	R =	C(O)N(OMe)(Me)	S-ibp	84	95
	R	COR R			0
4		R= CN	2-eha	95	99(<i>3R,4P</i> `
5		$R = NO_2$	2-eha	97	99(<i>3R,4R</i>)
6	Ph	R = OMe			Ξ
7		R = O <i>i</i> Pr	2-eha	94	97(<i>2R,3S</i>)
8		R = Me	2-eha	60	94
9		R = N(OMe)(Me)	2-eha	95	99
10		R = Ph	2-eha	99	98(<i>2R,3</i> !
11		$R = p - CF_3 - C_6 H_4$	2-eha	94	97(<i>2R,3S</i>)
	R	° ()			6
12		R = H	2-eha	94	90(<i>2R</i> ,3S)

J. Name., 2013, 00, 1-3 | 5

97(2R,3S)

95

Journal Name

13	R = Me	2-eha	97
14	R = <i>t</i> Bu	2-eha	96

 a^{5} mol % catalyst, and 3 equiv of H₂O₂.

ARTICLE

Further studies by the same authors showed that catalyst C10 tolerates protected amino acids instead of carboxylic acids as co-ligands. This was regarded as a significant step forward towards the design of biologically inspired oxidation catalysts since amino acids constitute the natural ligands in non-heme iron dependent oxygenases.^{51, 52} Amino acids were found to promote the activation of hydrogen peroxide by C10 catalyzing the epoxidation of challenging substrates realizing good to excellent yields and stereoselectivities. A wide screening of Nprotected amino acids was performed with the two enantiomeric forms of C10 looking for matching-mismatching effects resulting from the combination of the chirality of the catalyst with the chirality of the aminoacid. Most remarkable is the ability of this system to stereoselectively epoxidize terminal aromatic olefins. Highly enantioselective epoxidation of this type of substrate is notoriously difficult.53-57 After testing several amino acid derivatives, and N-protecting groups, the best result in terms of yield and enantioselectively was obtained using N-NPha-Ileu-OH (Figure 3). Several examples of terminal olefinic substrates are were summarized in Table 8.58

N-NPha-Ileu-OH

Figure 3. Amino acid N-NPha-ILeu-OH employed in catalytic asymmetric epoxidation of $\alpha\text{-alkyl}$ substituted styrenes.

Table 8. Asymmetric epoxidation using (R, R')-**C10**, H_2O_2 and N-NPha-ILeu-OH as additive. ⁵⁸

R ¹	$R^{2} \xrightarrow{Cat(l)}{} CH_{3}C$	R,R')- C10 (2 mol%) ha-Ileu-OH (3 mol%) ;(1.8 equiv.) XN, -30, 30 min	
Entry	R^1	R ²	Yield/ee (%)
1	CI	Me	90/63
2	н	Et	78/80
3	н	CH ₂ O(Ac)	80/83
4	н	CH₂(Ph)	70/80
5	н	<i>i</i> Pr	60/91
6	p-Cl	<i>i</i> Pr	87/92
7	m-Cl	<i>i</i> Pr	90/97
8	н	<i>t</i> -Bu	85/91
9	<i>p</i> -F	<i>t</i> -Bu	85/96
10	o-Cl	<i>t</i> -Bu	57/92

Role of acetic acid and active species in non-heme iron oxidation catalysis

The role of carboxylic acids in the above described reactions needs to be fully understood. AcOH has long been recognized

to play a beneficial role in Mn catalyzed oxidation reactions. ^{49, 57, 59, 60} Interestingly, Jacobsen and co-workers⁶¹ discovere that $[Fe^{II}(men)(CH_3CN)_2](SbF_6)_2$ (**C15**, scheme 5) catalyze epoxidations of aliphatic alkenes also significantly benefit for the presence of this acid. Mechanistic studies directed of elucidating its role were performed by Que *et al* using $[Fe^{II}(OTf)_2(men)]$ (**C15'**) and $[Fe^{II}(OTf)_2(tpa)]$ (**C16**) (tpa = *tris*-(2-pydidylmethyl)amine) which served as prototypical cases of iron epoxidation catalysts with tetradentate ligands ar 1 two *cis* labile coordination sites.⁶² The mechanism that emerged is shown in Scheme 6.

It was concluded that AcOH binds at the ferric center an 1 facilitates heterolytic O-O cleavage in a hydroperoxoiron(III) species (Ia), forming a high valent Fe^V(O)(AcO) oxidant (II) via a carboxylic acid assisted pathway.⁶² Subsequently, Ib is then responsible for the O-atom delivery to the olefin. The involvement of the Fe^v(O)(OAc) oxidant was also evidenced by the formation of a minor ci. hydroxyacetoxylated product in olefin oxidation by [Fe^{II}(OTf)₂(tpa)] (C16) in the presence of acetic acid.⁶³ This mechanistic scenario serves to accommodate all tus experimental observations described so far with the (S,S')-[Fe(OTf)₂(^XPDP)] series of catalysts (Scheme 3, C9-C14) Isotopic labelling analysis showed that the oxygen aton. transferred to the olefin originates from H_2O_2 (Scheme 7, a) Competitive oxidation of pairs of olefins showed preferential oxidation of the most electron rich substrate, providing evidence of an electrophilic character of the oxidant (Scheme b). Of significant interest, epoxidations using ter.butylhydroperoxide (TBHP) or peracetic acid instead of H₂C₂ provided the epoxide with the same level of stereoselectivit, (Scheme 7, c), demonstrating a common OAT species, irrespective of the terminal oxidant. The dependence betw en the ee outcome and the nature of the CA also provides strong evidence of its participation in the oxidizing specie Furthermore, this mechanistic scheme also provides a frame rationalize the impact of the electronic properties of the ligar. in the activation of H2O2 and in the stereoselectivity of th OAT event. It was rationalized that the powerful electron donating ability of the electron-rich pyridine exerts a "push" effect that synergistically combines with the "pull" of "

carboxylic acid, facilitating O-O heterolysis. This mechanism resembles that operating in cytochrome P450.⁶⁴ The electrondonating properties of the ligand also serve to provide stabilization to the highly electrophilic high valent oxo-iron species **Ib**. As the electrophilic iron-oxo species is attenuated, the transition state of the OAT reaction becomes more product like, with a closer olefin/iron-oxo contact that favors stereochemical differentiation.⁶⁵

Scheme 7. A) Isotopic labelling analysis. b) Competitive oxidation. c) Different oxidants tested

Direct observation and elucidation of reaction intermediates in these systems is challenging because of their high reactivity and paramagnetic nature, which complicates and often precludes spectroscopic characterization. An EPR study by Talsi and coworkers proposed that high valent species $LFe^{V}(O)$ (L = (S,S')-PDP) could be⁴⁸ identified as a rhombic $S = \frac{1}{2}$ system with EPR values of g = 2.66, 2.42 and 1.71 from the reaction of C9 with H_2O_2 in the presence of acetic acid (7.5-15 equiv. with respect to the catalyst) in a CH₂Cl₂/CH₃CN mixture at -70 °C. The EPR parameters of these species resemble those earlier observed from the reaction of C15 and C16 with either 30% $H_2O_2/AcOH$, peracetic acid or *mCPBA*.^{66, 67} The decay of these species was accelerated by the addition of cyclohexene, resulting in the formation of cyclohexene oxide. However, further spectroscopic analysis was precluded because these signals accounted for only $\sim 10\%$ of the total iron content of the samples. This assignment was later challenged by Que, Rybak-Akimova and co-workers who observed a S = 1/2 species with similar EPR when very parameters [Fe(^{DMM}PDP)(CH₃CN)₂](ClO₄)₂ (C12') and $[Fe(^{DMM}men)(CH_3CN)_2](ClO_4)_2$ (C17) were reacted with $H_2O_2/AcOH$ or peracids. The authors were also able to connect these EPR spectroscopic features with a band in the UV-Vis spectrum at $\lambda_{max} = 465$ nm, proposing that these species are ferric acylperoxide complexes.⁶⁸ Furthermore, reaction of $[Fe(OTf)_2(^{DMM}tpa)]$ (C18) with either 70% H₂O₂ (10 equiv.) in the presence of 200 equiv of AcOH, mCPBA or peracetic acid in acetonitrile at -40 °C produced a metastable species which was characterized by EPR (g = 2.58, 2.38 and 1.72) and U \cdot Vis (λ_{max} = 460 nm)(Figure 4). These intermediates were prepared with sufficient purity to allow their characterization the different spectroscopic techniques. The combination of E°T Mossbauer, and ESI led to the conclusion that these species should be better formulated as (L-Fe^{III}-OOC(O)R) (L = ligand R = CH₃ or C₆H₄-3-Cl) and not Fe^V(O)(OAc). Thus the expected high valent oxidant that is the OAT ager consistently, ferric-acylperoxide species proved kinetically nor competent for reacting with olefins. Moreover, DF1 calculations suggest that these species evolve via rate determining O-O cleavage to form two possible electrome corrulated as Fe^V(O)(O₂C-Ar) or Fe^{IV}(O)(·O₂C-Ar), that act a the active oxidant.⁶⁹

More recently, Talsi *et al* have described the detection by L. spectroscopy of a highly reactive intermediate in the reaction of dimeric iron complexes $[Fe^{II}_2(\mu-OH)_2(L)_2]^{4+}$, L = TPA* or ^{DMM}men, with H₂O₂/AcOH or peracetic acid in 1.2 (CH₂Cl₂/CH₃CN mixtures at -75 to -85 °C. The resulting intermediate is characterized by a rhombic set of g values (2.07, 2.00 and 1.96) characteristic of an S =1/2 system. These species accumulate in only 1-2% and are reactive towards olefins even at -85°C. The authors proposed this to be a Fe^V(O) species of the basis of comparison with the literature. The limited accumulation of this intermediate precluded furth spectroscopic characterization.⁷⁰

Iron asymmetric epoxidation catalysts that use O₂.

The most abundant and economical oxidant is O_2 , and therefore represents the most desirable oxidant. However, controlle activation of O_2 is extremely difficult and iron catalyze ' epoxidation methodologies employing O_2 , and exhibiting potential synthetic value are scarce.^{71, 72} Not surprisingly asymmetric methods are almost unknown. The first example using aerobic conditions was described in 1989, and involves the non-heme iron complex of PYML-6 (**C19**) (Figure 5, left) ⁷³

ARTICLE

The reaction between iron complex, O_2 , mercaptoethanol as a reducing agent and *cis-β*-methylstyrene as a substrate, produced *cis* epoxide with 51% ee and only traces of *trans* epoxide. In contrast, epoxidation of *trans-β*-methylstyrene yielded a racemic epoxide mixture, but if the reducing agent was changed to sodium L-ascorbate, racemic *trans* epoxide was obtained as the major product from the epoxidation of the *cis* alkene. Only trace amounts of *cis* epoxide were formed, showing a drasticerosion of stereochemistry. The system can operate using hydrogen peroxide as oxidant, however a slight erosion of enantioselectivity (45% ee) and yields were observed for *cis-β*-methylstyrene.

Figure 5. Iron catalysts that employ O_2 to perform asymmetric epoxidation.

More recently, You and co-workers developed a chiral β diketone-iron(III) complex (Fe(dcm)₃) (**C20**) (dcm = tris(d,ddicampholylmethanato; Figure 5, right) that is able to epoxidize styrene derivatives using dioxygen and excess 2ethylbutyraldehyde as a sacrificial co-substrate. After 10 hours excellent yields (up to 91%) and enantioselectivities (up to 86% ee) were obtained.⁷⁴ No mechanistic studies were reported for this system.

Iron asymmetric epoxidation catalysts using peracids and PhIO

Despite the fact that H_2O_2 is a very attractive oxidant, its use in asymmetric epoxidation is challenging because it requires activation and efficient control of the O-O lysis. Consequently, other oxidants have been also explored, for example, peracids, whereby heterolytic O-O cleavage is favored by the electronwithdrawing effect of the peracid carbonyl moiety. Peracids are electrophilic oxidants that can directly epoxidize olefins without the aid of a catalyst and therefore, the background reaction must be minimized. A second type of oxidants is oxodonors like iodosylbenzene, which have been successfully employed in heme catalyzed oxidation reactions, and that avoid the problem of O-O lysis control. One of the first examples of iron catalyzed asymmetric epoxidation employing peracids was reported by Menage and co-workers who described a non-heme oxo-bridged diiron complex $[Fe^{III}_2(\mu-O)(bpp)_4(H_2O)_2]^{4+}$ (C21) with chiral bypiridine ligands (N5) (Figure 6).⁷⁵ The catalyst was tested for the epoxidation of alkenes and high efficiencies were obtained, with up to 850 TON. However, enantioselectivities remained moderate, ranging from 9-63% ee (Table 9).

8 | J. Name., 2012, 00, 1-3

Figure 6. Structure of diiron complex $[Fe^{III}_2(\mu-O)(bpp)_4(H_2O)_2]^{4+}$ (C14)

Table 9. Asymmetric epoxidation of different olefins using C21 as catalyst and peracetic acid as oxidant. ⁷⁵

Ph	$\begin{array}{c} & \overset{\text{Cat.}}{\underset{R^2}{\longrightarrow}} R^1 & \frac{\overset{\text{Cat.}}{\underset{CH_3}{\longleftarrow}} \\ & \overset{CH_3}{\underset{CH_3}{\longleftarrow}} \\ & 0 \end{array}$	C21 (0.2 m CO ₃ H (1.15 CN or CH ₂ C °C, 2 min.	equiv.) cl_2 Ph R^1 R^2	
Entry	R ¹	R ²	Conv/Yield (%)	ee (%)
1 ^a	Н	Н	84/60	15(R)
2 ^b	Ph	н	67/67	0
3 ^a	Me	Н	86/48	24(1R,2S)
4 ^b	н	Me	100/74	15
5 [°]	CO_2Me	Н	70/35	63
6 ^b	CO₂(<i>i</i> Pr)	Н	nd/nd	19
7 ^b	CO₂Ph	н	92/66	56(2R.3S)

^aReacton in CH_2Cl_2 . ^bReaction in CH_3CN .

A breakthrough was described by Yamamoto who designed a mononuclear iron catalyst bearing phenanthroline ligands derivatized with binaphthyl moieties (C22) (Figure 7).^{76, 77} [1 catalytic reactions, the catalyst was prepared in situ, but it could be also isolated and fully characterized by different method, including X-ray diffraction analysis. The resulting comple. bears structural similarities to the mcp type of catalys' (Scheme 3), adopting a C₂ symmetric octahedral structure wit' two *cis*-labile coordination sites. The catalyst epoxidizes β_{μ} disubstituted enones with stereoretention and hig' enantioselectivity using peracetic acid as terminal oxidan mCPBA also proved to be a valid oxidant, but unfortunatel H₂O₂ was found not to be. The substrate scope of this system particularly interesting because alternative methods for highly stereoselective epoxidation of this kind of substrate are lack v. Selected results highlighting the scope of this catalyst system are shown in Table 10. Intermolecular competitive studies between electron-rich and electron-poor olefins showed a 2.4 preference for the electron-rich olefin, implying the generatic of an electrophilic oxidant. To demonstrate the importance the resulting chiral epoxides, they were further transformed int β -ketoaldehydes and 2-isoxazolidines maintaining exceller enantioselectivities.

This journal is © The Royal Society of Chemistry 20xx

Fe(OTf)2, N6 as ligand and peracetic acid as oxidant. ^{76, 77}						
	1	0 L,	Fe(OTf) ₂ (5 mol%) N6 (10 mol%)			
	R' ~	R²	CH₃CO₃H (1.5 equiv.) CH₃CN, 0⁰C, 0.5 h	R^{1} R^{2}		
	Entry	R^1	R ²	Yield/ee (%)		
	1	Ph	Ph	80/91		
	2	Ph	p-Me-C ₆ H ₄	77/92		
	3	Ph	o-Me-C ₆ H ₄	61/92		
	4	Ph	m-Me-C ₆ H ₄	67/90		
	5	Ph	p-CF ₃ -C ₆ H ₄	70/89		
	6	$n-C_3H_7$	Ph	20/50		

Table 10. Asymmetric epoxidation of β , β -trisubstituted chalcones derivatives using

This system is also competent for epoxidizing trisubstituted α,β unsaturated esters, providing epoxidic products with high enantioselectivities, although only in moderate yields in most cases (Table 11).⁷⁷

Table 11 . Asymmetric epoxidation trisubstituted α , β unsaturated esters derivatives	
using Fe(OTf) ₂ , N6 as ligand and peracetic acid as oxidant. ⁷⁷	

R ¹	О С С С С С С Н ₃ СС С Н ₃ СС С Н ₃ СС	f) ₂ (5 mol%)) mol%) ⊃gH (2 equiv.) N, 0°C, 2 h	$\sim 0^{\circ}$ R^2
Entry	R^1	R ²	Yield/ee (%)
1	Ph	C(CH ₃) ₂ (<i>t</i> -Bu)	69/95
2	p-Me-C ₆ H ₄	C(CH ₃) ₂ (t-Bu)	65/93
3	m-Me-C ₆ H ₄	C(CH ₃) ₂ (t-Bu)	24/94
4	$o-Br-C_6H_4$	C(CH ₃) ₂ (<i>i</i> Pr)	16/93
5	p-Cl-C ₆ H ₄	$C(CH_3)_2(iPr)$	64/94
6	1-naphthyl	$C(CH_3)_2(iPr)$	62/98

A different type of iron catalysts based on N-based tetradentate ligands, in this case inspired by porphyrins, have been recently described by Gao and co-workers. These ligands do contain pyridines, but instead they bear chiral oxazoline moieties (Figure 8). The catalyst epoxidizes di and trisubstituted electron deficient olefins with high enantioselectivities, using peracetic acid or *m*CPBA as terminal oxidant (Table 13).⁷⁸ However, the catalyst was found not to be operative with peroxides. After testing several ligands with different bulky groups, it was found that those containing *i*Pr groups (**N7-N14**) performed optimally. A Hammet analysis indicated that the active oxidant species has electrophilic character.

Table 13. Asymmetric epoxidation of trisubstituted enones derivatives using ligand N8. $^{^{78}}\!$

This journal is © The Royal Society of Chemistry 20xx

Entry	R	Yield/ee (%)
1	н	93/85
2	<i>o</i> -F	90/92
3	<i>m</i> -F	90/89
4	<i>p</i> -F	90/87
5	o-,m-Cl	82/94
6	o-,p-Cl	81/97
7	o-Br,p-Cl	80/99

Recently, Nakada and co-workers reported on the development of an iron catalyst with a tridentate ligand based on a carbazo $\frac{1}{2}$ central unit and chiral oxazolines (**C23**) (Figure 9).⁷⁹ The combination of the iron-chloride catalyst, iodosylbenzene (s oxidant, NaBArF and SIPrAgCl (SIPr = N,N'-bis(2,6diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene) additives, resulted in highly asymmetric epoxidation of (F) alkenes. Both SIPrAgCl and NaBArF are were found to oc necessary for the reaction to occur. EPR analysis of a sample taken during catalysis shows an isotropic signal centered at g 2.0, indicative of an intermediate with a S = $\frac{1}{2}$ electron structure. By analogy to CpdI in heme systems, the author propose that the intermediate should be described as a Fe^{IV}(C) species bearing a π -cation radical ligand (Scheme 9).

(C23) Figure 9. Structure of new bioinspired porphyrin iron complex C23.

Table 12. Asymmetric epoxidation of trans-stilbene and cinnamyl alcohol derivatives

Ph.	R	Cat C23 (1 mol%), SIPr. NaBArF (4 mol%), PhIC CH ₂ Cl ₂ (0.1 M), 0 °C, 5-	AgCl (2 mol%) (<u>3 equiv.)</u> Ph _{//,} [60 min.	R
-	Entry	R	Yield/ee (%)	
	1	p-Me-C ₆ H ₄	61/84	
	2	$p-F-C_6H_4$	58/92	
	3	p-Cl-C ₆ H ₄	60/92	
	4	p-OMe-C ₆ H ₄	51/49	
	5	1-naphthyl	40/97	
	6	2-naphthyl	45/93	

Please ChemCommmargins

Journal Name

Entry	R^1	R ²	Yield/ee (%)
1	н	C(O)(Ph)	93/79
2	Me	C(O)(Ph)	76/85
3	F	C(O)(Ph)	69/84
4	Cl	C(O)(Ph)	61/74
5	н	CH ₂ (OMe)	90/76
6	н	CH ₂ (1-naphthyl)	39/83

For entry 6, direct benzylic oxidation is observed

ARTICLE

Scheme 9. Proposed mechanism for C23 catalyst

Manuso

Catalyst	Additive/Oxidant	Epoxide product	Range of yield and ee (%)	[Ref]
(N2) + FeCl ₂	-/H ₂ O ₂	°,	conv 78 % ee 20 %	[³⁷]
$\begin{array}{c} O \\ Ph \\ HN \\ O \\ Ph \\ HN \\ H$	H ₂ pydic/H ₂ O ₂	R O R'	yield 40-94 % ee 10-97 %	[³⁹]
$[Fe^{it}]_{x}(\mu \circ O)(C)]_{4}(Spp)](C1)$	AcOH/H ₂ O ₂	C R1 R2	R ₁ = Me, R ₂ = H, 90 (37) % R ₁ = H, R ₂ = Me, 62 (40) %	[⁴¹]
Tfo OTf R,R,R,R)-[Fe(OTf) ₂ (BPMCP)] (C4)	AcOH/H ₂ O ₂		yield 40-90 % ee 69-87 %	[⁴⁶]
			98 (86) %	
(S,S')-[Fe(OTf)2(PDP)] (C9)	2 -eha/ H_2O_2		51 (62) %	[⁴⁸]
N Fe N		R R	yield 78-99 % ee 74-97 %	r ⁴⁹ 1
	ACUH/H ₂ U ₂	C C C R	yield 72-98 % ee 87-98 %	[]

This iournal is	© The Roval	Society of	Chemistry 20xx
inis journaris	e me noyu	Jocicity of	Chemistry 20XX

J. Name., 2013, 00, 1-3 | 11

ARTICLE

Catalyst	Additive/Oxidant	Epoxide product	Range of yield and ee (%)	[Ref]
	S-Ibp/H ₂ O ₂	R = Me, CO ₂ Et, N(OMe)Me	yield 84-97 % ee 86-97 %	
	2-eha/H ₂ O ₂	$R = CN, NO_2$	yield 95-97 % ee 99 %	
			yield 94-99 % ee 97-98 %	[⁵⁰]
N-Fe-N		R = Me, OMe, OEt, O/Pr, OBz, N(OMe)Me	yield 60-95 % ee 91-99 %	
Me ₂ N´´´TfóÒTf´´NMe ₂ ,S)-[Fe-(OTf) ₂ (^{Me2N} PDP)]: (C10)		C C C R	yield 94-97 % ee 90-97 %	
	NPha-Ileu-OH/H2O2	R' R'= Me, Et, <i>I</i> Pr, <i>t</i> Bu, CH ₂ (Ph)	yield 52-94 % ee 50-97 %	[⁵⁸]
		C	yield 2 % ee 51 % ^a	
MeO R ² O'IBu PYML-6 (C19)	2-mercaptoethanol/O ₂		yield 2 % ee 0 % ^a	[⁷³]
	2-ethylbutyradehyde/O2	R ₁ O R ₂ R ₃	$\begin{array}{l} R_1 \!\!=\!$	[⁷⁴]

Conclusions and Overview

The field of biologically inspired oxidation catalysis has experienced major advances over the last ten years. Non heme iron coordination complexes aimed at mimicking the activity of iron dependent oxygenases are being incorporated into the tools of synthetic organic chemistry. Asymmetric epoxidation constitutes one of the reactions where the progress of the field has been very significant. Reports in the early years of the 21st century focused mainly on the mechanistic aspects of olefin oxidation reactions at non heme iron sites, and provided foundations that selected iron complexes able to mediate olefin epoxidation via metal based mechanisms. Since then, catalysts that mediate asymmetric epoxidation with good product yields and high levels of stereoselectivity have been described in few cases. Table 13 collates some representative examples that serve to provide an overview of the field, the scope, experimental conditions and limitations of the reported systems. A perusal of this table shows that these catalysts have so far a rather limited scope, focused primarily on chalcones. However, some systems are starting to show promising results towards more challenging classes of substrates such as terminal styrenes and $\beta_{,\beta}$ -trisubstituted chalcones. In contrast, interesting substrates such as aliphatic alkenes, are efficiently oxidized by iron epoxidation systems, but incorporation of stereoselectivity is still lacking. Regarding the oxidant, important steps have been made towards controlling the activation/breakage of the O-O bond of peroxides, most specifically H₂O₂, and as a result this oxidant is increasingly being incorporated in iron catalyzed asymmetric epoxidations. Comprehension of the mechanisms

of catalyst deactivation is also becoming necessary, to develo even more efficient catalysts. So far, iron catalysts successful in asymmetric epoxidation rarely exceed 100 TON. Finall models for understanding the origin of the stereoselectivity are also required for rationalizing which elements of the catalys need to be changed/elaborated in order to increase the substrate scope. So far successful catalysts are very much focused C octahedral iron complexes with tetradentate N-based ligands. In this regard, the impact of the nature of carboxylic acid defining the stereoselectivity of the reactions performed with this class of complexes can potentially extend their versatility. Alternative carboxylic acids may be employed to design nov asymmetric epoxidation systems, extending substrate scope without the need of further catalyst development. Final structurally simpler ligand frameworks that could enable analogous control of the activation of H₂O₂, and provide good stereoselectivities will be also quite interesting from a practic. I organic synthesis point of view. Knowledge gained from these models will be very important to the fundamental future (epoxidation catalyst development in order to aid broadening or the substrate scope.

Acknowledgements

We acknowledge help from Dr Christopher Whiteoak 1 proofreading the manuscript and providing valuable suggestions. We acknowledge financial support from the European Researc Council (ERC-2009-StG-239910), MINECO of Spain (CTQ2012-3742c C02-01/BQU, CSD2010-00065), and Generalitat de Catalunya (2014 SGR 862). X.R. and M.C. thank ICREA-Academia awards.

ARTICLE

Notes and references

- J. T. Groves and P. Viski, J. Am. Chem. Soc., 1989, 111, 8537-8538.
- J. P. Collman, Z. Wang, A. Straumanis and M. Quelquejeu, J. Am. Chem. Soc., 1999, 121, 460-461.
- J. T. Groves and R. S. Myers, J. Am. Chem. Soc., 1983, 105, 5791-5796.
- C. K. Chang and M.-S. Kuo, J. Am. Chem. Soc., 1979, 101, 3413-3415.
- J. T. Groves, R. C. Hausalter, M. Nakamura, T. E. Nemo and B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884-2886.
- J. P. Collman, R. R. Gagne, C. Reed, T. R. Halbert, G. Lang and W. T. Robinson, J. Am. Chem. Soc., 1975, 97, 1427-1439.
- J. P. Collman, X. Zhang, V. J. Lee, E. S. Uffelman and J. I. Brauman, *Science*, 1993, **261**, 1404-1411.
- H. Nakagawa, Y. Sei, K. Yamaguchi, T. Nagano and T. Higuchi, J. Mol. Cat. A: Chem., 2004, 219, 221-226.
- N. Kitajima, N. Tamura, H. Amagai, H. Fukui, Y. Moro-oka, Y. Mizutani, T. Kitagawa, R. Mathur, K. Heerwegh, C. A. Reed, C. R. Randall, L. Que, Jr. and K. Tatsumi, *J. Am. Chem. Soc.*, 1994, **116**, 9071-9085.
- T. Ogihara, S. Hikichi, M. Akita and Y. Moro-oka, *Inorg. Chem.*, 1998, **37**, 2614-2615.
- 11. E. L. Hegg, R. Y. N. Ho and L. Que, Jr., *J. Am. Chem. Soc.*, 1999, **121**, 1972-1973.
- R. Y. N. Ho, M. P. Mehn, E. L. Hegg, A. Liu, M. J. Ryle, R. P. Hausinger and L. Que, Jr. J. Am. Chem. Soc., 2001, 123, 5022-5029.
- 13. M. P. Mehn, K. Fujisawa, E. L. Hegg and L. Que, Jr., J. Am. Chem. Soc., 2003, **125**, 7828-7842.
- 14. M. Ito and L. Que, Jr., Angew. Chem. Int. Ed. Engl., 1997, **36**, 1342-1344.
- 15. G. Lin, G. Reid and T. D. H. Bugg, J. Am. Chem. Soc., 2001, **123**, 5030-5039.
- 16. A. Beck, A. Barth, E. Hubner and N. Burzlaff, *Inorg. Chem*, 2003, **42**, 7182-7188.
- 17. A. Karlsson, J. V. Parales, R. E. Parales, D. T. Gibson, H. Eklund and S. Ramaswamy, *Science*, 2003, **299**, 1039-1042.
- D. P. Kloer, S. Ruch, S. Al-Babili, P. Beyer and G. E. Schulz, Science, 2005, 308, 267-269.
- 19. K. Matsumoto and T. Katsuki, in *Catalytic Asymmetric Synthesis*, John Wiley & Sons, Inc., 2010, pp. 839-890.
- 20. G. De Faveri, G. Ilyashenko and M. Watkinson, *Chem. Soc. Rev.*, 2011, **40**, 1722-1760.
- 21. Y. Zhu, Q. Wang, R. G. Cornwall and Y. Shi, *Chem. Rev.*, 2014, **114**, 8199-8256.
- 22. R. L. Davis, J. Stiller, T. Naicker, H. Jiang and K. A. Jørgensen, Angew. Chem. Int. Ed., 2014, **53**, 7406-7426.
- 23. L. Que, Jr. and W. B. Tolman, Nature, 2008, 455, 8.
- 24. S. Enthaler, K. Junge and M. Beller, *Angew. Chem. Int. Ed.*, 2008, **47**, 3317-3321.
- 25. A. Correa, O. G. Mancheno and C. Bolm, *Chem. Soc. Rev.*, 2008, **37**, 1108-1117.
- 26. L.-X. Liu, Curr. Org. Chem., 2010, 14, 1099-1126.

- 27. C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Rev., 2011, **111**, 12, 1314.
- 28. M. Darwish and M. Wills, *Catal. Sci. Technol.*, 2012, **2**, 24 255.
- 29. K. Gopalaiah, Chem. Rev., 2013, 113, 3248-3296.
- 30. E. B. Bauer, Curr. Org. Chem., 2008, 12, 1341-1369.
- 31. F. G. Gelalcha, Adv. Synth. & Catal., 2014, **356**, 261-299.
- H. Yamamoto and C. Wang, Chem.- Asian J., 2015, DOI: 10.1002/asia.201500293.
- A. Fingerhut, O. V. Serdyuk and S. B. Tsogoeva, Green Chem., 2015, 17, 2042-2058.
- 34. V. A. Yazerski, A. Orue, T. Evers, H. Kleijn and R. J. M. . Gebbink, *Catal. Sci. Technol.*, 2013, **3**, 2810-2818.
- 35. F. Oddon, E. Girgenti, C. Lebrun, C. Marchi-Delapierre, Pecaut and S. Menage, *Eur. J. Inorg. Chem.*, 2012, 85-96.
- 36. K. A. Stingl, K. M. Weiß and S. B. Tsogoeva, *Tetrahedro*, 2012, **68**, 8493-8501.
- M. B. Francis and E. N. Jacobsen, Angew. Chem. Int. Ea., 1999, 38, 937-941.
- G. Anilkumar, B. Bitterlich, F. G. Gelalcha, M. K. Tse and M. Beller, *Chem. Commun.*, 2007, 3, 289-291.
- F. G. Gelalcha, B. Bitterlich, G. Anilkumar, M. K. Tse and N Beller, Angew Chem. Int. Ed., 2007, 46, 7293-7296.
- 40. F. G. Gelalcha, G. Anilkumar, M. K. Tse, A. Brückner and N. Beller, *Chem. Eur. J.*, 2008, **14**, 7687-7698.
- 41. H.-L. Yeung, K.-C. Sham, C.-S. Tsang, T.-C. Lau and H.--Kwong, *Chem. Commun.*, 2008, 3801-3803.
- M. Costas and L. Que, Jr., Angew. Chem. Int. Ed., 2002, 1 2179-2181.
- R. Mas-Ballesté, M. Costas, T. v. d. Berg and L. Que, Jr. Chen. Eur. J., 2006, 12, 7489-7500.
- M. C. White, A. G. Doyle and E. N. Jacobsen, J. Am. Chen. Soc.,, 2001, 123, 7194-7195.
- M. Costas, A. K. Tipton, K. Chen, D.-H. Jo and L. Que, Jr., Am. Chem. Soc., 2001, **123**, 6722-6723.
- 46. M. Wu, C.-X. Miao, S. Wang, X. Hu, C. Xia, F. E. Kühn and Sun, *Adv. Synth. & Catal.*, 2011, **353**, 3014-3022.
- 47. M. S. Chen and M. C. White, Science, 2007, 318, 783-787.
- 48. O. Y. Lyakin, R. V. Ottenbacher, K. P. Bryliakov and E. P. Tal, *Acs Catal.*, 2012, **2**, 1196-1202.
- 49. B. Wang, S. Wang, C. Xia and W. Sun, *Chem. Eur. J.*, 2012, 1, 7332-7335.
- 50. O. Cussó, I. Garcia-Bosch, X. Ribas, J. Lloret-Fillol and № Costas, J. Am. Chem. Soc., 2013, **135**, 14871-14878.
- 51. E. G. Kovaleva and J. D. Lipscomb, Nat. Chem. Biol., 2008, 4 186-193.
- 52. M. A. McDonough, C. Loenarz, R. Chowdhury, I. J. Clifton and C. J. Schofield, *Curr. Op. in Struct. Biol.*, 2010, **20**, 659-672
- 53. A. F. Dexter, F. J. Lakner, R. A. Campbell and L. P. Hager, Am. Chem. Soc., 1995, **117**, 6412-6413.
- 54. B. Wang, O. A. Wong, M.-X. Zhao and Y. Shi, *J. Org. Chem* 2008, **73**, 9539-9543.
- O. A. Wong, B. Wang, M.-X. Zhao and Y. Shi, J. Org. Chem. 2009, 74, 6335-6338.
- 56. O. Boutureira, J. F. McGouran, R. L. Stafford, D. P. G. Emmerson and B. G. Davis, Org. & Biomol. Chem., 2009, 4285-4288.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

- 57. B. Wang, C. Miao, S. Wang, C. Xia and W. Sun, *Chem. Eur. J.*, 2012, **18**, 6750-6753.
- 58. O. Cussó, X. Ribas, J. Lloret-Fillol and M. Costas, Angew Chem. Int. Ed., 2015, **54**, 2729-2733.
- 59. I. Garcia-Bosch, X. Ribas and M. Costas, *Adv. Synth. & Catal.*, 2009, **351**, 348-352.
- R. V. Ottenbacher, K. P. Bryliakov and E. P. Talsi, Adv. Synth. & Catal., 2011, 353, 885-889.
- 61. M. C. White, A. G. Doyle and E. N. Jacobsen, *J. Am. Chem. Soc.*, 2001, **123**, 7194-7195.
- 62. R. Mas-Balleste and L. Que, Jr., J. Am. Chem. Soc., 2007, **129**, 15964-15972.
- 63. R. Mas-Balleste, M. Fujita and L. Que, Jr. *Dalton Trans.*, 2008, 1828-1830.
- B. Meunier, S. P. de Visser and S. Shaik, *Chem. Rev.*, 2004, 104, 3947-3980.
- E. N. Jacobsen, W. Zhang and M. L. Guler, J. Am. Chem. Soc, 1991, 113, 6703-6704.
- 66. O. Y. Lyakin, K. P. Bryliakov, G. J. P. Britovsek and E. P. Talsi, J. *Am. Chem. Soc.*, 2009, **131**, 10798–10799.
- 67. O. Y. Lyakin, K. P. Bryliakov and E. P. Talsi, *Inorg. Chem.*, 2011, **50**, 5526-5538.
- O. V. Makhlynets, W. N. Oloo, Y. S. Moroz, I. G. Belaya, T. D. Palluccio, A. S. Filatov, P. Mueller, M. A. Cranswick, L. Que, Jr. and E. V. Rybak-Akimova, *Chem. Commun.*, 2014, **50**, 645-648.
- W. N. Oloo, K. K. Meier, Y. Wang, S. Shaik, E. Muenck and L. Que, Jr. *Nat. Commun.*, 2014, 5. Article number: 3046, doi:10.1038/ncomms4046.
- 70. O. Y. Lyakin, A. M. Zima, D. G. Samsonenko, K. P. Bryliakov and E. P. Talsi, *ACS Catal.*, 2015, **5**, 2702-2707.
- 71. K. Schröder, B. Join, A. J. Amali, K. Junge, X. Ribas, M. Costas and M. Beller, *Angew Chem. Int. Ed.*, 2011, **50**, 1425-1429.
- 72. T. Punniyamurthy, S. Velusamy and J. Iqbal, *Chem. Rev.*, 2005, **105**, 2329-2364.
- 73. Y. Kaku, M. Otsuka and M. Ohno, *Chem. Lett.*, 1989, **18**, 611-614.
- 74. Q. F. Cheng, X. Y. Xu, W. X. Ma, S. J. Yang and T. P. You, *Chin. Chem. Lett.*, 2005, **16**, 1467-1470.
- 75. C. Marchi-Delapierre, A. Jorge-Robin, A. Thibon and S. Menage, *Chem. Commun.*, 2007, 1166-1168.
- 76. Y. Nishikawa and H. Yamamoto, J. Am. Chem. Soc., 2011, 133, 8432-8435.
- 77. L. Luo and H. Yamamoto, *Eur. J. Org. Chem.*, 2014, **2014**, 7803-7805.
- 78. W. Dai, G. Li, B. Chen, L. Wang and S. Gao, Org. Lett., 2015, 17, 904-907.
- 79. T. Niwa and M. Nakada, J. Am. Chem. Soc., 2012, **134**, 13538-13541.

ARTICLE