ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Manuscript ID: CC-COM-07-2015-005551.R1

Graphical Abstract

Xiong Fang^a, Wing-Leung Wong^{b,*}, Kun Zhang^{a,c,*}, Cheuk-Fai Chow^b

Journal Name

COMMUNICATION

Molecular Fluorescent Dye for Specific Staining and Imaging of RNA in Live Cells: a Novel Ligand Integration from Classical Thiazole Orange and Styryl Compounds

Yu-Jing Lu^{a,*}, Qiang Deng^a, Dong-Ping Hu^a, Zheng-Ya Wang^a, Bao-Hua Huang^a, Zhi-Yun Du^a, Yan-

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

A new RNA-selective fluorescent dye integrated with a thiazole orange and a *p*-(methylthio)styryl moiety shows better nucleolus RNA staining and imaging performance in live cells than the commercial stains. It also exhibits excellent photostability, cell tolerance, and counterstain compatibility with 4',6-diamidino-2phenylindole for specific RNA-DNA colocalization in bioassays.

Live cell imaging or staining by target-specific molecular fluorescent probes is a very important and useful technology for medical diagnosis and biomedical research because it allows the investigation of the distribution, migration and transcriptional dynamics of cell nucleus.^[1] RNA molecules in living cells are known responsible for a wide variety of functions including physical transportation, interpretation of genetic information, regulation of gene expression, and some essential bio-catalytic roles.^[2] However, the information on distribution dynamics and transcriptional activities of RNA in cell nucleus and the relationship with special secondary structures of DNAs, such as G-quadruplex and temporal/spatial processing of RNA, is still limited to-date.^[3] It is probably due to the limiting RNA-selective technology has been developed during the past decades.

In recent years, a considerable amount of effort has been done for the development of small-molecule-based fluorescent dyes for RNA imaging in live cells.^[4] Some fluorescent molecular ligands like crescent-shape and V-shape probes^[5a,b], styryl and **E36** dyes,^[5c,d] and a near-infrared probe^[5e] were examined for RNA detection. In comparison with DNA dyes, a common difficulty encountered is the low specificity of small

Scheme1. Molecular design of **Styryl-TO** through ligand integration of thiazole orange **TO** and DNA dye **C61**.

molecular dyes for RNA, especially the nucleus RNA dyes for live cell imaging, due to small molecules usually have better affinity to DNA. The poor nuclear membrane permeability the RNA dyes is also a big problem to be solved.^[6] SYTO RNASelect is the only commercially available dye for R' ... imaging in live cells, but its molecular structure is not known for further modification in order to fit for different purpose. Molecular design of new target-specific fluorescent compound is the key to address the problems. Styryl-based molecular dye have been recently reported and proved to be selective bindin with RNA^[5c] in nucleoli and cytoplasm of live cells^[5d]. The findings indicate that the molecular structure of styryl is crucia. for RNA-specific binding.^[7a-c] In addition, thiazole orange (TC Scheme 1) is a well-known and widely used nucleic acid fluorescent probe due to its high fluorescence quantum yiel TO conjugates have recently been reported as a G-quadruplexselective fluorescent probe and demonstrated as a g Jd structural platform for designing novel fluorescent pro es targeting on different types of nucleic acids.^[8] However, **TO** has never been explored as a RNA dye because of its pour selectivity.

1-Methyl-2,6-bis(4-(methylthio)-styryl)-pyridinium iodiae **C61** is an example of styryl compounds, which is also know as a promising green fluorescent DNA probe.^[9a] The most attractive property of **C61** is that it provides a broader color option for biological imaging^[9b] and *p*-(methylthio)st, ...

CHEMIS

^{a.} Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China. E-mail: luyj@gdut.edu.cn; E-mail: kzhang@gdut.edu.cn; Tel: +86-20-39322235;

^{b.} Department of Science and Environmental Studies, Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, Hong Kong SAR, P.R. China. E-mail: wingleung@ied.edu.hk; Tel: +852-2948-8401

^{c.} School of Chemical and Environment Engineering, Wuyi University, Jiangmen 529020, P.R. China.

^{*}Electronic Supplementary Information (ESI) available: [Synthetic procedures, characterizations, experimental details, cell culture, imaging, and microscopy]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

moiety has an unique functionality for discrimination of dsDNA and RNA^[9c]. We therefore attempt to design a novel RNA-specific fluorescent dye that possesses both of the advantages of **TO** and **C61** by integrating their special scaffolds into a single molecule. The concept of ligand integration to merge with two or more unique characteristics and functionality of small organic molecules could be a promising approach for RNA-specific dyes development. Herein, we report a new RNA-specific switch-on fluorescent dye (**Styryl-TO**), which is designed by the integration of a **TO** structure and a *p*-(methylthio)styryl moiety of **C61** and demonstrate its performance for nuclear RNA staining and imaging in live cells.

Table 1. Fluorescence characteristics of **Styryl-TO** and itsbinding constants with different nucleic acids.

U			
Nucleic	B shift	Concentration of	$K_d (x 10^5 M^{-1})^c$
acid	(nm) ^a	nucleic acid ^b (µM)	
RNA	5	15	12.32
ds26	12	12	4.55
htg21	10	16	3.22
st-DNA	11	8	1.78
da21	15	8	2.17

Concentration of **Styryl-TO**: 5µM. ds26: self-complementary duplex DNA; htg21: telomere G-quadruplex; st-DNA: salmon testes DNA; da21: Single-stranded purine.

^a Hypsochromic shifts; ^b Concentration of nucleic acids used for the fluorescence intensity reaching a plateau; ^c Equilibrium binding constants.

Styryl-TO was prepared by integrating a TO and a p-(methylthio)styryl moiety of C61 through multi-step synthesis (Scheme S1, ESI[†]). To prove the concept, the functionality, binding specificity, and fluorescent property of the new dye interacting with RNA and various DNAs were investigated by fluorescence titration. The fluorescence intensity increases approximately 152±23 folds upon Styryl-TO binding with RNA as shown in Figure 1a. Nevertheless, under similar conditions, the treatment with a wide variety of DNA substrates including duplex DNA (salmon testes stDNA, ds26: self-complementary duplex DNA), single-stranded DNA (da21), and G-quadruplex DNA (htg21), it induced much smaller fluorescence signal enhancement (Figure 1b). This new molecular scaffold surprisingly changes the binding preference of TO moiety to RNA rather than DNA; it also retains the merit fluorescence-signalling property of **TO** dyes. Styryl-TO only shows very weak background fluorescent signal in blank solutions without RNA. In order to further explain the selectivity of the dye towards RNA, the equilibrium binding constants (K_d) of the compound and different nucleic acids were investigated and calculated (Table 1). Obviously, the RNA shows much bigger binding affinity (from 3 to 7 folds in terms of K_d values) than other DNA substrates, which indicated that Styryl-TO has higher specificity towards RNA. The good specificity is attributed to the new integrated *p*-(methylthio)styryl moiety which is proved

Figure 2. The fluorescence changes of **Styryl-TO** under UVillumination ($\lambda_{ex} = 302$ nm) with the presence of various nucle : acids: G-quadruplex htg21, Oxy28, Single DNA da21, duplex DNA ds26 and St-DNA in Tris-HCl buffer.

Figure 3. (a) - (c): PC3 cells staining and counterstaining with Styryl-TO and DAPI; (d) - (f):comparison study with E36 and DAPI. The images were taken under FITC channel for Styry -TO and DAPI channel for DAPI. $1000 \times$ magnification was utilized in the imaging. Scale bar is $10 \mu m$.

binding RNA with high selectivity^[5b-e,7a-c,9c]; **TO** and it analogues are known unable to differentiate RNA from DNA.^[η]

Photophysical properties of **Styryl-TO** in both aqueous an organic media were studied and the results (Table S3 & Figure S7, ESI†) showed the fluorescence quantum yields (Φ_f) of the dye in aqueous is much lower ($\Phi_f = 1.6 \times 10^{-3}$) than that in dichloromethane ($\Phi_f = 5.3 \times 10^{-3}$). Interestingly, the dye upc 1 bound with RNA in aqueous is significantly increased about 55

Page 4 of 6

times ($\Phi_f = 5.6 \text{ x} 10^{-2}$). The RNA induced fluorescence signal (orange) is strong enough for observing by naked eye under UV-illumination as shown in Figure 2.

To study the higher-order nuclear organization of RNA molecules, cell staining with a fluorescent RNA-specific dye is needed to counter labelled with DAPI, which is a DNAselective dye.^[11a] Figure 3a shows the fluorescence imaging for the treatment of PC3 cells(human prostate cancer cell line) with Styryl-TO that produces a strong and bright fluorescence response signal mainly confining in certain regions of the nucleus. Some green spots with weak brightness are also observed in the cytoplasm. A reported RNA probe^[11b-c] E36 was also employed for performance comparison (Figure 3d-f). E36 stains the nucleus but most regions of the cell are also stained (Figure 3d). The comparison study indicates that Styryl-TO shows much better RNA specific staining performance in cells. The cellular localization of Styryl-TO in PC3 cells is similar to that of E36 and other RNA fluorescent probes. In addition, the fluorescent intensity of Styryl-TO in the nucleoli where RNA undergoes transcription is found much higher than that of in the nucleus; however, no cell morphology or viability change was observed during the imaging experiments. Figure 3c further demonstrates the cell imaging performance of Styryl-TO by co-staining with the blue nucleus dye DAPI in the FITC or Cy3 channel. Styryl-TO exhibits a very low fluorescence response to DNA and good counter labelling properties with the DNA-selective dye DAPI in the living PC3 cells.^[5e] The images clearly reveal different patterns of RNA-DNA co-localization in the live cells.^[11d] This observation further supports that **Styryl-TO** has a very good counterstaining compatibility with the DNAselective dye (DAPI). In addition, the utility of the dye was also demonstrated in other cell lines (HUVEC, NIH-3T3, L929) and it gave very good RNA specificity and imaging performance (Figure S10B, ESI[†]).

To confirm the specificity of Styryl-TO towards RNA in cells, deoxyribonuclease (DNase) and ribonuclease (RNase) digest tests were performed.^[12] In the DNase digest test, only DNA substrates are hydrolysed in the cells while in the RNase digest test, only RNA substrates are hydrolyzed. The fixedpermeabilized PC3 cells were used in the experiment and E36 and SYTO RNASelect were selected as the control. As expected, in the DNase digest test (Figure 4 DNase), no obvious diminishing of fluorescence in the nucleoli stained with Styryl-TO was found; in contrast, for RNase digest test, the originally intensive fluorescence signal of the nucleoli stained with Styryl-TO in cells was dramatically disappeared (Figure 4 RNase). Similar photo-behaviour was also observed in the control study with E36 and SYTO RNASelect. These results evidently indicate that the enhanced fluorescence signal is originated from the interaction of Styryl-TO with RNA in the nucleoli of PC cells.^[13]

Photostability is always a key factor to determine the usefulness of a dye for cell imaging. Styryl-TO is evaluated in live PC3 cells with an inverted fluorescence microscope. Figure 5 shows the photo-stability comparison of SYTO RNASelect and Styryl-TO. The fluorescence intensity of SYTO

This journal is C The Royal Society of Chemistry 20xx

Figure 4. DNase and RNase digest test images of E36, Styryl-TO, and SYTO RNASelect. Equal exposure was used for the same dye imaging. E36, Styryl-TO, and SYTO RNASelect were tested in the concentration of 5 µM. E36, Styryl-TO at a SYTO RNASelect (green: FITC channel) are shown. 1000

1:00

2:00

J. Name., 2013, 00, 1-3 | 3

0:00

RNASelect was found decreased more than 80% after 1 irradiation while the intensity of Styryl-TO was almost no changes. After 3 h, the fluorescence signal of SY O RNASelect was completely disappeared; nonetheless, he fluorescence signal of Styryl-TO in the nucleoli of the PC cells was still retained obviously (approximately 90% of the intensity in beginning). Moreover, the photo-stability of Styryl-TO 📊 solution conditions was examined and it also exhibited better stability than SYTO RNASelect (Figure S11, ESI⁺). The experiments conducted in a buffered RNA solution, under continuous irradiation for 100 min and 600 scans, the enhance . fluorescence signal of Styryl-TO shows no observing

COMMUNICATION

intensity changes; while in the case of SYTO RNASelect, only about 25 % of its original intensity was retained. The results demonstrate that **Styryl-TO** is a robust RNA-specific dye for staining and imaging of nucleolar RNA in live cells and it is particularly attractive for the experiments require long time irradiation.^[14]

In conclusion, a new and robust RNA-specific switch-on fluorescent dye was developed from ligand integration of a classical nucleic acid fluorescent probe and a DNA dye moieties. The newly developed molecular scaffold holds both the merit properties of their parent compounds. The study demonstrated the concept of ligand integration and proved that the dye is able to offer excellent RNA specificity, photostability, and cell tolerance. The dye shows very good counterstain compatibility with **DAPI** for specific RNA-DNA colocalization investigations in live cells. Also, the dye was successfully utilized in staining of nucleolus RNA for cell imaging and its performance is found much better than the commercial SYTO RNASelect dye.

We acknowledge the supports received from the National Nature Science Foundation of China (21102021 and 81473082), Nature Science Foundation of Guangdong Province, China (S2012010010200), and Science and Technology Program of Guangdong Province (2012B020306007). The authors are also grateful to the support from Guangdong Province Higher Education "Qianbaishi Engineering" project, and Guangdong University of Technology "Pei Ying Yu Cai" Project.

Notes and references

- (a) D. J. Stephens, V. J. Allan, *Science*, 2003, **300**, 82; (b) R.
 Y. Tsien, A. Miyawak, *Science*, 1998, **280**, 1954; (b) G. Biffi,
 M. D. Antonio, D. Tannahill, S. Balasubramanian, *Nat. Chem.*, 2014, **6**, 75; (c) K. H. Chen, A. N. Boettiger, J. R.
 Moffitt, S. Wang, X. Zhuang, *Science*, 2015, **348**, 6233; (d) A.
 D. Faulkner, R. A. Kaner, Q. M. A. Abdallah, G. Clarkson, D.
 J. Fox, P. Gurnani, S. E. Howson, R. M. Phillips, D. I. Roper,
 D. H. Simpson, P. Scott, *Nat. Chem.*, 2014, **6**, 797; (e) J. M.
 Halstead, T. Lionnet, J. H. Wilbertz, F. Wippich, A. Ephrussi,
 R. H. Singer, J. A. Chao, *Science*, 2015, **347**, 1367.
- 2 (a) R. W. Dirks, C. Molenaar, H. J. Tanke, *Methods*, 2003, 29, 51; (b) J. S. Andersen, Y. W. Lam, A. K.-L. Leung, S.-E. Ong, C. E. Lyon, A. I. Lamond, M. Mann, *Nature*, 2005, 433, 77; (c) E. Bertrand, P. Chartrand, M. Schaefer, S. M. Shenoy, R. H. Singer, R. M. Long, *Mol. Cell*, 1998, 2, 437; (d) G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, *Nat. Chem.*, 2013, 5, 182; (e) S. Muller, S. Kumari, R. Rodriguez, S. Balasubramanian, *Nat. Chem.*, 2010, 2, 1095.
- 3 (a) J. Zhang, R. E. Campbell, A. Y. Ting, R. Y. Tsien, *Nat. Rev. Mol. Cell Biol.*, 2002, 3, 906; (b) A. Bugaut, S. Balasubramanian, *Nucleic Acids Res.*, 2012, 40, 4727; (c) R. M. Martin, H. Leonhardt, M. C. Cardoso, *Cytometry A*, 2005, 67, 45; (d) A. Rustom, R. Saffrich, I. Markovic, P. Walther, H. H. Gerdes, *Science*, 2004, 303, 1007. (e) F. Li, M. Chen, X. Su, X. Wang, P. Li, *Sens. Actuators B: Chem.*, 2013, 182, 156; (f) F. Li, P. Li, L. Yang, B. Tang, *Chem. Commun.*, 2012, 48, 12192.
- 4 (a) M. M. Mhlanga, D. Y. Vargas, C. W. Fung, F. R. Kramer, S. Tyagi, *Nucleic Acids Res.*, 2005, 33, 1902; (b) A. M. Femino, F. S. Fay, K. Fogarty, R. H Singer, *Science*, 1998, 280, 585; (c) A. C. Bhasikuttan, J. Mohanty, *Chem. Commun.*, 2015, 51, 7581; (d) A. K. Rath, A. Rentmeister, *Curr. Opin*,

Chem. Biol, 2015, **31**, 42; (e) B. Jin, X. Zhang, W. Zheng, Liu, C. Qi, F. Wang, D. Shangguan, *Anal. Chem.*, 2014, **86** 943.

- 5 (a) B.-J. Zhou, W.-M. Liu, H.-Y. Zhang, J.-S. Wu, S. Liu, H.-T. Xu, P.-F. Wang, *Biosens. Bioelectron.*, 2015, 68, 189; (L, Y. Liu, W.-J. Zhang, Y.-M. Sun, G.-F. Song, F. Miao, F.-C Guo, M.-G. Tian, X.-Q. Yu, J.-Z. Sun, *Dyes Pigments*, 2014, 103, 191; (c) G.-F. Song, Y.-M. Sun, Y. Liu, X.-K. Wan, M.-L. Chen, F. Miao, W.-J. Zhang, X.-Q. Yu, J.-L. Jin, *Biomaterials*, 2014, 35, 2103; (d) Q. Li, Y. Y. Kim, J. S Namm, A. Kulkarni, G. R. Rosania, Y.-H. Ahn, Y.-T. Chan, *Chem. Bio.*, 2006, 13, 615; (e) Z. Y. Li, S. G. Sun, Z. G. Yang, S. Zhang, H. Zhang, M. M. Hu, J. F. Cao, J. Y. Wang, F. Y. Liu, F. L. Song, J. L. Fan, X. J. Peng, *Biomaterial* 2013, 34, 6473.
- 6 (a) A. Renaud de la Faverie, A. Guedin, A. Bedrat, L. A. Yatsunyk, J. L. Mergny, *Nucleic Acids Res.*, 2014, 42, e65, (b) J. Liu, Y. Q. Sun, Y. Huo, H. Zhang, L. Wang, P. Zhang, D. Song, Y. Shi, W. Guo, *J. Am. Chem. Soc.*, 2014, 136, 57.
 (c) M. Nikan, M. DiAntonio, K. Abecassis, K. McLuckie S Balasubramanian, *Angew. Chem., Int. Ed.*, 2013, 52, 1428.
- 7 (a) I. Lubitz, D. Zikich, A. Kotlyar, *Biochemistry*, 2010, 40 3567; (b) M. Tera, K. Iida, K. Ikebukuro, H. Seimiya, ... Shin-ya, K. Nagasawa, *Org. Biomol. Chem.*, 2010, 8, 2749; (c) A. Membrino, M. Paramasivam, S. Cogoi, J. Alzeer, N. W. Luedtke, L. E. Xodo, *Chem. Commun.*, 2010, 46, 625.
- 8 (a) L. G. Lee, C.-H. Chen, L. A. Chiu, Cytometry, 1986, ', 508; (b) J. Nygren, N. Svanvik, M. Kubista, Biopolymer 1998, 46, 39; (c) O. Kohler, D. V. Jarikote, O. Seit. ChemBioChem., 2005, 6, 69.
- 9 (a) S.-H. Feng, Y. K. Kim, S.-Q. Yang, Y.-T. Chang, *Chen*. *Commun.*, 2010, 46, 436; (b) J. W. Lee, M. Jung, G. P. Rosania, Y.-T. Chang, *Chem. Commun.*, 2003, 1852; (c) J.-V. Yan, W.-J. Ye, S.-B. Chen, W.-B. Wu, J.-Q. Hou, T.-M. Ou, J.-H. Tan, D. Li, L.-Q. Gu, Z.-S. Huang, *Anal. Chem.*, 201 , 84, 6288.
- 10 (a) J.-W. Yan, S.-B. Chen, H.-Y. Liu, W.-J. Ye, T.-M. Ou, J H. Tan, D. Li, L.-Q. Gu, Z.-S. Huang, *Chem. Commun.*, 201-50, 6927; (b) S.-B. Chen, W.-B. Wu, M.-H. Hu, T.-M. Ou L.-Q. Gu, J.-H. Tan, Z.-S. Huang, *Chem. Commun.*, 2014, 5, 12173; (c) Y.-J. Lu, S.-C. Yan, F.-Y. Chan, L. Zou, W.-H. Chung, W.-L. Wong, B. Qiu, N. Sun, P.-H. Chan, Z.-S Huang, L.-Q. Gu, K.-Y. Wong, *Chem. Commun.*, 2011, 4, 4971.
- (a) A. Krishan, P.-D. Dandekar, *Cytochem*, 2005, **53**, 1033; (b)
 Q. Li, J.-S. Lee, C. Ha, C.-B. Park, G. Yang, W. B. Gan, Y.-T. Chang, *Angew. Chem.*, 2004, **43**, 6331; (c) Q. Li, J. Min, Y.-H. Ahn, J. Namm, E. M. Kim, R. Lui, H. Y. Kim, Y. Ji, F. Wu, T. Wisniewski, Y.-T. Chang, *ChemBioChem*, 2007, 1679; (d) B.-C. Yin, S. Wu, J.-L. Ma, B.-C. Ye, *Biosens Bioelectron.*, 2015, **68**, 365.
- 12 (a) X. Lv, J. Liu, Y. Liu, Y. Zhao, Y.-Q. Sun, P. Wang, V. Guo, *Chem. Commun.*, 2011, **47**, 12843; (b) D.-L. Ma, H.-7 He, K.-H. Leung, H.-J. Zhong, D. S.-H. Chan, C.-H. Leung *Chem. Soc. Rev.*, 2013, **42**, 3427; (c) A. K. Sharma, J. J. Pla t, A. E. Rangel, K. N. Meek, A. J. Anamisis, J. Hollien, J. M. Heemstra, *Chem. Biol.*, 2014, **9**, 1680; (d) H. Lai, Y.-J. X² o, S.-Y. Yan, F.-F. Tian, C. Zhong, Y. Liu, X.-C. Weng, X. Zhou, *Analyst*, 2014, **139**, 1834.
- (a) L. Gong, Z. Zhao, Y.-F. Lv, S.-Y. Huan, T. Fu, X.-P. Zhang, G.-L. Shen, R.-Q. Yu, *Chem. Commun.*, 2015, **51**, 97 (b) C.-P. Ma, S. Liu, C. Shi, *Biosens. Bioelectron.*, 2014, **5**, 57; (c) C. Hong, D. M. Kim, A. Baek, H. Chung, W. Jung, L. E. Kim, *Chem. Commun.*, 2015, **51**, 5641; (d) L.-H. Zhang, V. Liu, Y. Shao, C. Lin, H. Jia, G. Chen, D.-Z. Yang, Y. Wan, *Nat. Chem.*, 2015, **87**, 730.
- 14 W.-T. Liu, H. Lai, R. Huang, C.-T. Zhao, Y.-M. Wang, X.-Weng, X. Zhou, *Biosens. Bioelectron.*, 2015, 68, 736.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Graphical Abstract

Page 6 of 6

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx