ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/coxx00000x

ARTICLE TYPE

New ionic liquids based on complexation of dipropylsulfide and AlCl₃ for electrodeposition of aluminum

Youxing Fang, Xueguang Jiang, Xiao-Guang Sun*^a and Sheng Dai*^{ab}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and $AlCl_3$ has been prepared. The equivalent concentration of $AlCl_3$ in the ionic liquid is as high as 2.3 M.

¹⁰ More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10⁻⁴ S cm⁻¹. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

Introduction

- ¹⁵ Al containing room temperature ionic liquids (Al-RTILs) have attracted great attentions in science and technology field owing to their wide applications in catalysis,¹ electrochemistry,²⁻⁴ biotechnology⁵ and material processing.⁶ Typically, AlCl₃ based ILs are prepared by mixing anhydrous AlCl₃ with organic halide
- ²⁰ salts such as N-(1-butyl)pyridinium chloride 1-ethyl-3methylimidazolium chloride. ^{7,8} It has been shown that these ILs contain the quaternary ammonium cations and chloroaluminate anions, among which the electroactive species in the acidic mixture is believed to be Al₂Cl₇. Recently, it has been shown that
- ²⁵ N containing "neutral" ligands could generate new room temperature ionic liquids when mixed with AlCl₃. The reaction between AlCl₃ and neutral ligands forms both Al containing anionic and cationic species according to the following equation:

30
$$xAlCl_3 + y base \leftrightarrow [Alx_{-1}Cl_{3x-4}(base)_y]^+ + AlCl_4^-$$
 (1)

Based on a similar reaction scheme, few ILs based on AlCl₃ and neutral ligands such as acetamide,⁹ urea, ⁹ 1,3-dimethyl-2-imidazolidinone,¹⁰ and 4-propylpyridine¹¹ have been reported.

- ³⁵ Aluminum coatings have been routinely used for corrosion protection in electronics, buildings, architecture, automotive components, the marine industry, aviation, and aerospace. Among different technique for aluminum coating, electrodeposition is considered to be more efficient. Unfortunately, aluminum cannot
- ⁴⁰ be electrodeposited from aqueous solutions because hydrogen is evolved before aluminum is plated. So far, three kinds of nonaqueous baths have been used for Al electrodeposition: 1) organic solvents 2) inorganic molten salts, and 3) organic molten salts (Al-RTILs).¹⁰ Organic solvent bath generally contains volatile ⁴⁵ organic solvents and highly flammable Al sources such as LiAlH₄
- ⁴⁵ organic solvents and nighty hammable Al sources such as ElAH4 and alkylaluminum, which demands stringent environment for practical applications. ⁷ As for inorganic molten salts, relatively high temperature is required, which can lead to not only high energy consumption but also the sublimation of corrosive AlCl₃.

⁵⁰ Comparatively, Al-RTILs can be used at much lower temperatures with less safety concerns. However, the high cost of quaternary ammonium halide salts and their hygroscopic nature limit the application of Al-RTILs for aluminum deposition. Therefore, development of ILs from readily available and ⁵⁵ relatively hydrophobic "neutral" ligands is of great interest for practical electroplating of Al.

Currently, most of the neutral ligands based ILs have been prepared using group V nitrogen based ligands. Even though 60 group VI elements also possess the lone pair electrons, Al-RTILs based on ligands from group VI elements such as O and S have hardly been investigated. We have preliminarily examined ethers such as diethyl ether and tetrahydrofuran as the potential ligands to form Al-RTILs, unfortunately, only little AlCl₃ can be 65 dissolved in those solvents. Therefore, they are dilute solutions rather than ionic liquids (data not shown). Herein, we report a new Al-RTIL based on AlCl₃ and an alkyl sulfide, dipropyl sulfide (DPS). DPS interacts with AlCl₃ to produce both Alcontaining cation and anion by the asymmetric cleavage of AlCl₃, 70 which is characterized by mass spectrometry (MS) and infrared spectroscopy. The new IL possesses low viscosity and high ionic conductivity. Gray-white Al has been successfully electroplated in the new IL at 50 °C, indicating the suitability of this new IL for electrodeposition of Al.

The DPS/AlCl₃ ILs were prepared by adding calculated amount of AlCl₃ into DPS with stirring in an Ar-filled glove box. External heat might be needed to get more AlCl₃ reacted A high molar ratio of 1:1.05 between DPS and AlCl₃ can be readily ⁸⁰ obtained, producing a near colorless (slightly yellow) liquid with a low viscosity of 6.87 mPa•s at room temperature (Fig. 1).

Direct analysis in real time mass spectrometry (DART-MS) was used to identify the cations and anions produced by the reaction sbetween DPS and AlCl₃. As shown in Fig. 2, both cationic species [AlCl₂(DPS)₂]⁺ and anionic species AlCl₄⁻ are directly observed, however, Al₂Cl₇⁻ is not found in the MS spectrum. This result is similar to those previously reported for the ILs based on the complexation of "neutral" ligands and AlCl₃. ^{9, 11} It is assumed ⁹⁰ that the asymmetric cleavage of AlCl₃ generates AlCl₂⁺ and AlCl₄⁻, with the former being coordinated with DPS, according to the following equation:

$$2AlCl_3 + 2 DPS \leftrightarrow [AlCl_2(DPS)_2]^+ + AlCl_4^- \quad (2)$$

75

10

15

45

Fig. 1 Digital photo of DPS/AlCl₃ (1:1.05, molar ratio) IL.

Fig. 2 MS spectrum of DPS/AlCl₃ (1:1.05) (DPS= dipropyl sulfide, A: cationic species; B: anionic species).

It should be noted that some intense peaks are difficult to identify, which might be due to the fragments produced during the ionization and recombination processes.

- ⁵⁰ The ionic conductivities of DPS/AlCl₃ ILs were measured by electrochemical impedance spectroscopy with a self-made twoplatinum-electrode cell calibrated with a 0.1 M KCl aqueous solution.¹² Fig. 3 shows the temperature dependence of the ionic conductivities of the ILs. Generally, the ionic conductivity can be
- ss described by the Arrhenius equation $\sigma = Ae^{-Ea(\sigma)/(RT)}$, where T is temperature, A is a coefficient, E_a is the activation energy and R is the universal gas constant. A calculated average E_a of the DPS/AlCl₃ ILs is 33.80 kJ/mol. It is interesting to note that the ionic conductivities can be obviously divided into two segments
- ⁶⁰ with 50 °C as a transition point. This might be related to the solid like transition around 40 °C observed in the DSC scan (Fig. S1, ESI). However, the source of the transition is unknown, which could be related to the impurity of DPS. For the ionic conductivity above 50 °C, a clear trend can be observed. For ⁶⁵ example, the ionic conductivity increases with increasing the ⁶⁶ and ⁶⁷ and ⁶⁸ and ⁶⁹ and ⁶⁹
- molar ratio of AlCl₃ from 0.8 to 1.0, which can be attributed to

the equilibrium of reaction (2) shifting to the right, that is, more ionic species are generated. However, the ionic conductivity decreases when the molar ratio of AlCl₃ is further increased to ⁷⁰ 1.05, which might be due to the increased viscosity of the ionic liquid. ¹¹

Fig. 3. Temperature (from 25 to 100 °C) dependence of ionic ⁹⁰ conductivities of ionic liquids on different molar ratios of DPS:AlCl₃.

Fig. 4. FT-IR spectrum of DPS and DPS/AlCl₃ (1:1).

The reaction between DPS and AlCl₃ was also investigated by IR spectra in order to examine the effect of AlCl₃ complexation.¹³ As shown in Fig. 4, the peak at 739 cm⁻¹ can be attributed to C-S stretching vibration of DPS (black), which becomes broader after complexation with AlCl₃. The C-H wagging and twisting ¹¹⁵ vibration peaks shift from 1232 and 1376 for neat DPS to 1243 and 1385 cm⁻¹ after complexation with AlCl₃, respectively. Similar peak shifts were also observed for the complexation between pyridine and AlCl₃.¹¹ It was also observed that the characteristic peaks gradually shifted to higher wavenumbers ¹²⁰ with increasing the acidity of the IL.¹⁴ The above observed IR spectra shifts further confirm that new IL is generated from the complexation of AlCl₃ and DPS *via* Al-S coordination interaction.

Fig. 5 shows the cyclic voltammogram of the ILs on a platinum ¹²⁵ working electrode under a scan rate of 100 mV/s at room temperature. Apparent aluminum deposition/stripping are observed for the IL with a molar ratio of 1:1.05 between DPS and AlCl₃ (black line). ^{4, 15} A characteristic "nucleation loop" is also noted for the above IL. ¹⁶ However, no reversible aluminum ¹³⁰ deposition/stripping can be observed for the ILs with lower AlCl₃ contents. It has been reported for the ILs based on quaternary ammonium halide salts and AlCl₃ that only the acidic ones support reversible Al deposition/stripping. ^{17, 18} However, for "neutral" ligands based ILs, this may be different for the following reasons: 1) Al deposition is possible for acetamide/AlCl₃ based IL with equal molar ratio of the two 5 components;⁹ 2) anionic species Al₂Cl₇⁻ cannot be observed in the MS spectra for neutral ligand based ILs. ^{9, 11, 19} Unfortunately, the detailed reduction mechanism is still not clear, and we speculate that the Al-containing cations are the electroactive species. To check the possibility of electroplating Al using this IL, a constant ¹⁰ current density of 4 mA/cm² was applied at 50 °C for 2 h with copper plate as the working electrode and Al as the counter

- electrode. Fig. 6A shows that the Cu substrate is covered by a white-gray deposit after the electrodeposition. A SEM image also shows fine grain-like Al crystals (Fig. 6B), which are similar to ¹⁵ our previous results using pyridine based ILs.¹¹ EDS (Energy-dispersive X-ray spectroscopy) analysis is also used to identify the composition of the electrodeposited film. As shown in Fig. 6C
- that the deposition film is composed of pure Al without sulfur contamination. The ability to electrodeposit aluminum from this ²⁰ IL suggests the new sulfide/AlCl₃ IL indeed can be used for electrodeposition of aluminum.

Fig. 5. Cyclic voltammogram of DPS:AlCl₃ at different molar ratios on a platinum working electrode with aluminum wire as both counter and ²⁵ reference electrode. Start potential: 1.0 V. Scan rate: 100 mV/s.

Fig. 6. Digital image (A) and scanning electron micrograph (B) and ⁵⁰ Energy-dispersive X-ray spectroscopy analysis (C) of electrodeposited

aluminum on copper substrates.

Conclusion

A new kind of IL is obtained by reacting AlCl₃ and ⁵⁵ dipropylsulfide. The asymmetric cleavage of AlCl₃ produces both Al-containing cations and anions, as confirmed by MS measurements. The resulted ILs have low viscosity, low melting point and high ionic conductivity. The new ILs can be successfully used for electrodeposition of aluminum. The ⁶⁰ discovery of alkyl sulfide ligand/AlCl₃ based ILs not only can extend the family of "neutral" ligands based ILs but also can inspire those interested to discover and design novel alkyl or other neutral ligands with desired properties for practical applications in various fields.

65 Acknowledgements

This work was funded by the Strategic Environmental research and Development Program (SERDP) (WP2316).

Notes and references

- ^a Chemical Sciences Division, Oak Ridge National Laboratory, Oak 70 Ridge, TN 37831, USA. E-mail: dais@ornl.gov; sunx@ornl.gov; Fax: +1 865 576 5235; Tel: +1 865 576 7303
 - ^bDepartment of Chemistry, University of Tennessee Knoxville, TN 37916-1600, USA
- V. I. Parvulescu and C. Hardacre, *Chem. Rev.*, 2007, **107**, 2615-2665.
 M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, *Nat. Mater.*, 2009, **8**, 621-629.
- 3. F. Endres, Chemphyschem, 2002, 3, 144-154.
- 4. T. Tsuda and C. L. Hussey, Interface The Electrochem. Soc., 2007, 16, ⁸⁰ 42-49.
- F. van Rantwijk and R. A. Sheldon, *Chem. Rev.*, 2007, **107**, 2757-2785.
 A. P. Abbott, G. Frisch, J. Hartley and K. S. Ryder, *Green Chemistry*, 2011, **13**, 471-481.
- 7. Y. G. Zhao and T. J. VanderNoot, Electrochim. Acta, 1997, 42, 3-13.
- 85 8. Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey and G. R. Stafford, J. Electrochem. Soc., 1997, 144, 936-943.
- 9. H. M. A. Abood, A. P. Abbott, A. D. Ballantyne and K. S. Ryder, *Chem. Commun.*, 2011, **47**, 3523-3525.
- 10. A. Endo, M. Miyake and T. Hirato, *Electrochim. Acta*, 2014, **137**, 470-90 475.
- 11. Y. X. Fang, K. Yoshii, X. G. Jiang, X. G. Sun, T. Tsuda, N. Mehio and S. Dai, *Electrochim. Acta*, 2015, **160**, 82-88.
- 12. X. G. Sun, C. Liao, N. Shao, J. R. Bell, B. K. Guo, H. M. Luo, D. E. Jiang and S. Dai, *J. of Power Sources*, 2013, **237**, 5-12.
- 95 13. M. Ohsaku, H. Murata and Y. Shiro, Spectrochim. Acta A, 1977, 33, 467-472.
 - 14. Y. L. Yang and Y. Kou, Chem. Commun., 2004, DOI: 10.1039/b311615h, 226-227.
- 15. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, *Inorg.* 100 *Chem.*, 1982, **21**, 1263-1264.
 - 16. R. Wibowo, S. E. W. Jones and R. G. Compton, J. Phys. Chem. B, 2009, 113, 12293-12298.
 - 17. K. R. Seddon, J. Chem. Technol. Biotechnol., 1997, 68, 351-356.
- 18. T. A. Zawodzinski and R. A. Osteryoung, *Inorg. Chem.*, 1989, 28, 105 1710-1715.
- 19. A. P. Abbott, R. C. Harris, Y. T. Hsieh, K. S. Rydera and I. W. Sun, *Phys. Chem. Chem. Phys.*, 2014, **16**, 14675-14681.

Graphicial abstract

