ChemComm

Accepted Manuscript

ChemComm

Chemical Commurications

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Chemical origin of the p-type and n-type doping effects in the hybrid methylammonium - lead iodide ($\mathbf{M A P b I}_{3}$) perovskite solar cells

Lyubov A. Frolova, Nadezhda N. Dremova and Pavel A. Troshin*
Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX
DOI: 10.1039/b000000x

Abstract

In the present Communication we discuss a field-induced and photoinduced self-doping chemistry resulting in the formation of the positively and negatively charged vacancies in the MAPbI_{3} perovskite films. These vacancies induce p ${ }_{0}$ type and n-type doping of the perovskite absorber leading to the realization of the p-i-n device operation mechanism.

The hybrid solar cells based on the complex methylammonium or formamidium lead iodides $\left(\mathrm{MAPbI}_{3}\right.$ or FAPbI_{3}, respectively) have shown recently efficiencies 5 exceeding $20 \% .^{1-2}$ At the same time, thin films and crystals of MAPbI_{3} and FAPbI_{3} demonstrated rather outstanding electronic properties such as exciton binding energy as low as $2 \mathrm{meV},{ }^{3}$ electron-hole diffusion lengths exceeding $150 \mu \mathrm{~m}$ and charge carrier mobility $>100 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$. ${ }^{4}$ Perovskite 20 crystals show very low density of trap states $\left(\sim 10^{10}\right.$ per $\left.\mathrm{cm}^{3}\right)$ comparable to the characteristics of the best-quality crystalline silicon. ${ }^{5}$ The internal quantum efficiencies of the optimized perovskite solar cells approach 100% in a wide spectral region thus revealing the efficient charge generation
25 and negligible charge recombination in these devices. ${ }^{3}$
The aforementioned fantastic electronic characteristics of the perovskite semiconductors fall in a strong contradiction with the "dirty" chemistry which is typically used for their preparation. It is rather remarkable that the solar cell
${ }_{30}$ performances do not suffer much from the presence of an excessive amount of organic iodide (MAI or FAI) in the films. Moreover, introducing various inorganic (e.g. HI or $\mathrm{NH}_{4} \mathrm{Cl}$) or organic (1,8-diiodooctane or N-cyclohexyl-2-pyrrolidone) additives or partial replacing MA with larger cations can even
${ }_{35}$ improve the photovoltaic performance of the material. ${ }^{6}$ These examples prove unprecedented tolerance of the hybrid perovskite absorbers to the presence of chemical impurities in the structure of their films which makes a sharp contrast to conventional inorganic (e.g. silicon) and organic (e.g. ${ }_{40}$ fullerene-polymer) photovoltaics. ${ }^{7}$ This is a reason why many researchers are seeking for alternative explanations for the highly efficient operation of the perovskite solar cells. ${ }^{8}$
It has been proposed recently that perovskite solar cells represent p-i-n devices where p-type doping is induced by the
${ }_{45}$ presence of lead and methyl ammonium vacancies $\left(\mathrm{V}_{\mathrm{Pb}}\right.$ and V_{MA}), while n -doping results from the presence of iodide vacancies $\left(\mathrm{V}_{\mathrm{I}}\right)$ as it follows from the theoretical calculations. ${ }^{9}$ It is believed that doping can be achieved in MAPbI_{3} by using
different MAI and PbI_{2} ratios in the precursor solutions. ${ }^{9-1}$ ${ }_{50}$ Xiao et. al. have reported recently that drift of ions in the perovskite films might induce the p - and n - doping of th layers adjacent to the corresponding electrodes resulting in the p-i-n device structure. ${ }^{11}$ A particular important finding was bleaching of the MAPbI_{3} perovskite films in the regi ${ }_{55}$ adjacent to one of the electrodes in the lateral diode-type device under the applied electrical field. ${ }^{11}$ Surprisingly, authors of this report did not comment on the chemical natu of the observed bleaching effect.
In the present work we attempted to reveal the chemistry 60 occurring in the perovskite films under the applied electri field. The top-electrode and bottom-electrode lateral device with the distance between the electrodes of 70-90 $\mu \mathrm{m}$ fillea with MAPbI_{3} active material were fabricated (Fig. 1a-b). Th current-voltage characteristics in dark and under differen,
${ }_{65}$ illumination conditions revealed no significant difference between the bottom-contact and top-contact devices with except for somewhat higher currents delivered by the former It is notable that we did not observe any photovoltaic effect in. these lateral structures before performing any polarizatior 70 experiments (see below). However, a stron photoconductivity was revealed in these systems in line with a recent report of Gottesman et. al. ${ }^{12}$ For example, the curr it flowing under the $37 \mathrm{~mW} / \mathrm{cm}^{2}$ monocromatic green light ($\lambda=532 \mathrm{~nm}$) illumination conditions at the bias of 80 V is $500-$
752000 times higher as compared to the dark current value (Fig $1 \mathrm{c}-\mathrm{f})$.
We reproduced the polarization experiment described by Xiac et. ${ }^{11}$ by applying a potential of 100 V to our lateral devices in dark for 2 hrs. Examination of the perovskite films with th ${ }_{80}$ optical microscopy just after the polarization revealed rathe interesting results. First of all, there was a noticeabl bleaching of the material adjacent to one of the electrode suggesting the formation of PbI_{2}. At the same time, multipl dark-colored islands appeared in the area nearby the countr r 85 electrode. Moreover, the perovskite film between 1 vo electrodes showed strong gradients in color. In particuları, the central part of the film was considerably darker a compared to the regions disposed closer to the electrodes 0^{\prime} the device (Fig. 2a). Notably, this kind of color distributior. 90 disappears in ca. $20-30 \mathrm{~min}$. after the polarization experiment suggesting that the system evolves towards a quasiequilibriur state via diffusion and redistribution of some chemical
species.

Figure 1. A schematic layout of the top contact (a) and bottom contact (b) lateral devices with MAPbI3 films. Current-voltage characteristics of the top contact (c, e) and bottom contact (d, f) devices in linear (c, d) and logarithmic (e, f) scales under the ambient light ($0.35 \mathrm{~mW} / \mathrm{cm}^{2}$) and monochromatic green light ($37 \mathrm{~mW} / \mathrm{cm}^{2}$) before performing any polarization experiments.

The degradation of the MAPbI_{3} films under the applied 10 electric field was also confirmed by the contact-mode AFM measurements performed for the top contact devices. Indeed, the polarization resulted in the formation of cavities in the areas adjacent to both electrodes (Figs. 2b-c). One can notice also different morphology of the materials adjacent to the 15 cathode and to the anode.

The chemical composition of the perovskite films was probed using energy-dispersive X-ray spectroscopy (EDXS) analysis. We note that all samples prior to the measurements were pumped down to a high vacuum (ca. $10^{-8} \mathrm{mbar}$) in a work 20 chamber of a Zeiss LEO Supra scanning electron microscope (GEMINI). The time of vacuuming was sufficiently long (2-6 h), so we were able to examine only a quasiequilibrium composition of the material in the device channel with no chance to probe the initial state induced by polarization which 25 is shown on the optical microphotograph in Fig. 2a. Nevertheless, the EDXS analysis allowed us to reveal noticeable gradients in the composition of the perovskite films while going from one electrode to another. Fig. 2d shows that the area adjacent to anode is considerably enriched in iodine.
${ }_{30}$ The iodine-to-lead ($\mathrm{I}: \mathrm{Pb}$) atomic ratio well exceeds the value of 3.0 which is characteristic for the normal MAPbI_{3} films. The extra iodine could be trapped in the form of triiodide $\left(\mathrm{I}_{3}{ }^{-}\right)$ or $\left[\mathrm{PbI}_{6}\right]^{4-}$ ions known from the literature. ${ }^{13}$ The $\mathrm{I}: \mathrm{Pb}$ ratio gradually decreases while moving away from the anode and
35 then sharply drops down to 2.3 ± 0.2 in the area adjacent to cathode. This observation implies the formation of PbI_{2} as one of the cathode products of the perovskite decomposition. It should be noted that the perovskite film covered by the edges of the gold electrodes has a noticeably different composition 40 in comparison with the neighboring regions in the channel of the lateral device.

Probing the nitrogen-to-lead $(\mathrm{N}: \mathrm{Pb})$ ratio was not that illustrative. Nitrogen is a very light atom, thereforc instrumental error in its determination was quite high. ${ }_{45}$ Nevertheless, the obtained N : Pb profile shows more or less the same trend as revealed for the $\mathrm{I}: \mathrm{Pb}$ ratio (Fig. 2e).

Figure 2. Optical microphotograph of the bottom-contact lateral device comprising MAPbI_{3} perovskite film obtained ca. 5 min after polarization of the perovskite layer nearby the anode (b) and cathode (c). Gradients in the $\mathrm{I}: \mathrm{Pb}(\mathrm{d})$ and $\mathrm{N}: \mathrm{Pb}(\mathrm{e})$ atomic ratios between anode and cathode as revealed by the EDXS analysis. Evolution of the device current $v s$. time during three successive polarization experiments 55 performed in dark (f)

The overall set of the obtained experimental results proves that the perovskite MAPbI_{3} films undergo decomposition under the applied electric field which is accompanied by transfer of some chemical species from one electrode to ${ }_{0}$ another. The anodic oxidation of the I^{-}anions (free or incorporated in the structure of $\mathrm{PbI}_{3}{ }^{-}$) seems to liberate molecular iodine which can be trapped in the form of triodide $\left(\mathrm{I}_{3}{ }^{-}\right)$or partially evolve from the films. At the same time, the cathode reaction might result in the reduction of the hydrogen ${ }_{65}$ ions (individual or incorporated in MA^{+}) to molecular hydrogen. Thus, the revealed decomposition actually represents electrolysis of the MAPbI_{3} perovskite films producing $\mathrm{I}_{2}, \mathrm{H}_{2}, \mathrm{CH}_{3} \mathrm{NH}_{2}$ and PbI_{2} (Scheme 1).

$$
\begin{aligned}
& \xrightarrow[\text { Onode process: }]{\substack{\text { Overall reaction: } \\
2\left(\mathrm{PbI}_{2}\right) * \mathrm{I}^{-} \\
\text {Cathode process: }}} 2 \mathrm{PbI}_{2}+\mathrm{I}_{2}+2 \mathrm{e}^{-} \text {(1) } \\
& \begin{array}{c}
\text { (1) }\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) * \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow
\end{array} 2 \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2}(2) \\
& 2 \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{PbI}_{3} \xrightarrow{\text { electrolysis }} \mathrm{I}_{2}+\mathrm{H}_{2}+2 \mathrm{PbI}_{2}+2 \mathrm{CH}_{3} \mathrm{NH}_{2}
\end{aligned}
$$

${ }_{70}$ Scheme 1. Decomposition of the MAPbI_{3} under applied electric field

The obtained results prove clearly that MAPbI_{3} perovskite represents an electrochemically active system with the mobile hydrogen (methylammonium) cations and iodine anions. The halogen ion conductivity of the inorganic perovskite-type 5 complex led halides was reported at the beginning of 1980s. ${ }^{14}$ More recently Yang et. al. have reported the observation of a strong iodine ion conductivity in the MAPbI_{3} perovskite. ${ }^{15}$ Surprisingly, motion of hydrogen ions in the hybrid MAPbI_{3} and FAPbI_{3} perovskites was not really considered by now.
${ }_{10}$ In general, the role of the organic cations in hybrid perovskites is significantly underestimated. It is known that inorganic CsPbI_{3} perovskite also forming a quasicubic structure does not work well in solar cells. ${ }^{16}$ A gradual replacement of the organic cation $\left(\mathrm{MA}^{+}\right.$or $\left.\mathrm{FA}^{+}\right)$with Cs^{+}in
15 the APbI_{3} perovskite films results in a rapid deterioration of the solar cell performances when the cesium content goes above 20%. ${ }^{17}$ These observations suggest that alkali metal cations (e.g. Cs^{+}) cannot play the same role as organic ammonium ions and support efficient operation of the
20 perovskite absorbers in solar cells. On the other hand, it might be assumed that the presence of bare protons (not bonded to the amine molecules) in the perovskite lattice has a positive influence on the photovoltaic performance of the materials. Thus, it was noticed that introduction of HI and moisture to
25 the $\mathrm{FAI} / \mathrm{PbI}_{2}$ precursor solution enhances the photovoltaic efficiency of the resulting films, though this effect is attributed to the improved film morphology. ${ }^{6}$ More recently, FAI was mixed directly with HPbI_{3} to produce the perovskite films demonstrating enhanced photovoltaic performances. ${ }^{18}$ It
30 is very likely that in both reported cases mobile H^{+}ions replaced a part of the bulky FA^{+}cations in the perovskite structure thus improving significantly proton conductivity of the system. We note that this assumption has no direct evidences at the moment and should be verified in the future.
${ }_{35}$ Rather remarkable results were obtained while monitoring the evolution of the current flowing through the channel of the lateral device over time during the polarization experiment (Fig. 2f). One can see that the current starts to increase significantly immediately after applying the bias voltage and
40 reaches the maximum within $7-10 \mathrm{~min}$. The maximal current is $10-20$ times higher compared to the initial value. The revealed effect was reproducible for all investigated topcontact and bottom-contact devices with except for some variation in the time when the maximal current is achieved
45 (between 5 and 25 min). The observed remarkable increase in the current at the constant bias voltage is very uncommon for inorganic and organic semiconductor materials and reflects specific behavior of the MAPbI_{3} perovskite films. We believe that partial oxidation of the I^{-}to I^{0} results in the formation of
50 the positively charged iodide ion vacancies V_{I}, and local n doping of the material. At the same time, partial reduction of H^{+}to H^{0} leads to the formation of the negatively charged proton vacancies V_{H}, (p-doped region). Thus, generation of vacancies under the applied electric field improves
${ }_{55}$ significantly the charge transport characteristics of the material and also explains increase in the current at the beginning of the polarization experiment. This conclusion is also in line with the fact that the efficiency of the perovskite
solar cells can be often improved if they are polarized under ${ }_{60}$ constant bias voltage for some time prior the I ${ }^{\text {r }}$ measurement. ${ }^{19}$ However, continuous polarization results in a massive degradation of the material according to Scheme which suppresses charge transport and leads to decrease in the current observed at long polarization times ($>30 \mathrm{~min}$). ine ${ }_{65}$ electrochemical degradation of the perovskite films is almos irreversible. Repeating the polarization experiment with the same device several times leads to a gradual decrease in th current flowing through the channel between two electrodes Nevertheless, a general behavior of the system remains th ${ }_{70}$ same (Fig. 2f).
It is also important to consider a possibility of the photoinduced generation of the positively and negatively charge vacancies in the perovskite films. It was shown lon time ago that PbI_{2} crystals intercalated with amines undergo
75 facile photolysis under relatively mild illuminatior conditions. ${ }^{20}$ The investigated $\mathrm{PbI}_{2}+\mathrm{RNH}_{2}$ systems have rathe strong similarity to the MAPbI_{3} perovskites in terms of thchemical composition and structure. The observed photolysis effect was explained by the photoinduced electron trans
${ }_{80}$ from I^{-}to Pb^{2+} resulting in the Pb^{+}and I^{0} (eq. 4 in Scheme 2). ${ }^{20}$ This reaction is not very surprising since the I^{+} / I^{0} photo(electro)chemistry has been well explored and utilized it the first-generation dye sensitized solar cells. ${ }^{21}$

$$
\begin{align*}
& \mathrm{Pb}^{2+}+\mathrm{I}^{-} \xrightarrow{\mathrm{h} \nu} \mathrm{~Pb}^{+}+\mathrm{I}^{0} \tag{4}\\
& \mathrm{~Pb}^{+}+\mathrm{H}^{+} \longrightarrow \mathrm{Pb}^{2+}+\mathrm{H}^{0} \tag{5}
\end{align*}
$$

(6)

85
Scheme 2. Photodecomposition of MAPbI_{3}
The unstable monovalent Pb^{+}ions might be converted back t r Pb^{2+} to expense of the H^{+}undergoing reduction to H^{0} (eq. 5). This process seems to be favorable as it follows from th comparison of the standard potentials of the $\mathrm{Pb}^{2+} / \mathrm{Pb}^{0}(-0.13 \mathrm{~J}$
90 vs. SHE $)$ and $\mathrm{H}^{+} / \mathrm{H}^{0} \quad(0 \mathrm{~V}$ vs. SHE $)$ couples in solution. However, one should keep in mind that environment of $\mathrm{Pb}^{+}\left(\mathrm{Pb}^{2+}\right)$ and H^{+}ions (e.g. their thermodynamic activities) in the perovskite crystals can alter significantly thermodynamics of these processes.
${ }_{95}$ The overall chemical scheme of the photolysis process (eq. in Scheme 2) is identical to the chemistry of the electrolysi process (eq. 3 in Scheme 1). Both schemes actually reflect electrochemical or photochemical splitting of the H integrated in the perovskite structure to molecular hydroge 100 and iodine. It is known that this process does not require muci. energy and, therefore, most likely can occur under th specified conditions. The proposed photolysis scheme is supported by the formation of PbI_{2} as one of the products -f the MAPbI_{3} photodecomposition under a concentra ed 105 sunlight (100 suns). ${ }^{22}$

A strong support of the presented here concept of th photochemical self-doping of the perovskite films has beer reported recently by Gottesman et. al. ${ }^{12}$ It was observed tha. lateral bottom-contact devices with the MAPbI_{3} active layer 110 demonstrate very slow rise in the current flowing between th electrodes within 1-2 min after switching the light. Authors
attributed the observed "slow photoconductivity" effect to some structural changes occurring in the perovskite films under illumination. We strongly believe that this effect is related to the photochemical self-doping. In order to verify this hypothesis, we reproduced experiment of Gottesman et. al. ${ }^{12}$ We applied the light of the violet diode laser (ca. 12 mW , $\lambda=405 \mathrm{~nm}$) to the gap between the electrodes of the lateral device biased at 100 V and monitored the changes in the current. The device current showed a steep rise after switching 10 on the light and then slow increase up to the maximum which is approached in ca. 20-30 seconds (Fig. S1). Afterwards, the current gradually decreased suggesting some degradation of the material. Further decrease in the current was observed while reproducing this experiment several times with the same ${ }_{15}$ device. The revealed trends resembled quite closely the device behavior during the polarization experiment (Fig. 2f).
Thus, the illumination of the perovskite films strongly facilitates the formation of the negatively charged hydrogen vacancies $\left(\mathrm{V}_{\mathrm{H}}\right)$ and positively charged iodine vacancies $\left(\mathrm{V}_{\mathrm{r}}\right)$
${ }_{20}$ leading to the p -type and n -type doping of the material, respectively. Migration of these vacancies in the electric field seems to be responsible for the appearance of the hysteresis in the current-voltage characteristics of the perovskite solar cells and also explains "giant switchable photovoltaic effect" ${ }_{25}$ reported by Xiao et. al. ${ }^{11}$ The photoinduced self-doping is corroborated by a strong photoconductivity of the MAPbI_{3} films ${ }^{12}$ and anomalous increase in their dielectric constant under illumination. ${ }^{23}$
In conclusion, we have shown that the MAPbI_{3} perovskite ${ }_{30}$ should be considered as photochemically and electrochemically active dual-channel ion conductor rather than high-purity intrinsic semiconductor with low concentration of defects and ideal electronic characteristics. The proposed here self-doping chemistry explains why the ${ }_{35}$ perovskite solar cells behave as p-i-n devices and undergo reversible polarization in the applied electric field. It also agrees well with the electrophysical model proposed for the perovskite solar cells recently. ${ }^{24}$
It is also rather remarkable that the distribution of the defects 40 in the perovskites in combination with their perfect 3D morphology with the interpenetrating networks of the holeconducting (internal network of the organic cations) and the electron conducting ($\mathrm{Pb}-\mathrm{I}$ cage) channels makes the perovskite solar cells very similar to the ideal bulk heterojunction 45 architectures pursued by researchers for two decades previously. Further exploration of these exciting materials might result in the development of a new generation of highly efficient and sufficiently stable devices for solar energy conversion.
${ }_{50}$ This work was supported by the Russian Science Foundation (grant No. 14-13-01031). We gratefully thank Prof. A. F. Shestakov (IPCP RAS) for an exceptionally valuable and helpful discussion of this work prior its submission.

Notes and references

$55{ }^{a}$ IPCP RAS, Semenov Prospect 1, Chernogolovka, 141432, Russia. Fax: +7496515-5420;Tel: +7 496522 1418; E-mail: troshin2003@inbox.ru
\dagger Electronic Supplementary Information (ESI) available: Experimental procedures and Fig. S1 with the results of the photoconductivity measurements. See DOI: 10.1039/b000000x/
1 N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Nature, 2015, 517, 476-480.
2 M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop. Prog. Photovolt.: Res. Appl., 2015, 23, 1-9.
3 Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn and P. Meredith, Nat. Photon., 2014, 9, 106-112; K. T. Butler, J. M. Frost and A. Walsh, Mater. Horiz., 2015, 2, 228-231
4 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science, 2015, 347, 967-970.
5 D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent and O. M. Bakr, Science, 2015, 347, 519-522.
6 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982; Y. Chen, Y. Zhao and Z. Liang, Chem. Mater., 2015, 27, 1448-1451; Y.-J. Jeon, S. Lee, R. Kang, J.-E. Kim, J.-S. Yeo, S.-H. Lee, S.-S. Kim, J.-M. Yun and D.-Y. Kim, Sci. Rep., 2014, 4, 6953; H.-L. Hsu, C.-C. Chang, C.P. Chen, B.-H. Jiang, R.-J. Jeng and C.-H. Cheng, J. Mater. Chem. A, 2015, 3, 9271-9277; P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuc S. T. Williams, X.-K. Xin, J. Lin and A. K.-Y. Jen, Adv. Mater., 2014, 26, 3748-3754.
7 D. K. Susarova, N. P. Piven, A. V. Akkuratov, L. F. Frolova, M. S. Polinskaya, S. A. Ponomarenko, S. D. Babenko, P. A. Troshin, Chem. Comm., 2015, 51, 2239-2241
8 J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, Nano Lett., 2014, 14, 2584-2590; K. T. Butler, J. M. Frost and A. Walsh, Energy Environ. Sci., 2015, 8, 838-848; A. Walsh, J. Phys. Chem. C, 2015, 119, 5755-5760.
9 W.-J. Yin, T. Shi and Y. Yan, Appl. Phys. Lett., 2014, 104, 063903; J. Kim, S.-H. Lee, J. H. Lee and K.-H. Hong, J. Phys. Chem. Lett., 2014, 5, 1312-1317; Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao and J. Huang, Appl. Phys. Lett., 2014, 105, 163508.
10 A. Walsh, D. O. Scanlon, S. Chen, X. G. Gong and S.-H. Wei, Angew. Chem. Int. Ed, 2015, 54, 1791-1794.
11 Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman and J. Huang, Nat. Mater., 2014, 14, 193-198.
12 R. Gottesman, E. Haltzi, L. Gouda, S. Tirosh, Y. Bouhadana, A. Zaban, E. Mosconi and F. De Angelis, J. Phys. Chem. Lett., 2014, 5, 2662-2669.
13 B. R. Vincent, K. N. Robertson, T. S. Cameron and O. Knop, Canad. J. Chem. 1987, 65, 1042-1046.

14 J. Mizusaki, K. Arai and K. Fueki, Sol. State Ionics, 1983, 11, 203 211.

15 T.-Y. Yang, G. Gregori, N. Pellet, M. Grätzel and J. Maier, Angew. Chem. Int. Ed., 2015, DOI: 10.1002/anie. 201500014
16 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nano Lett., 2015, 150414154048008.
17 H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim and J. Y. Kim, Nano Energy, 2014, 7, 80-85.
18 F. Wang, H. Yu, H. Xu and N. Zhao, Adv. Funct. Mater., 2015, 25, 1120-1126.
19 S. Ryu, J. Seo, S. S. Shin, Y. C. Kim, N. J. Jeon, J. H. Noh and S. I. Seok, J. Mater. Chem. A, 2015, 3, 3271-3275; S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas and H. J. Snaith, Nano Lett. 2014, 14, 5561-5568.
20 G. I. Gurina, V. D. Evtushenko, A. Y. Kobyakov and V. M. Koshkin, Theor. Exp. Chem., 1986, 21, 718-719.
21 G. Boschloo and A. Hagfeldt, Acc. Chem. Res., 2009, 42, 1819-1826.
22 R. K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar and E. A. Katz, J. Phys. Chem. Lett., 2015, 6, 326-330.
23 E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero and J. Bisquert, J. Phys. Chem. Lett., 2014, 5, 2390-2394.
24 K. Miyano, M. Yanagida, N. Tripathi and Y. Shirai, Appl. Phys. Lett., 2015, 106, 093903.

