ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

ROYAL SOCIETY OF CHEMIS...

Journal Name

COMMUNICATION

Asymmetric cyclopropanation of conjugated cyanosulfones using a novel cupreine organocatalyst : Rapid access to δ^3 -amino acids

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Lewis S. Aitken, Lisa E. Hammond, Rajkumar Sundaram, Kenneth Shankland, Geoffrey D. Brown and Alexander J. A. Cobb*

www.rsc.org/

An organocatalytic asymmetric synthesis of a novel, highly functionalised cyclopropane system furnished with versatile substituents and containing a quaternary centre is described. The process utilises a new bifunctional catalyst based on the cinchona alkaloid framework and the products made using this catalyst were obtained as single diastereoisomers, with very high enantioselectivities (up to 96% ee). We have also demonstrated that these resulting cyclopropanes are very useful synthetic intermediates to interesting products, such as the difficult to access δ^3 -amino acids.

The cyclopropane moiety is an important and common motif in a number of biologically active compounds and natural products. 1 It is also of synthetic use, especially if functionalised with the correct arrangement of electron-donating and electron-withdrawing groups, as it can then undergo a variety of nucleophilic, electrophilic or pericyclic reactions.² If the cyclopropane is asymmetric in nature, then the products of these transformations also tend to be enantiopure. As a result, routes to enantiopure cyclopropanes have been extensively studied,³ particularly with respect to the Simmons-Smith reaction, 4 and transition metal catalysed reactions using carbene intermediates.⁵ Organocatalysis has also demonstrated its utility in their synthesis. Aggarwal, Gaunt, and MacMillan have all utilized ylides to achieve this, whilst the Michael-initiated ring closure (MIRC) has also proven to be a powerful method of choice.9 In spite of this, MIRCs are dominated by compounds containing the nitro-group functionality, thus limiting substrate scope. 10 Therefore, in order to increase the diversity of this class of reaction, we sought to use the versatile conjugated cyanosulfone 1 shown in Scheme 1 instead. Previously our group has demonstrated this substrate to be a useful Michael acceptor in an organocatalytic domino process, 11 and so we wished to examine its utility in the MIRC cyclopropanation with

Scheme 1 Concept – organocatalytic synthesis of a versatile cyclopropane

bromomethylmalonate **2**. We felt that the resulting nove cyclopropane product **3**, which is highly functionalised and contain a quaternary stereogenic centre, could undergo a variety of transformations to give useful products.

With this in mind, a test reaction was devised that utilised a variety of solvents and bifunctional catalysts (Table 1 for summar Supporting Information for full investigation), mostly based around the framework of the cinchona alkaloids, which are well-known for their ability to activate electrophiles and pronucleophiles simultaneously.¹² Unfortunately, the most well-established bifunctional organocatalyst type - the thiourea-derived systems failed to catalyse the reaction under our screening condition. However, the quinine-derived organocatalyst cupreine I was able to impart some enantioselectivity, though both this and the yield were low (Entry 1). Encouragingly however, total diastereocontrol wa observed in all cases. In an attempt to improve bot enantioselectivity and yield, it was hypothesised that adding greater bulk to the secondary alcohol of the catalyst might improve the selectivity of the reaction. A number of cupreine-derive organocatalysts were therefore synthesised and screened (selected) examples given, see supporting information for full study). In spite of the low yields obtained once again from this screen, we we's encouraged to find that the acylated cupreine systems did indeed improve the stereoselectivity markedly (interestingly, hydrocupreine derivatives performed better in terms enantioselectivity than the cupreine derivatives), and that novel catalyst system VII performed best in this respect (Entry 11).

School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berks RG6 6AD UK. Email: a.j.a.cobb@reading.ac.uk

[†] Footnotes relating to the title and/or authors should appear here. Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION Journal Name

Table 1 Optimisation screen for the asymmetric cyclopropanation (abridged)

Entry	Cat	Solvent	Yield,	dr ^b	er ^c
			%		
1	I	CH ₂ Cl ₂	10	>19:1	68:32
2	I	THF	18	>19:1	59:41
3	ı	CHCl ₃	7	>19:1	62:38
4	ı	PhMe	Trace	nd	nd
5	ı	ⁱ PrOH	Trace	nd	nd
6	II	CH ₂ Cl ₂	12	>19:1	50:50
7	Ш	CH ₂ Cl ₂	21	>19:1	54.5:45.5
8	IV	CH ₂ Cl ₂	17	>19:1	79.5:20.5
9	V	CH ₂ Cl ₂	17	>19:1	85:15
10	VI	CH ₂ Cl ₂	11	>19:1	83.5:16.5
11	VII	CH ₂ Cl ₂	12	>19:1	86:14
12	VIII	CH ₂ Cl ₂	31	>19:1	50:50
13	IX	CH ₂ Cl ₂	8	>19:1	50:50
14	Х	CH ₂ Cl ₂	12	>19:1	50:50

^a Reaction conditions: room temperature, 120h. ^bDetermined by ¹H-NMR. ^cDetermined by chiral HPLC using a Chiralpak AD-H stationary phase.

 $\textbf{Table 2} \ \textbf{Further optimisation study for the asymmetric cyclopropanation (abridged)}^{\sigma}$

O O CN	+ MeO B	O _{OMe} -		MeO ₂ C CO ₂ Me O ₂ S Ph CN 3a
Entry	Base ^b	Eq	Yield, %	Er
1	Na ₂ CO ₃	1	92	85:15
2	Cs ₂ CO ₃	1	86	53.5:46.5
3	K ₂ CO ₃	0.5	88	86:14
4	K ₂ CO ₃	1	90	85:15
5	K ₂ CO ₃	2	92	84.5:15.5
6	K ₂ CO ₃	4	90	83.5:16.5
7 ^c	K ₂ CO ₃	1	92	88:12

 a In all cases only one diastereoisomer was observed by 1 H NMR b All bases presented in this table were dried in a vacuum oven before use. c Reaction performed at -10 o C for 96h.

As with other studies using cupreine, it appears that the quinoline alcohol is critical to the enantioselectivity of the reaction, as if this is methylated, no selectivity occurs — although there is still

comparable turnover (Entries 12-14). 13 Clearly, however, the year of the reaction required improvement, and so we endeavoured 1 achieve this by addition of base which is purported to enhance th reaction by neutralising the liberated HBr. 14 Owing to its marginal better selectivity profile, we screened a number of bases again. organocatalyst VII, and pleasingly found that the yield improved significantly (Table 2), as did the rate of reaction. Impressively, v also found that the enantioselectivity was generally much better and that oven-dried potassium carbonate gave the best results n terms of this. These dry conditions are in contrast with a related study where water was shown to enhance the reaction. ¹⁴ Our final optimisation looked at the effect of catalyst loading and temperature, where ultimately, a loading of 10 mol% at the reduced temperature of -10°C for 96 h in dichloromethane wa deemed to be the best conditions for this cyclopropanatic reaction (Entry 7 - see supporting information for full study). effective protocol for the enantioselec cyclopropanation in hand, we examined the generality and scope or the methodology. A variety of conjugated cyanosulfones v studied which varied in the electronics of the aryl group (Table 3). In most cases the initial enantioselectivity was good. More pleasing however was the fact that the majority of these could to significantly improved through a single recrystallization. In all cases the diastereoselectivity was excellent and the yields were also excellent. The absolute crystal structure of 3c was determined by Yray crystallography (Figure 1) and the other products assigned by analogy.

Figure 1 X-ray crystal structure of 3c, showing the absolute configuration. CCDC no: 1403683, http://www.ccdc.cam.ac.uk.

We speculate that as with all bifunctional organocatalytic systems the reaction proceeds *via* simultaneous activation of the pronucleophile (bromomalonate) and the electrophilic cyanosulfone through co-ordination to the cupreine derived catalyst. We tentatively propose that the transition state shows. Figure 2 could account for this activation mode and the resulting stereochemistry. We also believe that the exceptionally high diastereoselectivity is due to the intermediate anion probably being long-lived enough to equilibrate to the thermodynamically more stable conformation, whereby the sulfone and the aryl group ado, to positions that avoid unfavourable gauche interaction.

This journal is © The Royal Society of Chemistry .

Journal Name COMMUNICATION

Table 1 Optimisation screen for the asymmetric cyclopropanation 1 eq K₂CO₃ 10 °C, CH₂Cl₂ 120 h Yield%,^b er, Product^a Entry (er after single recrystallisation) 1 $CO_{\circ}Me$ MeO₂C .CO₂Me MeO₂C MeO₂C CO₂Me PhO₂S PhO₂S¹ 3с 3b >99%, 91:9 (98:2) 92%, 88:12 (90:10) >99%, 91:9 (96:4) MeO₂C MeO₂C MeO₂C PhO₂S PhO₂S 3f 3e 3d 73% 80:20 (80:20) 96%, 90:10 94%, 89:11 (91.5:8.5)(94.5:5.5)MeO₂C .CO₂Me MeO₂C MeO₂C PhO₂S 3h 3i^d 88%, 79:21 3g 94%, 80:20 (88:12)91%, 80.5:19.5 (95:5)

 a Only one diastereoisomer observed in 1H NMR. b Isolated yield. c Determined by HPLC using a Chiralpak AD-H or Chiralcel OD stationary phase. d Did not recrystallize.

Finally, in order to demonstrate the utility of these compounds, we subjected them to a variety of transformative conditions. To begin with, we attempted a straightforward desulfonylation using refluxing magnesium in methanol to obtain the δ^3 -amino acid precursor $\bf 6$ with no depreciation of enantiomeric ratio. We propose that this occurs via a radical desulfonylation, generating cyclopropane radical $\bf 4$ which rapidly ring opens to the radical anion $\bf 5$. Protonation, followed by addition of a further electron to the malonate radical and protonation gives the δ^3 -amino acid precursor $\bf 6$. Hydrolysis/decarboxylation and reduction of the nitrile then gives the corresponding δ^3 -amino acid (Scheme 2).

This is an intriguing result, as reports on the synthesis of enantiopure δ -amino acids appear to be extremely rare in the literature. Our methodology represents a rapid new way of accessing this particular class, being just *five* linear steps.¹⁷

Finally, we also achieved the synthesis of the intriguing 3-azabicyclo[3.1.0]hexane system $\bf 8$ through the borane mediated reduction of the nitrile, leading to concomitant cyclisation of the resulting amine onto the syn-ester followed by $in\ situ$ reduction of the γ -lactam to the fused pyrrolidine

Figure 2 Proposed transition state and rationale for observed diastereoselectivity.

system (Scheme 3). This fascinating ring system appears in wide variety of natural products and medicinally usef compounds, such as the antibiotic indolizomycine **9**, and cycloclavine **10**, an ergot alkaloid.

Scheme 2 Proposed magnesium-initiated ring-opening to form a $\delta^{3}\text{-amino}$ acid precursor

COMMUNICATION Journal Name

Conclusions

We have developed the enantioselective synthesis of a highly functionalised cyclopropane which can be transformed into several useful substrates. In particular, magnesium initiated radical desulfonylation-ring opening leads to the corresponding δ^3 -amino acid, and thus this route represents an extremely expedient way of accessing this class of molecule. In addition we have utilised the cyclopropane constructs to access a novel 3-azabicyclo[3.1.0]hexane system.

A.J.A.C. thanks GW Pharmaceuticals for funding (to L.S.A.), the Chemical Analysis Facility at the University of Reading, Dextra Laboratories for the use of high-pressure hydrogenation equipment, and the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Notes and references

- 1 For a review on the occurrences of cyclopropanes in nature and recent syntheses see D. Y.-K. Chen, R. H. Pouwer and J.-A. Richard, Chem Soc. Rev., 2012, 41, 4631.
- M. A. Cavitt, L. H. Phun and S. France, Chem. Soc. Rev., 2014, 43, 804
- 3 (a) H. Pellissier Tetrahedron 2008, 64, 7041; (b) G. Bartoli, G. Bencivenni and R. Dalpozzo, Synthesis 2014, 46, 979; (c) H. Lebel, J.-F. Marcoux, C. Molinaro and A. B. Charette, Chem. Rev. 2003, 103, 977; (d) A. B. Charette and J.-F. Marcoux, Synlett 1995, 1197.
- 4 (a) H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1958, 80, 5323; (b) H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1959, 81, 4256; For catalytic asymmetric variations see (c) H. Takahashi, M. Yoshioka, M. Ohno and S. Kobayashi, Tetrahedron Lett. 1992, 33, 2575; (d) H. Shitama and T. Katsuki, Angew. Chem. Int. Ed., 2008, 47, 2450; (e) H. Du, J. Long and Y. Shi, Org. Lett. 2006, 8, 2827; (f) J. Long, Y. Yuan and Y. Shi, J. Am. Chem. Soc. 2003, 125, 13632; (g) J. Long, H. Du, K. Li and Y. Shi, Tetrahedron Lett. 2005, 46, 2737; (h) H. Y. Kim, A. E. Lurain, P. García- García, P. J. Carroll and P. J. Walsh, J. Am. Chem. Soc. 2005, 127, 13138; (i) R. G. Cornwall, O. A. Wong, H. Du, T. A. Ramirez and Y. Shi, Org. Biomol. Chem., 2012, 10, 5498.
- 5 For recent discussion on this extensive area of catalysis, see (a) A.F. Trindade, J. A. S. Coelho, C. A. M. Afonso, L. F. Veiros

- and P. M. P. Gois, *ACS Catal.*, 2012, **2**, 370; (b) M. P. Doyle, . Duffy, M. Ratnikov and L. Zhou, *Chem. Rev.*, 2010, **110**, 704; (c) H. M. L. Davies and J. R. Denton, *Chem. Soc. Rev.*, 2009, **38**, 3061 and references therein.
- 6 V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara, G. Hynd and M. Porcelloni, *Angew. Chem., Int. Ed.* 2001, **40**, 1433.
- 7 (a) C. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt, *Angew. Chem., Int. Ed.* 2004, **43**, 4641; (b) C. C. C. Johansson, N. Bremeyer, S. V. Ley, D. R. Owen, S. C. Smith and M. J. Gaunt, *Angew. Chem., Int. Ed.* 2006, **45**, 6024.
- 8 (a) R. K. Kunz and D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 127, 3240; For similar work see (b) A. Hartikka and P. I Arvidsson, J. Org. Chem. 2007, 72, 5874; (c) A. Hartikka, A. T. Slosarczyka and P. I. Arvidsson, Tetrahedron: Asymmetry 2007, 18, 1403.
- 9 See reference 3 and the appropriate section of C. M. R. Volla, I. Atodiresei and M. Rueping, Chem. Rev. 2013, 114, 2390 for detailed review.
- 10 (a) A. J. A. Cobb, in Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes; R Mahrwald, Ed.; Springer: Dordrecht, 2011. (b) L. S. Aitken, R. Arezki, A. Dell'Isola and A. J. A. Cobb, Synthesis 2013, 45 2627.
- 11 (a) S. Rajkumar, K. Shankland, J. M. Goodman and A. J. A. Cobb, *Org. Lett.* 2013, **15**, 1386. For a related process, see (b) S. Meninno, G. Groce and A. Lattanzi, *Org. Lett.* 2013, **15**, 3436.
- 12 For minireviews, see: (a) M. Kotke and P. R. Schreiner, Hydrogen Bonding in Organic Synthesis; P. Pihko, Ed.; Wiley VCH, 2009, pp. 141 351; (b) H. Miyabe and Y. Takemoto, Bull. Chem. Soc. Jpn. 2008, 81, 785-795; (c) S. J. Connon, Chem. Commun. 2008, 22, 2499; (d) T. Marcelli, J. H. van Maarseveen and H. Hiemstra, Angew. Chem. Int. Ed. 2006, 45, 7496; Other work by us in this area includes: (e) W. J. Nodes, D. R. Nutt, A. M. Chippindale and A. J. A. Cobb, J. Am Chem. Soc. 2009, 131, 16016; (f) S. Rajkumar, K. Shankland, G. D. Brown and A. J. A. Cobb, Chem. Sci. 2012, 3, 584.
- 13 The C6-OH of cupreine has been shown to be very importan in other reactions for obtaining high selectivities. See: (a) H. Li, Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc. 2004, 12 (9906; (b) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman and L. Deng, Angew. Chem., Int. Ed. 2005, 44, 105; (c) X. Liu, H. Li and L. Deng, Org. Lett. 2005, 7, 167; (d) H. Song, X. Liu and L. Deng, J. Am. Chem. Soc. 2005, 127, 8948; (d) R. Dodda, J. J. Goldman, T. Mandal, C.-G. Zhao, G. A. Broker and E. R. T. Tiekink, Adv. Synth. Catal., 2008, 350, 537; (e) P. Chauhan and S. S. Chimni, Tetrahedron Lett. 2013, 54, 4613; (f) P. Chauhan and S. S. Chimni, RSC Advances, 2012, 7, 737.
- 14 U. Das, Y.-L. Tsai and W. Lin, Org. Biomol. Chem. 2013, 11, 44
- 15 G. H. Lee, I. K. Youn, E. B. Choi, H. K. Lee, G. H. Yon, H. C. Yang and C. S. Pak, *Curr. Org. Chem.* 2004, **8**, 1263.
- 16 The only previous report of this compound is in European Pat., EP1512678 A1, 2005, which obtained it in a 60% ee.
- 17 For other (longer) syntheses, see (a) R. Karla, B. Ebert, C. Thorkildsen, C. Herdeis, T. N. Johansen, B. Nielsen and P. Krogsgaard-Larsen, *J. Med. Chem.* 1999, **42**, 2053. (b) Z.-T He, Y.-B. Wei, H.-J. Yu, C.-Y. Sun, C.-G. Feng, P. Tian and G.-Lin. (c) M. I. Attia, C. Herdeis and H. Bräuner-Osborne, *Molecules* 2013, **18**, 10266 (non-chiral).