ChemComm

Accepted Manuscript

ChemComm

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Lanthanide luminescent logic gate mimics in soft matter: $\left[\mathrm{H}^{+}\right]$ and $\left[\mathrm{F}^{-}\right]$dual-input device in a polymer gel with potential for selective component release

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Samuel J. Bradberry*a ${ }^{\text {a }}$, Joseph P. Byrne ${ }^{\text {a }}$, Colin P. McCoy ${ }^{\text {b }}$ and Thorfinnur Gunnlaugsson*a ${ }^{\text {a }}$

systems immobilised upon metal and mineral surfaces vi~ various self-assembly techniques; inclusion within hybıumaterials has been demonstrated effectively by Binnemans. ${ }^{11}$ Polymeric and soft materials also have promise, with increas.w, versatility of sensitive ionogel materials. ${ }^{12}$ We are interested i using polymer cross-linked hydrogel materials as intrins; chemical devices. ${ }^{13}$ Thus herein, we report the design an ${ }^{1}$ construction of a logic system with inputs of $\left[\mathrm{H}^{+}\right]$and ${ }^{[5]}$ through combination of two responsive emissive complexes of ${ }^{f}$ $\mathrm{Eu}(\mathrm{III})$ and Tb (III) with red and green emission, respectively.

Ligands that sensitise $\mathrm{Eu}(\mathrm{III})$ and Tb (III) emission were derived from scaffolds of dipicolinic acid (dpa), 1, and btp ${ }^{14}$, respectively. The self-assembly of mono-nuclear complexes ol ligands of these types have been studied previously in o r laboratory. ${ }^{15}$ Both ligands, shown in Figure 1, were synthesised through optimised procedures in short, facile syntheses (Figu ${ }^{2}$ S1-4). Ligands 1 and 2 were then coordinated with $\mathrm{Eu}(\mathrm{OTf})_{3}$ and $\mathrm{Tb}(\mathrm{OTf})_{3}$, respectively, to produce complexes Eu. $\mathbf{1}_{3}$ ar $^{-}$ Tb. 2_{3} that were emissive under excitation at $\lambda_{\text {ex }}=291 \mathrm{~m}$. These complexes were obtained by reaction of respective ligands and $\mathrm{Ln}(\mathrm{III})$ triflates in $3: 1$ ratio in $\mathrm{CH}_{3} \mathrm{OH}$ under microwave-assisted heating. The resultant complexes we ? directly precipitated from diethyl ether and characterised is having $1: 3$ stoichiometry from emission lifetimes. ${ }^{16}$

The photophysical properties have been well characteris 1 for 1, $\mathbf{2}$ and their respective 1:3 complexes (Figure S5-7). UV-Vis, fluorescence and time-gated emission properties th. . complexes, Eu. $\mathbf{1}_{3}$ and $\mathbf{T b} . \mathbf{2}_{3}$, were responsive to simp' analytes and distinguishable by their spectral features whe

Figure 1: Structures of ligand $\mathbf{1}$ and $\mathbf{2}$ and complexes with Eu. $\mathbf{1}_{\mathbf{3}}$ and Tb. $\mathbf{2}_{\mathbf{3}}$. Ins t : the emission arrising from solid complexes irradiated under $\lambda=254 \mathrm{~nm}$.
analysed in parallel. These features showed responsive switching that, at mM detection limits, could be digitised to mimic the logic inputs " 0 " and " 1 " of Boolean logic and algebra. The visible nature of all these emissions allowed observation of "OFF" and "ON" to the naked-eye producing unique colours for all four output states of this two-input system. Complex Eu.1 3, showed fluorescence at 385 nm and characteristic $\mathrm{Eu}(\mathrm{III})$ phosphorescence that modulated with $\left[\mathrm{H}^{+}\right]$giving significant enhancement of $\mathrm{Eu}(\mathrm{III})$-centred emission upon protonation (vide infra). This was due to reduction in photoinduced electron transfer (PET) quenching of the ligand excited states by the pendent amine, which is in competition with the energy transfer to Eu (III).

The btp motif has been previously explored in anion binding. ${ }^{17}$ Our investigations of $\mathbf{T b} . \mathbf{2}_{3}$ with various anions showed unique emission and absorbance responses for interactions with F^{-}compared to the other halides (Figure S 8 16). The emission responses with F^{-}were suitable to provide dual output channels. Here, the UV-Vis absorption of Tb. 2_{3} was blue-shifted with concomitant enhancement in fluorescence emission upon addition of TBAF, resulting in complete 'switch-off' of $\mathrm{Tb}(\mathrm{III})$-centred emission. This was assigned to F^{-}induced dissociation of the $1: 3$ complexes producing uncoordinated ligand, 2, which was no longer able to populate excited states of $\mathrm{Tb}(\mathrm{III})$ as was clearly visible from the changes in both the absorbance and emission spectra; no evidence for dissociation of Eu. $\mathbf{1}_{3}$ was observed (Figure S17).

These complexes were not mutually exclusive in their responses to $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{F}^{-}\right]$(Figure S 9 and S 18). However, the simultaneous monitoring of three output signals, at 490 nm and 615 nm from phosphorescence and at 338 nm from fluorescence, allowed for four distinct states to be identified.

(d)

$(0,1)$

$(1,1)$

Figure 2: (a) Gel phosphorescence spectra of $(0,0),(1,0),(0,1)$ and (1,1) input states with "ON"/"OFF" thresholds defined for $\lambda=490$ and 615 nm. (b) Unstacked representation $\Delta J=2(615 \mathrm{~nm})$ transition with "ON"/"OFF" threshold. (c) Gel fluorescence spectra for of (0,0), (1,0), (0,1) and (1,1) input states with "ON"/"O threshold for $\lambda=338 \mathrm{~nm}$. (d) Photographs of each input state as seen to the naked-eye in solution (left) and gel (right), when irradiated at $\lambda_{\text {max }}=254 \mathrm{~nm}$.
therefore the ratio of $\mathbf{E u . 1} \mathbf{1}_{3}$ to $\mathbf{T b} . \mathbf{2}_{3}$ required to balance relative emission intensities was corrected to a $2: 1$ ratio. The hard materials were transparent and colourless under ambient light and yellow/green emissive under irradiation at 254 nm c.f. Figure 2c; indicating successful encapsulation of both complexes within the polymeric matrix. It was found that Tb. 2_{3} readily dissociated within the polymer upon contact with excess water. Therefore the polymers were swelled in methanol to give soft organogel materials. Emission from both complexes was stable and no diffusion of the complexes from the material was observed during operation, indicating the internal porosity of the material was maintained within the organogels and, additionally, the swelled poly(HEMA-co-MMA) could be handled directly without structural damage. Irradiation of the swelled organogels gave rise to strong uniform emission (both fluorescence and Ln(III)-based), an indication of homogenous distribution of both compounds through the swelled matrix. Enhanced Eu(III)-emission intensity was consistent with reports of $\Phi_{\text {tot }}$ enhancement of other lanthanide complexes within dry poly(MMA) films. ${ }^{18}$ Satisfyingly, this was also found to be the case for our swelled materials containing both Eu. $\mathbf{1}_{3}$ and Tb. 2_{3}.

To construct the appropriate output truth-table, conditional changes were made to the $(0,0)$ state and the response monitored. The two inputs of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{F}^{-}\right]$were defined as: (i) 2 mM HCl and (ii) 1 mM TBAF , respectively, in $\mathrm{CH}_{3} \mathrm{OH}$. Swelled gels slides ($30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 1.2 \mathrm{~mm}$) were suspended in a stirred $\mathrm{CH}_{3} \mathrm{OH}$ solution and exposed to these inputs, Figure 3a. The phosphorescence, Figure 2a and b, and fluorescence emissions, Figure 2 c , were subsequently probed under an operating temperature of $24{ }^{\circ} \mathrm{C}$. In solution, the equilibrium that defines each state was reached rapidly and the emission changes occurred within minutes. However, the response times of the gels were found to be diffusion controlled, variable with gel thickness (diffusion length), and surface area (accessible pores). Hence, the gels were synthesised to a constant swell thickness; emission after 20 minutes was analysed. Changes were consistent with, but not identical to, solution studies of Eu.13 and Tb. $\mathbf{2}_{3}$ and shows

(a)Input 1 $\left[\mathrm{H}^{+}\right]^{\mathrm{a}}$	Input 2 $\left[\mathrm{F}^{-}\right]^{\mathrm{b}}$	Output 1 $615 \mathrm{~nm}^{\mathrm{c}}$	Output 2 $490 \mathrm{~nm}^{d}$	Output 3 $345 \mathrm{~nm}^{\mathrm{e}}$
0	0	1	1	0
1	0	1	0	0
0	1	0	0	1
1	1	1	0	1
		Reverse	NOR	TRANSFER $_{[F]}$

Figure 3 (a) Truth table of the logic functions. ${ }^{a}\left[\mathrm{H}^{+}\right]=2 \mathrm{mM} ;^{\mathrm{b}}[\mathrm{F}]=1 \mathrm{mM}$. (b) Circuit diagram representation of the logic gate functions. ${ }^{\text {C }}$ Phosphorescence. ${ }^{d}$ Fluorescence. (c) Photographs of Eu. $\mathbf{1}_{3}$ and $\mathbf{T b} . \mathbf{2}_{3}$ incorporated gels in swelled in $\mathrm{H}_{2} \mathrm{O}$ (left) and $\mathrm{CH}_{3} \mathrm{OH}$ (right) under ambient light; and after drying and irradiation at 254 nm demonstrating the $(0,0)$ state.
analogous logic responses (Figure S19-20).
Upon acidification, yielding the $(1,0)$ state, the intensity the $\mathrm{Eu}(\mathrm{III})$ emission was enhanced, consistent with the PE^{\prime} mechanisms described above, while the $\mathrm{Tb}(\mathrm{III})$-cen ϵ°. emission was concomitantly quenched, which is consistent wi, , dissociation of $\mathbf{T b} . \mathbf{2}_{3}$. A minor enhancement in the intensity of fluorescence associated with $\mathbf{2}$, centred at 338 nm , w, s observed. Naked-eye observation of the sample showed that the initial $(0,0)$ state was predominantly yellow/green in colou; Figure 2d. However, upon acidification, the sample became strongly red coloured, which was clearly visible to the nakedeye, being consistent with a dominant $\mathrm{Eu}(\mathrm{III})$-centred emission within the gel. Fluoridation switched the $(0,0)$ state to the $(0$, state. This caused a decrease in the Tb (III) emission approximately the same extent as seen previously for th acidification, ca. 80%. This also resulted in the comple. "switch-off" of the Eu(III)-centred emission. The change the Tb (III) emission were again assigned to dissociation of the Tb. 2_{3} complex, being induced by F^{-}, while the $\mathrm{Eu}(\mathrm{III})$ emis changes were due to deprotonation of the already protonated form of Eu.1 ${ }_{3}$, ${ }^{19}$ which resulted in more efficient PET ${ }^{\text {, }}$ reduced $\quad \mathbf{1} \rightarrow \mathrm{Eu}(\mathrm{III}) \quad$ sensitisation. Concomitantly, tl ? fluorescence emission spectra showed three-fold intensitv enhancement in the 338 nm band of ligand 2 . This was reflect \mathcal{A} in the gel colour, which became light blue to the naked-eye.

The $(1,1)$ input state was generated by: fluoridatic.l followed by acidification; acid followed by fluoride; or the f simultaneous addition. This resulted in substantial quenching c the Tb (III) emission 490 nm , with concomitant enhancement r the $615 \mathrm{~nm} \mathrm{Eu}(\mathrm{III})$ emission, Figure 2a-c. Simultaneously, th fluorescence emission of 2 was enhanced compared to that sef. in the $(0,0)$ state. Here, the fluorescence emission (330-390 nm, was broad and dominant; the combined emission outputs gar purple emissive gels, as shown in Figure 2d.

To parameterise a logic circuit, that operated three different output logic functions, thresholds for " 1 " and " 0 " states v . " defined. Arbitrary threshold definition would allow the parameterisation of the system to different logic functions as a result of the continuous responses of Eu. $\mathbf{1}_{3}$ and Tb. 3 complexes. The chosen emission thresholds for the syster, represented on the spectra in Figure $2 \mathrm{a}-\mathrm{c}$, were place according to the criterion such that a consistent state should t derived within maximum error $(\approx 5 \%)$ of the intensity valur maximising the information gained from and fidelity of th system. Each output was treated as a double-input-single-outpu device ${ }^{5 \mathrm{a}}$ and the mimicked functions derived with the? thresholds are summarised in the truth table, Figure 3a. In this system the $\mathrm{Eu}(\mathrm{III})$ luminescence corresponded to the Reve seIMPLICATION ${ }_{[H+]}$ logic operation, while the $\mathrm{Tb}(\mathrm{III})$ emiss. reported as a $\mathbf{N O R}_{[\mathbf{H +}] /[\mathbf{F -}]}$ function. In turn, the fluorescencr "OUTPUT 3 ", mimicked TRANSFER ${ }_{[F-]}$ being " 1 " only whe F^{-}is present, i.e. states $(0,1)$ and $(1,1)$. These three singlt output logic 'gates' combined within the gel mimic a more complex double-input-three-output logic circuit, shon 1 schematically in Figure 3 b and animation provided as ESI.

Reverse switching of the polymer gel was not possible du e to dissociation of $\mathbf{T b} .2_{3}$. Contrary to initial expectations from
hydrogel studies, the smaller 'free', or ' F ' bound', btp ligands, 2, diffused from the interior. The leeching process was characterised in a preliminary fashion; spectra were recorded from washed gels and their respective supernatant solutions. Phosphorescence emission showed no leeching of either Eu. $\mathbf{1}_{3}$ or Tb. $\mathbf{2}_{3}$ from the cross-linked matrix (Figure S21). Fluorescence spectra showed a substantial increase in emission from 2 in the supernatant solution after exposure to the F^{-} stimulus for 60 minutes (Figure S22). UV-vis absorption spectra of the released material (Figure S23) showed features assignable to unbound ligand 2 demonstrating a selective component release. While a constraint, this can also be viewed as a demonstration of a stimulus-initiated ligand release; larger Tb. 2_{3} complexes being retained within the gel matrix by steric encapsulation. Controlled release from polymer microgels is well explored, ${ }^{20}$ and the design of functional complexes that undergo stimulated dissociation within such matrixes could allow application in selective ligand release with specific activity reporting through their emission properties. Further studies, however, are beyond the scope of the present work.

In conclusion, a molecular logic gate mimic consisting of outputs constructed from the use of $\operatorname{Ln}(I I I)$ - and ligand-centred emissions was developed. This system represents one of only a few examples to date of the use of $4 f$ ions as outputs in molecular logic. The encapsulation of these within a polymer organogel gave luminescence changes within the microenvironment in response to the inputs $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{F}^{-}\right]$, again being one of the first examples of such design. The responses of the materials to external stimuli were shown to mimic the Reverse-IMPLICATION-TRANSFER-NOR logic circuit, Figure 3b. The prospects of smarter responsive systems combining logic mimicry with easily processed materials are an exciting and promising approach to future applications. Our work in the development of second-generation materials, with improved control of release properties and aqueous application, are to be reported in the near future.

We thank Science Foundation Ireland (SFI PI Awards 10/IN.1/B2999 and 13/IA/1865), Trinity College Dublin (SJB, JPB, TG) and the Irish Research Council (JPB) for funding.

Notes and references

1. (a) A. Aviram, J. Am. Chem. Soc., 1988, 110, 5687-5692; (b) A. P. de Silva, N. H. Q. Gunaratne and C. P. McCoy, Nature, 1993, 364, 42-44.
2. (a) A. Romieu, Org. Biomol. Chem., 2015, 13, 1294-1306; (b) J. Andréasson, G. Kodis, Y. Terazono, P. A. Liddell, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore and D. Gust, J. Am. Chem. Soc., 2004, 126, 15926-15927; (c) M. V. Caruana, M. Camilleri Fava and D. C. Magri, Asian J. Org. Chem., 2015, 4, 239-243; (d) J. Andreasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore and D. Gust, J. Am. Chem. Soc., 2011, 133, 11641-11648.
3. (a) K. Fan, J. Yang, X. Wang and J. Song, Soft Matter, 2014, 10, 83708375; (b) S. Kaur, V. Bhalla and M. Kumar, Chem. Commun., 2014, 50, 9725-9728; (c) J. Cao, X. Ma, M. Min, T. Cao, S. Wu and H. Tian, Chem. Commun., 2014, 50, 3224-3226; (d) D.-H. Qu, Q.-C. Wang and H. Tian, Angew. Chem. Int. Ed., 2005, 44, 5296-5299; (e) P. Ceroni, A. Credi and M. Venturi, Chem. Soc. Rev., 2014, 43, 4068-4083; (f) G. de Ruiter and M. E. van der Boom, J. Mater. Chem., 2011, 21, 17575-17581; (g) F. Pu, J. Ren and X. Qu, Adv. Mater., 2014, 26, 5742-5757; (h) . Lin, Y. Tao, F. Pu, J. Ren and X. Qu, Adv. Funct. Mater., 21, 4565-4572.
4. (a) M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi, K. Urayama ai Hamachi, Nat Chem, 2014, 6, 511-518; (b) J. Andreasson and U. Pische Chem. Soc. Rev., 2015, 44, 1053-1069; (c) J. Ling, G. Naren, J. Kelly, T. Moody and A. P. de Silva, J. Am. Chem. Soc., 2015, 137, 3763-3766.
5. (a) A. Prasanna de Silva, Molecular Logic-Based Computation, F.1y. Society of Chemistry, Cambridge, 2013; (b) K. Szaciłowski, Chem. Re 2008, 108, 3481-3548; (c) V. F. Pais, M. Lineros, R. Lopez-Rodriguez, S. El-Sheshtawy, R. Fernandez, J. M. Lassaletta, A. Ros and U. Pischel, Org. Chem., 2013, 78, 7949-7961; (d) G. de Ruiter and M. E. van d Boom, Angew. Chem. Int. Ed., 2012, 51, 8598-8601; (e) G. de Ruiter and M. E. van der Boom, Acc. Chem. Res., 2011, 44, 563-573.
6. (a) S. J. Bradberry, A. J. Savyasachi, M. Martinez-Calvo and Gunnlaugsson, Coord. Chem. Rev., 2014, 273-274, 226-241; (b) J. C. Bunzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048-1077; (c) J.-C. G Bünzli, A.-S. Chauvin, C. D. B. Vandevyver, S. Bo and S. Comby, Ann. N.Y Acad. Sci., 2008, 1130, 97-105.
7. T. Terai, K. Kikuchi, S.-y. Iwasawa, T. Kawabe, Y. Hirata, Y. Urano and Nagano, J. Am. Chem. Soc., 2006, 128, 6938-6946.
8. (a) C. S. Bonnet, M. Devocelle and T. Gunnlaugsson, Org. Biomol. Cher , 2012, 10, 126-133; (b) L. K. Truman, S. Comby and T. Gunnlaugssorı, Angew. Chem., 2012, 124, 9762-9765; (c) S. Comby, S. A. Tuck, Truman, O. Kotova and T. Gunnlaugsson, Inorg. Chem., 2012, 51, 101bð10168; (d) A. P. de Silva, H. Q. N. Gunaratne and T. E. Rice, An Chem., Int. Ed., 1996, 35, 2116-2118; (e) T. Gunnlaugsson and J. P. Leonard, Chem. Commun., 2005, 3114-3131.
9. (a) C. S. Bonnet and T. Gunnlaugsson, New J. Chem., 2009, 33, 1 1030; (b) T. Gunnlaugsson, D. A. Mac Donail and D. Parker, Che, Commun., 2000, 93-94; (c) T. Gunnlaugsson, D. A. Mac Dónaill and D Parker, J. Am. Chem. Soc., 2001, 123, 12866-12876; (d) E. B. Veale, J. Kitchen and T. Gunnlaugsson, Supramol. Chem., 2013, 25, 101-108.
10. (a) F. Pu, E. Ju, J. Ren and X. Qu, Adv. Mater., 2014, 26, 1111-1117. 1 M. de Sousa, M. Kluciar, S. Abad, M. A. Miranda, B. de Castro and U. Pischel, Photochem. Photobiol. Sci., 2004, 3, 639-642.
11. K. Binnemans, Chem. Rev., 2009, 109, 4283-4374.
12. K. Driesen, P. Nockemann and K. Binnemans, Chem. Phys. Lett., 2004 395, 306-310.
13. (a) C. P. McCoy, F. Stomeo, S. E. Plush and T. Gunnlaugsson, Chem. Mater., 2006, 18, 4336-4343; (b) T. Gunnlaugsson, C. P. McCoy and Stomeo, Tetrahedron Lett., 2004, 45, 8403-8407; (c) T. Gunnlaugsson,
P. McCoy, R. J. Morrow, C. Phelan and F. Stomeo, ARKIVOC (Gainesville FL, U. S.), 2003, 216-228.
14. J. P. Byrne, J. A. Kitchen and T. Gunnlaugsson, Chem. Soc. Rev., 2014, 43, 5302-5325.
15. (a) J. P. Byrne, J. A. Kitchen, J. E. O'Brien, R. D. Peacock ar 1. Gunnlaugsson, Inorg. Chem., 2015, 54, 1426-1439; (b) O. Kotova, J. A. Kitchen, C. Lincheneau, R. D. Peacock and T. Gunnlaugsson, Chem. Eur. J., 2013, 19, 16181-16186.
16. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, S. de Sousa, J. A. G. Williams and M. Woods, J. Chem. Soc., Perkin Trar 2, 1999, 493-503.
17. T. Merckx, C. J. E. Haynes, L. E. Karagiannidis, H. J. Clarke, K. Holder, A Kelly, G. J. Tizzard, S. J. Coles, P. Verwilst, P. A. Gale and W. Dehá Org. Biomol. Chem., 2015, 13, 1654-1661.
18. (a) S. Biju, R. O. Freire, Y. K. Eom, R. Scopelliti, J.-C. G. Bünzli and H. Kim, Inorg. Chem., 2014, 53, 8407-8417; (b) J. Garcia-Torres, P. Bosch Jimenez, E. Torralba-Calleja, M. Kennedy, H. Ahmed, J. Doran, Gutierrez-Tauste, L. Bautista and M. Della Pirriera, J. Photocher. Photobiol., A, 2014, 283, 8-16.
19. (a) S. Camiolo, P. A. Gale, M. B. Hursthouse and M. E. Light, Org. Bic iol. Chem., 2003, 1, 741-744; (b) T. Gunnlaugsson, P. E. Kruger, T. C. Lel ${ }^{\text {D }}$ Parkesh, F. M. Pfeffer and G. M. Hussey, Tetrahedron Lett., 2003, 44 6575-6578; (c) T. Gunnlaugsson, P. E. Kruger, P. Jensen, F. M. Pfeff r and G. M. Hussey, Tetrahedron Lett., 2003, 44, 8909-8913.
20. (a) D. Klinger and K. Landfester, Polymer, 2012, 53, 5209-5231; (b) C. McCoy, C. Brady, J. F. Cowley, S. M. McGlinchey, N. McGoldrick, D. J Kinnear, G. P. Andrews and D. S. Jones, Expert Opinion on Drug Delive, 2010, 7, 605-616.
