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Astrosterioside A, a sulfated steroidal hexasaccharide isolated 
from starfish Astropecten monacanthus showing potent anti-
inflammatory activity, was synthesized in a convergent linear 
sequence of 24 steps and in 6.8% overall yield from 
adrenosterone.  

Asterosaponins are found ubiquitous in the marine Asteroidea 
species (starfish); thus far, over 100 such saponin compounds 
have been characterized from some 100 starfish species collected 
in all climatic areas.1-3 Structurally, the asterosaponins share a 
9(11)-3,6-dihydroxysteroidal nucleus with a sulfate residue at 
the C3 and a glycan at the C6. The glycans are mostly penta- or 
hexasaccharides containing all 1,2-trans-glycosidic linkages and 
a (12) branching residue at the second sugar unit. These 
secondary metabolites are belived to play an important role as 
defense chemicals to protect the slow-moving starfish from 
parasites and predators. Indeed, their cytotoxic, antimicrobial, 
and antifouling effects have been disclosed.2,3 However, the in-
depth studies on the activities of asterosaponins has been 
hampered by their poor accessibility. Chemical synthesis of these 
highly polar and complex glycoconjugates has been a formidable 
task;4-9 the first total synthesis of an asterosaponin, namely 
goniopectenoside B, was achieved only recently.10 

Astrosterioside A (1), featuring a 20(22)E-ene-23-one motif in 
the steroidal side chain and a terminal α-L-arabinofuranose in 
glycan, was characterized in 2013 from an edible Vietnamese 
starfish Astropecten monacanthus (Scheme 1).11 This compound 
exhibited significant inhibitory effects on the production of pro-
inflammatory cytokines IL-6 in LPS-stimulated bone marrow-
derived dendritic cells (IC50 = 3.17 μM). The activity was found 
to be highly dependent on the steroidal side chain; its congeners 
Astrosteriosides C-D with varied side chains were much less 
active (IC50 > 30 μM). To facilitate further studies on the 
structure-activity relationship (SAR) and the mechanism of action, 
we embarked on the chemical synthesis of this type of 
asterosaponins. Here we report the first total synthesis of 
Astrosterioside A (1). 
 
 
State Key Laboratory of Bioorganic and Natural Products Chemistry, 
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 
345 Lingling Road, Shanghai 200032, P. R. China. E-mail: 
byu@mail.sioc.ac.cn, Fax: (+86) 21-64166128.  
†Electronic Supplementary Information (ESI) available: Experimental 
details and characterization data for new compounds, see DOI: 
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Scheme 1. Structure of astrosterioside A (1) and its retrosynthetic 
analysis. 
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To be convergent in the synthesis,12 astrosterioside A (1) was 
disconnected into aglycon derivative 2 and hexasaccharide donor 
3, wherein the aglycon 3-OH was protected as a tert-
butyldimethylsilyl (TBS) ether and the glycan hydroxyl groups 
were fully protected as acetyl or benzoyl esters to ensure the final 
introduction of the 3-O-sulfate residue and global deprotection 
(Scheme 1). The aglycon 2 could be derived from the 
commercially available adrenosterone via elaboration of the 
Δ9(11)-3β,6α-dihydroxysteroidal core and installation of the side 
chain using Horner–Wadsworth–Emmons (HWE) olefination.13,14 
The hexasaccharide donor 3 was functionalized with a ortho-
(cyclopropylethynyl)benzoate at the anomeric carbon and 
equipped with a neighboring-participating benzoyl group at C2, 
thus the later-stage condensation of the glycan and the aglycon 
would be realized under the mild gold(I)-catalyzed conditions and 
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in a stereo-controlled manner.15-18 The ortho-
(cyclopropylethynyl)benzoate 3 was planned to be elaborated 
from a hexasaccharide precusor that could be assembled from 
five building blocks 6-10, in that N-phenyl 
trifluoroacetimidate19,20 was employed as the leaving group in the 
donors and neighboring-participating groups (i.e., acetyl, benzoyl, 
and levuloyl group) were installed to secure the formation of the 
1,2-trans-glycosidic linkages. 

5 
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Scheme 2. Synthesis of the aglycon derivative 2. 

 

Starting from adrenosterone, 3β,6α-di-O-TBS-Δ9(11)-20-keone 
11 was prepared readily in 13 steps and 21% overall yield 
following literature procedures (Scheme 2).10,21 Installation of the 
side chain onto ketone 11 by a HWE reaction with phosphonate 
12 or 1322 was found unsuccessful, wherein ketone 11 was 
largely intact in the presence of a variety of bases, such as sodium 
hydride, lithium diisopropylamide (LDA), n-butyllithium, and 
potassium tert-butoxide. Gratifyingly, the olefination of 11 was 
achieved with diethyl cyanomethylphosphonate 1423,24 in the 
presence of n-butyllithium (THF, 50 oC), providing nitrile 15 in 
88% yield as a single E-isomer. Subsequent addition of iso-
butylmagnesium bromide to nitrile 15 in refluxing benzene gave 
enone 16 in 82% yield.25 Removal of the two O-TBS groups with 
70% HFpyridine in THF, followed by the selective protection of 
the resultant 3β-OH with tert-butyldimethylsilyl chloride in 
dimethylformamide at 0 oC furnished the desired steroidal 
aglycon derivative 2 in a satisfactory 76% yield.7 A strong 
NOESY correlation between H-22 (δH 6.07) and H-17 (δH 2.25) 
and no correlation between H-22 and H-21 (δH 2.14) were 
observed, confirming the E configuration of the C-20/C-22 
double bond. Thus, the aglycon derivative 2 was synthesized in 
17 scalable steps and 11% overall yield from the commercially 
available adrenosterone. 
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Scheme 3. Regio-selective 4-OH glycosylation for the preparation of 
trisaccharide 18. 
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To enhance the efficiency in the assembly of the glycan, a 
regio-selective glycosylation of disaccharide diol 8 was explored 
(Scheme 3).26,27 Thus, coupling of the xylopyranoside 2,4-diol 8 
(1.5 equiv.) with thiogalacoside 1728 under the action of TMSOTf 
(0.1 equiv.) and N-iodosuccinimide (1.5 equiv.) at -30 oC 
afforded the desired β-(1→4)-coupled trisaccharide 18 in 68% 
yield (entry 1), with trace amount the β-(1→2)-coupled 
trisaccharide being detected. Reducing the amount of TMSOTf to 
0.05 equivalent and reversing the addition sequence led to 18 in a 
better yield (85%; entry 2). The promotion system developed by 
Crich29 (a combination of 1-benzenesulfinyl piperidine (BSP), 
trifluoromethanesulfonic anhydride (Tf2O), and 2,4,6-tri-tert-
butylpyrimidine (TTBP)) furnished trisaccharide 18 in 70% yield. 
With galactosyl N-phenyl trifluoroacetimidate 9 as donor, the 
coupling under the catalysis of TMSOTf (0.05 equiv.) provided 
18 in an execellent 92% yield (entry 4). 

The structure of trisaccharide 18 was confirmed by careful 
interpretation of the COSY, HSQC, and HMBC NMR spectra. 
The chemical shifts of the three anomeric carbons in 18 were at 
102.1 (C1), 103.8 (C1’), and 100.3 ppm (C1’’), respectively, 
indicating the β configurations. The glycosylation position (at 4’-
OH) in 18 was confirmed by 13C NMR comparison with its 
benzoyl derivative 19, of which the three anomeric carbon signals 
appeared at 102.0 (C1), 100.2 (C1’), and 100.8 ppm (C1’’), 
respectively. The shift of C1’ signal to a high field (by 3.6 ppm) 
was in agreement with the acylation at it neighboring 2’-OH.30,31 
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Scheme 4. Synthesis of the hexasaccharide ortho-

(cyclopropylethynyl)benzoate 3 and N-phenyl trifluoroacetimidate 24. 

(a) TMSOTf (0.1 equiv.), 4Å MS, CH2Cl2, -30 oC, 95%. (b) Ceric 

ammonium nitrate, CH3CN/H2O (4:1), rt, 83%. (c) 2,2,2-trifluoro-N-

phenylacetimidoyl chloride, K2CO3, acetone, rt, 98%. (d) 18, 

TMSOTf (0.2 equiv.), 4Å MS, CH2Cl2, 0 oC-rt, 91%. (e) 

NH2NH2•H2O, pyridine/AcOH (3:2), rt, 95%. (f) 20 (1.3 equiv.), 

TMSOTf (0.1 equiv.), 4Å MS, CH2Cl2, -30 oC, 92%. (g) 20% 

Pd(OH)2/C, H2 (1 atm), EtOAc/EtOH (1:1), rt, 98%. (h) BzCl, DMAP, 

pyridine, 0 oC -rt, 96%. (i) NH2(CH2)2NH2, HOAc, THF, rt, 72% 

(with 18% 23 recovered). (j) ortho-(cyclopropylethynyl)benzoic acid, 

EDCI, DMAP, DIPEA, CH2Cl2, rt, 96%. (k) 2,2,2-trifluoro-N-phenyl 

acetimidoyl chloride, K2CO3, acetone, rt, 97%. 

 

The remaining less reactive 2’-OH in 18 was then 
glycosylated with perbenzoyl D-quinovopyranosyl imidate 
1028 under stronger reaction conditions (0.2 equiv. TMSOTf, 
4Å MS, CH2Cl2, 0 oC-rt), leading to the desired 
tetrasaccharide 5 in a high 91% yield (Scheme 4). The Lev 
group in 5 was selectively removed with hydrazine hydrate to 
provide 21 (95%). Meanwhile, the terminal β-L-Araf-(1→3)-
D-Fucp building block 4 was synthesized by coupling of 
fucose acceptor 7 with arabinofuranosyl N-phenyl 
trifluoroacetimidate 6 under the catalysis of TMSOTf  
(CH2Cl2, 4Å MS, -30 oC; 95%). Disaccharide 4 was then 
converted into N-phenyl trifluoroacetimidate 20 in a two-step 
sequence, involving selective removal of the anomeric 4-
methoxyphenol group (CAN, CH3CN/H2O, 83%) and 
condensation with 2,2,2-trifluoro-N-phenylacetimidoyl 

chloride (K2CO3, acetone, 98%).19,20 Condensation of  
tetrasaccharide 21 with disaccharide imidate 20 was realized 
under the catalytic of TMSOTf (0.1 equiv.) in CH2Cl2 at -30 

oC, furnished the desired hexasaccharide 22 in a satisfactory 
92% yield.  

At this stage, the protecting groups in hexasaccharide 22 
were synchronized with acyl groups. Thus, the four benzyl 
groups were hydrogenolysed over Pd(OH)2/C and the resultant 
hydroxyl groups were protected with benzoyl groups, 
providing hexasaccharide 23 (94% over two steps). 
Hexasaccharide 23 was then transformed into the 
corresponding ortho-(cyclopropylethynyl)benzoate 3 and N-
phenyl trifluoroacetimidate 24 in two-step sequences, i.e., 
selective removal of the anomeric benzoyl group 
(NH2(CH2)2NH2, HOAc, THF, 72% yield)32 followed by 
condensation with ortho-(cyclopropylethynyl)benzoic acid 
(EDCI, DMAP, DIPEA, CH2Cl2, 96%)33 or with 2,2,2-
trifluoro-N-phenylacetimidoyl chloride (K2CO3, acetone, 
97%). 
 

 
Scheme 5. Completion of the total synthesis of astrosterioside A (1).   
 

With the hexasaccharide donors (3 and 24) and aglycon 
acceptor (2) in hand, the formation of the key glycosidic linkage 
was investigated (Scheme 5). The coupling of steroidal C6-OH 2 
(2.0 equiv.) with hexasaccharide N-phenyl trifluoroacetimidate 24 
under the catalysis of TBSOTf (0.3 equiv.) in the presence of 4Å 

molecular sieves in CH2Cl2 at -30 oC provided the desired -
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glycoside 25 in 52% yield, wherein the C6-O-TBS derivative and 
the hydrolyzed donor were isolated as the major byproducts. The 
coupling of aglycon 2 (3.0 equiv.) with hexasaccharide ortho-
(cyclopropylethynyl)benzoate 3 proceeded smoothly under the 
catalysis of PPh3AuNTf2 (0.2 equiv.) in the presence of 5Å 

molecular sieves in CH2Cl2 at room temperature, affording the 
desired glycoside 25 in a satisfactory 83% yield; in addition, the 
excess aglycon 2 could be fully recovered. Removal of the 3-O-
TBS group in 25 was effected with HOAc/THF/H2O (3:1:1) at 
room temperature to provide 26 in 91% yield. Sulfation of the 
resulting C3-OH in 26 was achieved over sulfur trioxide-pyridine 
in dimethylformamide, leading to the 3-O-sulfate derivative,7,10 
which was subjected to global removal of the acetyl and benzoyl 
groups (KOH, MeOH/THF/H2O, rt) to provide astrosterioside A 
(1) in a good 80% yield. The analytical data of 1 are in good 
agreement with those reported for the natural product.11,34 
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Summarizing, we have accomplished the first total synthesis of 
astrosterioside A (1), a characteristic asterosaponins with potent 
inflammatory activities, with a convergent linear sequence of 24 
steps and in a high 6.8% overall yield. The synthesis features a 
stereoselective HWE olefination to construct the steroidal 
20(22)E-ene-23-one side chain (11+1415), a regioselective 
glycosylation of the xylopyranoside 4-OH (8+918), and a 
highly efficient gold(I)-catalyzed coupling of the aglycon with 
hexasaccharide (cyclopropylethynyl)benzoate donor (3+225). 
Given the conserved nature of the structures of asterosaponins, 
the work reported here shall facilitate the synthesis of other 
asterosaponins and thus the in-depth studies on their biological 
and pharmacological activities.  
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