
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

ChemComm

www.rsc.org/chemcomm

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal Name RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012  J. Name., 2012, 00, 1‐3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Gold(I)-Catalysed Cascade Reactions in the Synthesis 
of 2,3-Fused Indole Derivatives 

Ana Gimeno,a Alejandra Rodríguez‐Gimeno,a Ana B. Cuenca,a Carmen Ramírez de 
Arellano,a Mercedes Medio‐Simóna and Gregorio Asensioa* 

 

 

A gold(I)-catalysed hydroaminative/arylative cascade for the 
efficient synthesis of a variety of indole-fused skeletons has 
been developed. Factors controlling the catalyst loading 
required in these transformations involving 1,3-unsubstituted 
indole intermediates have been revealed allowing isolation of 
an unprecedented 1,3-dimetallated 3H-indole gold complex 
characterized by X-ray diffraction   

Synthetic approaches developed for polycyclic indole derivatives, a 
class of compounds present in many natural bioactive alkaloids, 
common drugs and agrochemicals,1 often consist in the annulation of 
previously functionalized indole rings.2 Attractive methodologies to 
synthesize the 2,3-fused indole core with high atom and step 
economy would be transition metal catalysed hydroamination/hydro-
arylation tandem protocols involving just one chemical 
transformation.3 In particular, Au(I)-catalysed hydroarylation of 
indoles with alkynes and allenes4 and Pt(II)- catalysed 
hydroarylation of indoles with alkenes5are well documented. By 
contrast, unactivated alkenes are reluctant in taking part in 
hydroarylation reactions requiring high temperatures, prolonged 
reaction times and high loading of catalyst.6 Moreover, alkyne 
hydroarylation of 1,3-unsubstituted indole rings is particularly 
challenging requiring in cascade reactions up to 20 mol% catalyst.7 
However those performed with alkynes and C3-substituted indoles 
utilize 5 mol% or less gold(I) catalyst.8 The usefulness of these 
processes9 prompted us to explore the gold-catalysed 
hydroaminative10/arylative cascade cyclization (Scheme 1) of 2-
aminoaryl 1,X-enynes (n = 0, 1 or 2) 1 as an expeditious route to 
2,3-fused indole rings 3 in a process taking place with unactivated 
alkenes and 1,3-unsubstituted indole intermediates 2. 
Tetrahydrocarbazole and related partners 3 were obtained through 
tandem 5-endo-dig hydroamination/X-exo-(or endo-)trig 
hydroarylation reactions. Aurated indole complexes have been 
characterized and/or isolated along these reactions. 

 
Scheme 1. Gold(I) catalysed reactions in the construction of 2,3-
fused indole rings. 

The transformation of 1a into 3a was first explored by using 5 mol% 
[AuCl(IPr)] /7.5 mol% AgSbF6 or 5 mol% [Au(JohnPhos) as gold 
source under different conditions. 
(MeCN)]SbF6. The best yield was obtained with the second catalyst 
in DMF solution. The cyclization of 1a proceeded satisfactorily also 
in a polar protic solvent like EtOH (Table 1, entry 5). Conversely, a 
mixture of 2a and 3a was obtained in DCM or toluene solution 
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(entries 6 and 7, Table 1). Complexes [Au(JohnPhos)]NTf2 and the 
mixture 5 mol%)[AuCl(PPh3)]/(7.5 mol%) AgSbF6 were less 
efficient in this transformation. Compound 1a was recovered 
unaltered when Brönsted acids or bases11 were assayed as catalysts 
in control experiments (Table 1, entries 8-10).  
 
Table 1. Gold-Catalysed Annulation of 1a. Optimization 
Experiments  

Entry 5 mol% Catalysta Solvent t(h) 2a(%)c 3a(%)c 

1 [Au(IPr)]SbF6 DMF 16 8 90 
2 [Au(L)(MeCN)]SbF6 DMF 1.5 - ≥95 
3 [Au(JohnPhos)]NTf2 DMF 44 >95 - 
4 [Au(PPh3)]SbF6 DMF 38 50 18 
5 [Au(L)(MeCN)]SbF6 EtOH 3 10 88 
6 [Au(L)(MeCN)]SbF6 DCM 17 90 9 
7 [Au(L)(MeCN)]SbF6 PhMe 17 65 35 
8 TfOHc) DMF 15 - - 
9 TfOHc) PhMe 38 - - 

10 tBuOKd) NMP 15 - - 
a) L = JohnPhos. c) Determined by 1H NMR analysis of the crude reaction 
mixture. c) 20 mol% of TfOH was used. d) 2.5 eq. of the base were employed. 

 
Encouraged by these results we decided to explore the scope and 
limits of the [Au(L)(MeCN)]SbF6 catalyzed cascade transformation 
of a series of compounds 1. The effect of the substituents on the 
aromatic ring, the nature of the connector fragment (Y) and the 
length of the enyne chain (n=0,1,2) were evaluated. The cascade 
cyclization of 2-aminoaryl enynes 1a-p in DMF was revealed as a 
robust procedure for the facile preparation of a variety of indole-
fused ring systems 3a-p through the corresponding 1,3-unsubstituted 
indole intermediates 2a-p. Disappointingly, the synthesis of 
compounds 3 with high yield required in many cases portion wise 
addition of 10mol% of catalyst† (see Table 2). The hydroarylation 
step was found to be slower than the initial hydroaminative 
cyclization in the formation of compounds 3. Noteworthy, 
carbazoles 3a-d and 3i (entries 1-4 and 9, Table 2), obtained by 6-
exo-trig hydroarylation of plain or electron deficient intermediate 
indoles 2a-d or the more reactive 2-metyl substituted alkenyl indol 
2i respectively, were formed with high yield by using only 5 mol% 
of gold catalyst in a single portion. According with this, the 
hydroarylation step seems to be less demanding with these latter 
substrates. By the contrary, complete conversion of the methoxy 
substituted intermediate indole 2e, apparently activated towards the 
hydroarylation reaction, into 3e (entry 5, Table 2), required 10 mol% 
catalyst load. In the same sense, formation of polycyclic indoles 3j 
and 3p (entries 10 and 16, Table 2), obtained by 7-exo-trig 
hydroarylation of the intermediate 2j or SN2’ type 6-endo-trig 
hydroarylation12 of 2p respectively, also required 10 mol% gold 
catalyst load in two portions. These puzzling results attracted our 
attention and the loss of catalytic activity during the reaction with 
some substrates was investigated using the transformation 1j into  
 

Table 2. Gold(I)-Catalysed Synthesis of 2,3-Fused Indole 
Derivatives 3. 

Run aminoaryl enyne 1 T (ºC) t (h) Yield 3 (%)a 

 

 

 

1 1a, R1 = R2 = H 60 1.5 3a (91)b 

2 1b, R1 = Me, R2 = Br 60 19 3b (75)b 

3 1c, R1 = Cl, R2 = H 60 6 3c (81),b (82)c 

4 1d, R1 = iPr, R2 = H 60 6 3d (78)b 

5 1e, R1 = OMe, R2 = H 60 23 3e (90)d  

 
 

 

6 1f, Y = NTs 80 28 3f (90),d (92)c 
7 1g, Y = CH2 60 28 3g (91)d 
8 1h, Y = O 80 31 3h (48)d 

 

 

 

9 1i  60 22 3i (80)b

  

10 1j, R1 = R2 = H 80 24 3j (90),d (95)c,e

11 1k, R1 = Me, R2 = Br 80 20 3k (80)d

12 1l, R1 = Cl, R2 = H 80 44 3l (77)d 
13 1m, R1 = OMe, R2 = H 80 20 3m (82)d

  

14 1n 80 44 3n (76),c (78)e

 
 

 

15 1o, Y = NTs 80 21 3o (80)c 

  

16 1p 80 24 3p (81)c 
a)Isolated yield. b)5 mol% [Au(JohnPhos)(MeCN)]SbF6 

c) 5 mol% catalyst 
load in 1:1 DMF/HFIP as solvent; reaction time 30 h. d) 10 mol% catalyst 
load in two portions e)5 mol% [Au(JohnPhos)(MeCN)]SbF6/7.5 mol% p-
NO2C6H4CO2H as catalyst; reaction time 44 h  

cycloheptaindole 3j as a model. The initial step involving the 
hydroamination of the alkyne moiety with formation of the indole 
ring is a straightforward process13 that takes place with a low load of 
catalyst. The hydroarylation, second step of the cascade, is more 
demanding with regard to the amount of catalyst needed although it 
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catalyst, a protic solvent or an acid additive unless i) a less 
nucleophilic intermediate indole ring 2, ii) an activated akene 
towards the electrophilic attack or iii) formation of a six 
member ring are involved in the hydroamination step 
facilitating the cascade reaction. 
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