This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Fluorophore ATCUN Complexes: Combining Agent and Probe for Oxidative DNA Cleavage

C. Wende, a N. Kulak *b

Received 0th January 2012, Accepted 0th January 2012
DOI: 10.1039/x0xx00000x

www.rsc.org/

DNA can be oxidatively cleaved by copper complexes of the ATCUN peptide (amino terminal Cu(II)- and Ni(II)-binding motif). In order to investigate the fate of the metal ion throughout this process, we have exploited quenching/dequenching effects of conjugated fluorophors.

The ATCUN motif has been studied for more than 50 years. 1 During this time the understanding of this binding motif has evolved from a small metal binding site in natural proteins like albumin – therein used for the transport of ions in blood plasma – to effective DNA cleavers with antitumoral activity. 2 The latter ones soon found their way into bioinorganic chemistry due to their simple synthesis and modification and high affinity towards Cu(II) and Ni(II) ions. 3,4

The simplest peptide mimicking the ATCUN motif is the tripeptide Gly-Gly-His. Several characteristics of it have been studied: binding properties, 1,5 RNA interaction, 5 DNA cleavage activity, 6,7 in vitro behaviour. 8 Variations of the amino acid sequence allow an increase in binding affinity to Cu(II) ions as well as to DNA and RNA as targets. 7,10-12 Imperiali et al. were able to improve the selectivity of the peptide for Cu(II) ions by exchanging both glycines (Gly) by 2,3-diaminopropionic acid (Dap) and β-alanine (β-Ala). Such, the introduction of an amino group at the N-terminus rendered the coupling with functional molecules like fluorophors possible, and lead to the development of a selective Cu(II) fluorescent chemosensor. 13

Based on this work we have demonstrated here that the quenching of different fluorophors by Cu(II) ions in fluorophore ATCUN complex conjugates can be used for monitoring the fate of the metal ion during oxidative DNA cleavage. This new approach allows to follow the cleavage process not only by conventional agarose gel electrophoresis but also by fluorescence, having function (nuclease) and reporter (fluorophore) combined in one system.

There is only one example in the literature where a Cu(II) based DNA cleaving agent was equipped with a fluorophore. In that case a ligand exhibiting fluorescence was used for monitoring cell uptake. 14 As to the best of our knowledge, no system has been described so far where an artificial nuclease was linked to a reporter molecule for investigating the status of the nucleolytic metal ion. This could be, however, of interest for gaining better understanding of such a metal initiated cleavage reaction. A reporter molecule being part of the agent itself is supposed to be more reliable than an external reporter due to spatial proximity.

The peptides 1a – 3a (Figure 1) with the sequence fluorophore R-2,3-diaminopropionic acid-β-alanine-histid-serine-serine-CONH₂ (R-Dapβ-Ala-His-Ser-Ser-CONH₂) were synthesized manually on solid support using standard Fmoc-strategy (Supporting Information S-1). 15 The yield was determined by UV/vis spectroscopy exploiting the extinction of the coupled fluorophores (Rhodamine B in 1a, dansyl chloride in 2a, and fluorescein isothiocyanate (FITC) for 3a, Supporting Information S-2). +

![Figure 1: Structure of the peptides 1a – 3a and the corresponding Cu(II) complexes 1b – 3b.](image-url)
The sequence of peptide \textit{a} was developed by Imperiali \textit{et al.} with the aim of improving metal binding properties when compared to Gly-Gly-His.13a The exchange of N-terminal glycine by 2,3-diaminopropionic acid was performed in order to allow coupling of a fluorophore. Imperiali \textit{et al.} have shown that the fluorescence quenching of Cu(II) ions becomes more efficient when the linker length of the peptide backbone to the fluorophore decreases. Whereas, the introduction of two serine residues at the C-terminus serves the increase of water solubility of the peptide.13a

The corresponding Cu(II) complexes \textit{1b} – \textit{3b} were synthesized according to a literature procedure by incubation of the peptides \textit{1a} – \textit{3a} with copper(II) chloride in aqueous solution.6 Afterwards their ability to cleave DNA was tested. It is known that Cu(II) complexes of peptides with the ATCUN motif are able to cut plasmid DNA in the presence of reducing agents like ascorbic acid (Asc).3 Starting from concentration-dependent gel electrophoresis experiments we could show that the complexes \textit{1b} – \textit{3b} cleave plasmid DNA pBR322 efficiently (Figure 2 and Supporting Information S-3).

As expected all complexes cleave DNA only in the presence of ascorbic acid (lane 2 in Figure 2 and lanes 2, 4 and 6 in Figures S3.1 – S3.4 in Supporting Information).6,7,12 The degree of cleavage increased with increasing complex concentration. A concentration as low as 25 \textmu M was sufficient to cleave supercoiled plasmid DNA (form I) to at least 30\% into the open circular form II (lane 2). Complex \textit{3b} even lead to a double strand break of DNA at this concentration (form III) (lane 2). At a concentration of 75 \textmu M (lane 6) all complexes cleaved plasmid DNA almost completely into form III, and even smaller fragments were observed. At a concentration as low as 1 \textmu M \textit{1b} \textasciitilde10\% of the DNA was cleaved (Figure S3.5, Supporting Information).

The differences in cleavage efficiency can be explained by the different bulk of the dyes and their linkers, respectively. Due to the length and characteristics of the different linkers (\textit{1b}: amide, \textit{2b}: sulfonic amide, \textit{3b}: thiourea) a closer (\textit{1b}) or more distant (\textit{3b}) approach of the dye to the copper centre and thus a change in DNA interaction is expected. Also the orientation of the fluorophores might play a role. In comparison to the unfunctionalized copper(II) peptide complexes \textit{b} (R=H) and Cu(II)-Gly-Gly-His cleavage activity of the fluorophore carrying peptides \textit{1b} – \textit{3b} is somewhat lower (Figure S3.6, for Cu(II)-Gly-Gly-His see also the literature13).

In order to investigate whether an incubation time longer than one hour would result in a change in cleavage efficiency, DNA was incubated with complex \textit{1b} also for two and four hours (Figure S3.7, Supporting Information). An increase in incubation time lead to an increase in cleavage yield. When the incubation time was doubled, the amount of form II DNA decreased due to formation of form I DNA and fragments (black line in Figure S3.7, Supporting Information) indicating a somewhat linear relationship.

Assuming the fluorescence properties of the dyes can be used for the indirect detection of DNA cleavage by sensing the catalytic Cu(II) species, it is important to consider that the fluorescence of rhodamine B in TRIS-HCl buffer at pH 7.4 is quenched completely. In order to be able to exploit fluorescence properties in this case, one has to work at lower pH values.13a Thus, the general stability of the copper(II) complexes at different pH values was studied with peptide \textit{2a} (Figure S4.1, Supporting Information). The absorption spectrum of peptide \textit{2a} in the presence of 1 equivalent Cu(II) at pH 2-4 shows only a broad band at 800 nm for copper(II) ions in water.13a The intensity of d-d transition of the Cu(II)-peptide complex at 525-550 nm increases with increasing pH value while the band for Cu(II) decreases. These data suggest that the ATCUN complexes are stable over a wide range of pH.

Based on previously published studies6 and based on the fact that DNA cleavage with the complexes \textit{1b} – \textit{3b} happens only in the presence of ascorbic acid as a reductant, the mechanism of cleavage of DNA is most likely oxidative. In order to investigate the reaction mechanism and identify potential ROS that are involved in the cleavage process \textit{1b} – \textit{3b} were incubated with plasmid DNA and several literature-known ROS scavengers (Table 1). The quenching effects were the same for all complexes including Cu(II)-GGH suggesting that the mechanism of cleavage is the same for these compounds. The results are exemplarily shown for \textit{1b} in Figure 3.

\begin{table}[ht]
\centering
\caption{Literature-known ROS scavengers and concentrations applied in this study.}
\begin{tabular}{lll}
\hline
\textbf{Scavenging agent} & \textbf{ROS} & \textbf{Concentration} \\
\hline
\textit{tert-Butanol}18 & Hydroxyl radicals & 200 mM \\
Dimethylsulfoxide (DMSO)19 & Hydroxyl radicals & 200 mM \\
Sodium azide20 & Singlet oxygen & 10 mM \\
Catalase (CAT)21 & Peroxo species & 2.5 mg/mL \\
Superoxide dismutase (SOD)22 & Superoxide & 313 u/mL \\
\hline
\end{tabular}
\end{table}

\textbf{Figure 2:} Cleavage activity of complexes \textit{1b} - \textit{3b} (0.025 mM) with respect to pBR322 DNA (0.025 \textmu g/\mu L) in TRIS-HCl buffer (10 mM, pH 7.4) in the presence and absence of ascorbic acid (0.25 mM) at 37 °C for 1 h.

\textbf{Figure 3:} Cleavage activity of complex \textit{1b} (0.05 mM) with respect to plasmid DNA pBR322 (0.025 \textmu g/\mu L) in TRIS-HCl buffer (10 mM, pH 7.4) in the presence of ascorbic acid (0.25 mM) and different ROS scavengers at 37 °C for 1 h.
Our results show that DNA cleavage with the ATCUN peptide is most likely carried out by hydroxyl radicals (lanes 3 and 4) as well as peroxo species (lane 6) since cleavage is inhibited in the presence of tert-butanol, DMSO and catalase. This is in accordance with results obtained by Cowan et al. Additionally, sodium azide exhibits a strong quenching effect (lane 5), which indicates the presence of singlet oxygen. In order to exclude that this effect is due to a contamination in the azide solution, a control experiment was carried out. Therein, the complexes were incubated with DNA as before, however, this time in deuterated water (Figure S3.8 for 1b, S3.9 for 2b and 3b. Supporting Information). Singlet oxygen has a lifetime in H2O of approximately 2 µs,25 in D2O, the lifetime is increased by factor 10. Therefore reactions depending on singlet oxygen are more distinctive in D2O.25 This is also true in this case, since DNA cleavage was 2-3 times stronger regarding the formation of linear DNA for the compounds tested in D2O, indicating the presence of singlet oxygen.

It is known from the literature that the fluorescence of several dyes can be quenched by paramagnetic Cu(II) ions.25 Imperiali et al. showed, that the binding of these ions by the ATCUN motif leads to quenching of the fluorescence of a dansyl labelled peptide.15b The effect of Cu(II) complexation on the fluorescence of peptides 1a – 3a was thus studied using fluorescence spectroscopy. A decrease of fluorescence was observed with increasing Cu(II) concentration with a rest fluorescence of about 14% at an 1:1 ratio ligand:Cu(II) (Figure S5.1, Supporting Information, exemplarily 1a).

When complexes 1b – 3b (Figure 4, red lines) were incubated with plasmid DNA under gel electrophoresis conditions in the presence of ascorbate (Figure 4, green lines) a reconstitution of fluorescence was observed indicating the disappearance of Cu(II) species. For comparison peptides 1a – 3a are also shown (Figure 4, blue lines). During the course of these experiments, it is probable that Cu(II) ions and Cu-“oxo” type species like Cu-OOH and Cu-OH are produced. Since neither Cu(I) ions (d10 ion) nor Cu-“oxo” species lead to fluorescence quenching by energy transfer between donor and acceptor,2b fluorescence is reconstituted. Cleavage of DNA is supposed to happen when those Cu(I) ions are reoxidized by molecular oxygen leading to the generation of ROS (reactive oxygen species) (Scheme 1).6,11,24 Also the direct involvement of Cu-“oxo” species is feasible.

![Scheme 1: Mechanism of ROS production by Cu(II) ions in the presence of ascorbate.](image)

For Cu(II)-ATCUN complexes it was recently shown by cyclovoltammetric experiments that a Cu(III)/Cu(II) redox cycle might be involved in DNA cleavage instead.23 For investigation of the redox cycle in the present case the Cu(II)-peptide 2b was studied by NMR spectroscopy under an inert atmosphere in D2O-based TRIS-HCl buffer. The spectrum reveals typical Cu(II) paramagnetic species. After addition of ascorbic acid the NMR spectrum showed sharp, diamagnetic peaks (Figure S6-1). It is thus very likely that Cu(I) is produced by reduction with ascorbic acid under the conditions applied. Furthermore, electrophoresis experiments in the presence of the Cu(I) specific chelator neocuproine showed an inhibition of cleavage activity by ATCUN complexes (Figure S3-10). Both experiments are indications for the essential role of Cu(I) in DNA cleavage.

![Figure 4: Fluorescence spectra. A) 1a, 1b and 1b (incubated) in Britton-Robinson buffer (10 mM, pH 5.0). B) 2a, 2b and 2b (incubated) in TRIS-HCl buffer (10 mM, pH 7.4). C) 3a, 3b and 3b (incubated) in TRIS-HCl buffer (10 mM, pH 7.4).](image)
Conclusions

Investigation of DNA cleavage by agarose gel electrophoresis showed that fluorophore-carrying peptides 1a – 3a coordinated to Cu(II) (1b - 3b) are efficient DNA cleaving agents in the presence of a reducing agent. Plasmid DNA is cleaved even at very low concentrations. Due to the linked sterically bulky dyes, and thus the hindered approach of the complexes to DNA, our system is, however, less efficient under very similar conditions than the copper complexes of GGH, KGHK and the unfunctionalised peptide a (in the case of KGHK the positive charge of the lysine side chains supports interaction with DNA). Still, the cleavage activity of 1b - 3b (which is in the low micromolar range (cf. Fig. S3.5), is close to the one of Cu(phen)2), the first reported and one of the most efficient oxidative chemical nucleases. Experiments regarding the mechanism of DNA cleavage lead to the conclusion that DNA is cleaved oxidatively by hydroxyl radicals, peroxo species and singlet oxygen.

By spectroscopic means (fluorescence, NMR) we demonstrated that Cu(II) is reduced to Cu(I) which is required to reduce O2 to superoxide and subsequently produces H2O2. Hydrogen peroxide can then interact with Cu(I) to form metal-oxo species and hydroxyl radicals that induce DNA cleavage (Scheme 1). Quenched fluorescence of the Cu(II)-coordinated peptides 1b - 3b is regained when the Cu(II) ions react during this process. These new complexes not only initiate cleavage of DNA, but at the same time display changes of the oxidation state of the involved Cu(II) ions. Thus, our system simultaneously comprises a DNA cleaving agent and a redox-sensitive probe. After this proof of concept application of the herein described Cu(II) fluorescent peptides in cell experiments is conceivable (except for 1b which requires working at pH 5).

Acknowledgements

The authors would like to thank Biprajit Sarkar for helpful discussions.

Notes and references