This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A new Keggin-like niobium-phosphate cluster that reacts reversibly with hydrogen peroxide

Jung-Ho Son,*a William H. Caseya,b

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Polyoxoniobate clusters that are stable in acidic solutions are rare and particularly useful in industrial processes. Here we report a new pentaphosphate niobate polyoxometalate cluster that is stable over a wide pH range and that can be converted reversibly into the peroxo form.

The layered niobium-phosphate hydrate (NbOPO₄·xH₂O) is a useful catalyst for biomass conversion, such as the conversion of sugars to 5-hydroxymethylfurfural (HMF) and other dehydration reactions.¹ Its structure consists of corner-shared NbO₆ and PO₄ units² and the coexistence of both basic and acidic sites in NbOPO₄·xH₂O is responsible for its catalytic activity.³ Although niobium phosphate is widely used as a catalyst, its solution chemistry is rarely studied. Among the previous Keggin-type polyoxioniobates,⁴ Nyman et al reported phosphate-decorated lacunary Keggin-type polyoxoniobate as an insoluble sodium salt, Na₁⁶[(PO₄)₃P₄Nb₆O₁₆]·22H₂O (Nb₃P₄), which was characterized by crystallography and MAS NMR.⁵ Recently we synthesized sets of peroxoniobophosphate clusters as water-soluble precursors for electron-beam-patterned niobium-phosphate films.⁶ Among them, the [H₃NB₉P₅O₁₄(OH)₃]⁺ cluster (peroxo-Nb₅P₄O) is stable over a wide pH range, spanning into acidic conditions, which is remarkable in itself because polyoxoniobates are generally only stable and soluble in neutral to basic solutions. We here report the synthesis, structure and characterization of a Keggin-like mixed niobium-phosphate cluster as a highly soluble trimethylammonium (TMA) salt, (TMA)₆H₃Nb₉P₅O₃₁·28H₂O (Nb₅P₄). The new cluster Nb₅P₄ features a central phosphate and four additional phosphates in the outer layers.

The Nb₅P₄ cluster was synthesized by hydrothermal reaction of hydrous niobium oxide, TMAOH and phosphoric acid. The solution pH is a key factor for the formation of Nb₅P₄. In the given synthesis condition (see ESI), Nb₅P₄ forms exclusively and the solution pH=9 after reaction. When a larger amount of TMAOH was used to make pH=10 after reaction, a mixture of Nb₅P₄ and Keggin-type [PNb₄O₁₂]⁶⁺ cluster (PNb₄O₁₂)⁷ formed, as we determined by electrospray-ionization mass spectrometry (ESI-MS). The PNb₄O₁₂ dominated when the pH of the reaction solution was higher than 11.

The shape of Nb₅P₄ is similar to the Keggin-type cluster, but it possesses no symmetry [Fig. 1]. There are some irregularly shaped polyoxoniobate clusters reported previously.⁸ Symmetry is lost in Nb₅P₄ because of the multiple substitutions of PO₄ groups for the different MO₆ sites in the normal Keggin structure. The structure of Nb₅P₄ is significantly different from Nb₅P₄, which possesses pseudo-C₃v symmetry.⁹ The previous Nb₅P₄ structure has three neighboring phosphate groups bound to the lacunary-Keggin PNb₉ unit and there are two coordinating Na⁺ ions between the phosphate groups. Examples of similar mixed-addenda polyoxometalates with group 15 elements include an arsenate-containing polyoxovanadate.⁶ In the structure of Nb₅P₄, there are four metal-oxo triads bonded to the central phosphate. The basal plane of the Nb₅P₄ cluster in Fig. 1 (farthest from the viewer) is a regular Nb₅O₁₅ triad, which is a common building unit in Keggin ions. The other three triads are Nb₅PO₁₂ moieties.

The two Nb₅PO₁₂ triads are in a similar orientation, with P3 and P4 coordinating the basal Nb₅O₁₃ triad, while the other Nb₅PO₁₂ triad that contains P2 is rotated about 120° counterclockwise relative to the others. These three Nb₅PO₁₂ triads are connected by an additional phosphate (P1) at the top of the Nb₅P₄ cluster (closest from viewer). In the crystal structure, nine TMA cation sites are found and this number of TMA agrees with elemental analysis result. Thus three charge-balancing protons should be bound on the cluster to make the formula as [H₃NB₉P₅O₃₁]⁺. The positions of the protons could not be determined, by either crystallography nor by bond-valence sum calculation of the oxygen atoms.

The ESI-MS of the Nb₅P₄ cluster [Fig. S1] exhibit a relatively complex multi-peak pattern when compared to simpler spectra of other substituted polyoxoniobate clusters that we have synthesized.⁶,⁷,¹⁰ There are multiple side peaks near the assigned peaks, which could be due to loss or addition of water from the Nb₅P₄ cluster during the ionization or drying steps in the ESI-MS analysis. Multiple side peaks in ESI-MS were also observed for [H₂Mn₁⁰Nb₉O₃₂]⁺ cluster.¹¹ There are also some unassigned peaks between 800 < m/z <950, which must be due to...
The 31P NMR spectrum of an aqueous Nb₅P₃ solution shows four phosphate peaks assignable to the cluster [Fig. 2]. The integrated peak areas, from left to right, are approximately 1.2:1.1, which agree with five different phosphate groups in the cluster stoichiometry. We hypothesized that the average P-O lengths within PO₄ groups [Fig. S2] and 31P chemical shifts are related. Assuming that the chemical shift depends on the average P-O lengths to the nucleus, we assign the peak at -1.6 ppm as the central phosphate (P5), the peak at -3.8 ppm as P1 and P4. These P1 and P4 have similar average P-O lengths, so the merged peak in the NMR spectra is understandable if the chemical shieldings were also similar. Accordingly, we assign the peak at -6.4 as P2, and the most upfield peak at -11.3 ppm as P3. The peak assignment is also in agreement with the peak widths. The P3 has the widest range of P-O lengths in the X-ray structure, and also the broadest peak in the NMR spectra, and the central P5 has the most regular P-O lengths and correspondingly the sharpest peak. The correlation suggests that asymmetry of the 31P nuclei are reflected in the spectra. The 31P MAS NMR spectra shows three overlapping peaks (-1.6, -2.4, and -3.2 ppm) in the more downfield region and a broader upfield peak at -10.1 ppm [Fig. 2]. Deconvolution and integration of the peaks gives approximate ratios of 1:2.2 for (-1.6 ppm and -2.4 ppm) : -3.2 ppm : -10.1 ppm peaks. The peaks at -1.6 and -2.4 ppm are assigned to the central P5. Similarly to the solution 31P NMR peak assignment, the -3.2 ppm peak is assigned to P1 and P4, and the peak at -10.1 ppm is assigned to P2 and P3. In the 31P MAS NMR study of Nb₅P₃, two broad peaks were observed at 6.1 and 1.4 ppm, and these are assigned to outer phosphate and central phosphate groups, respectively. We speculate that the considerable downfield shift of the outer phosphate group in Nb₅P₃ compared to Nb₅P₂ can be due to the coordination of Na⁺. The Nb₅P₃ was also characterized via FT-IR and Raman spectroscopy [Fig. S3]. The FT-IR spectra show multiple P-O bands in the range of 1000 - 1200 cm⁻¹, which arise from different PO₄ groups. The Nb=O band is located at 900 cm⁻¹ and weaker M-O-M bands are observed below 800 cm⁻¹. In the Raman spectra, multiple overlapping Nb=O bands near 900 cm⁻¹ are observed, possibly due to the asymmetric structure of Nb₅P₃. We assign the weak bands in 950 – 1100 cm⁻¹ to different PO₄ groups.

The stability of the Nb₅P₃ cluster in different pH was examined by using ESI-MS [Fig. S4]. The pH of the 6 mM solution of Nb₅P₃ was 7.3, and the cluster was apparently kinetically stable in solution for many months. The Nb₅P₃ cluster was stable until pH 12 when titrated with TMAOH. The cluster was also kinetically stable when titrated with HCl until pH 3. The solution at pH<3, however, became a transparent hydrogel after a few days, which indicates a slow proton-induced charge neutralization, rearrangement and condensation.
31P NMR peaks of Nb3P5 shift and split after addition of hydrogen peroxide, which indicates that a range of different peroxo-Nb3P5 or similar compounds form as transient intermediates. Chemical shifts of the transient species are not much different from Nb3P5, which suggests to us that the structures of the transient species can be similar to Nb3P5, but perhaps decorated differently with peroxo groups that affect the 31P chemical shifts. This observation is consistent with the ESI-MS results that the transient 31P NMR peaks show partial dissociation and rearrangement of the molecule, but not wholesale destruction. The sharp transient peak at -1 ppm is tentatively assigned to [(H5Nb2PO4(O2)2)3]9−, which was suggested by ESI-MS.

We note that well resolved 31P NMR peaks are observable only when a stoichiometric amount of H2O2 is added; only a few broad peaks are observed during the reaction when more H2O2 is added, possibly due to fast speciation changes and disorder upon peroxidation. The reaction is complete after one day when slight excess H2O2 is added, but the reaction is faster when a larger excess of H2O2 is added. The growing peak of peroxo-Nb3P2 shifts upfield to -1 ppm during the reaction, which might be due to an increasing concentration of peroxo-Nb3P2. When the reaction is complete, only the peak of peroxo-Nb3P2 and a small phosphate peak near 1 ppm are observed [Fig. 5].

The reverse reaction, converting peroxo-Nb3P2 to Nb3P5, can be achieved by hydrothermal treatment of a solution of peroxo-Nb3P2 at 120 °C overnight. It is not surprising that heat destroys the peroxide moieties, but the Nb3P5 forms readily because both clusters have a similar Nb:P ratio and because Nb3P5 is stable at near-neutral conditions (pH ~7). The sensitivity of the peroxo moieties to heat suggests a strategy for laser-patterning of films.

In summary, a new niobium-phosphate cluster is described that is stable over a wide range of solution pH. This cluster thus adds to the small library of polyoxoniobate compounds that can be processed in acidic solutions. Most interestingly, the cluster can reversibly interconvert to and from the peroxo-Nb3P2, which suggests an easy means of patterning. This new cluster may be viewed as a molecular form of the solid niobium-phosphate catalyst that is so useful in industrial applications.

This work was supported by an NSF CCI grant through the Center for Sustainable Materials Chemistry, number CHE-1102637. Additional support to JHS was via NSF-CHE-1307556 to WHC. We thank Dr. Ping Yu for acquisition of 31P MAS NMR spectra. We also thank Zamirbek Akimbekov and Prof. Alexandra Navrotsky for TGA data and Jiarui Wang for XRD.

Notes and references


