This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Solid state transformation of the crystalline monohydrate
(CH₃NH₃)PbI₃(H₂O)) to the (CH₃NH₃)PbI₃ perovskite

Gregory H. Imler, Xia Li, Bolei Xu, Graham E. Dobereiner, Hai-Lung Dai, Yi Rao*, and Bradford B. Wayland*

Received xxxx, Accepted xxxx Cite this: DOI: 10.10/x0xx00000x 39

Colorless crystals of (CH₃NH₃•H₂O)PbI₃ spontaneously lose water at 298K which triggers a transformation to the black (CH₃NH₃)PbI₃ perovskite in the solid state as a porous microcrystalline solid with nanoscale substructure, but the dihydrate (CH₃NH₃)₂PbI₄•2H₂O) requires much more forcing conditions to produce (CH₃NH₃)PbI₅.

The optoelectronic properties of methyl ammonium lead tri-iodide (CH₃NH₃PbI₃ (1)) with a 3-D perovskite type structure have permitted fabricating several solar cell architectures that have high conversion efficiencies1-22 which has sparked a surge of research on this material. Aqueous solutions of PbI₂ and CH₃NH₃I can alternate produce crystals of the black anhydrous 3-D perovskite CH₃NH₃PbI₃ (1)23, a nearly colorless monohydrate ((CH₃NH₃)PbI•H₂O) (2)24 and a light yellow dihydrate ((CH₃NH₃)₂PbI₄•2H₂O) (3)25 depending on the temperature and solution composition. The optoelectronic properties of 1 are of far greater interest than 2 and 3 because of the relatively small band gap of ~1.5 - 1.6 eV23,26-28 and broad electronic absorption spectrum of the black compound (1) compared to 2 and 3 with band gaps of 3.1 eV29 and 3.8eV24,30 respectively. Several recent studies have addressed the stability of 1 and the effects on solar cell performance that result from exposure to water and oxygen.29,31-34 This article reports on aspects of the conversions of crystals of the mono and dihydrates (2,3) into 1 in the solid state that extend and complement recent studies of the reactions of 1 with water vapor.29

Crystals of 1-3 were prepared by reported aqueous procedures23-25 and the structures verified using powder and single crystal X-ray diffraction (SI). Aqueous solutions of PbI₂ and CH₃NH₃I provide a facile route through which the solids of 1, 2 and 3 are able to interconvert. An equilibrium mediated by the aqueous solution is established between the solids of 1 and 2 when they are both in contact with an aqueous solution saturated with the PbI₂/CH₃NH₃I reaction mixture (eq. 1). Placing CH₃NH₃PbI₃(s) + H₂O(l) PbI₂MAI (CH₃NH₃•H₂O)PbI₃(s) 1 the black perovskite crystals back into contact with the mother liquor reaction solution at 298K resulted in 1 disappearing and crystals of 2 appearing. Crystals of 1 and 3 were also grown from solutions of PbI₂ and CH₃NH₃I in γ-butyrolactone (GBL)35 in the absence and presence of water respectively, but no conditions were found that gave crystals of the monohydrate 2 in GBL.

Structures of 1, 2 and 3 have 3-D23, 1-D24 and 0-D25 arrays of PbI₅ⁿ⁻ (n=2) respectively (figure 1), where each Pb(II) is surrounded by six iodides in octahedral-like structures. Ratios of ionic radii provide a guide for the capability of ABX₃ materials to produce perovskite-like 3-D structures.36,37 Applying the recently proposed procedure for estimating the effective ionic radius for polyatomic ions37 to the hydrated methyl ammonium cation ([CH₃NH₃•H₂O]⁺) gives an estimated effective ionic radius (rₑ) of 346nm and tolerance factor (α) of 1.13 (α = (rₐ+rᵦ)/(√(rₐ + rᵦ))). The tolerance factor of 1.13 is substantially outside the range of 0.8 - 1.0 where 3-D
perovskite-like structures are the most stable morphology. Adoption of lower dimensional structures for compounds of \([\text{CH}_3\text{NH}_2\text{H}_2\text{O}]^+\) with \(\text{PbI}_6^{(6-)}\) is consistent with the effective size of the hydrated methyl ammonium cation. Loss of water from 2 generates methyl ammonium cations ([CH\(_3\)NH\(_3\)\]^+) which have a near ideal tolerance factor \((\alpha = 0.92)\) for giving a perovskite-like \(3vD\) structure.

The thermodynamically favored coulombic bonding network between CH\(_3\)NH\(_2\)O and cationic \([\text{CH}_3\text{NH}_3]^+\) generates methyl ammonium cation. Loss of water from \(\text{CH}_3\text{NH}_3\text{PbI}_6\cdot\text{H}_2\text{O}\) shown with blue lines. The complete loss of the characteristic diffraction peaks at \(14.18^\circ\) and \(28.46^\circ\) corresponding to reflections from the 110 and 220 crystal planes of \(\text{I}^{23,31}\) show that the conversion process is quantitative and exclusively produces the 3-D perovskite \((\text{CH}_3\text{NH}_3\text{PbI}_3)\) as a polycrystalline material (Figure 2).

Figure 1: a) 3-D perovskite-like material \(\text{CH}_3\text{NH}_3\text{PbI}_3\) (1) b) 1-D chains of \([\text{PbI}_6]^{2-}\) and cationic \([\text{CH}_3\text{NH}_3\cdot\text{H}_2\text{O}]^+\) units. (2) Hydrogen bonding network between \(\text{CH}_3\text{NH}_3\) and \(\text{H}_2\text{O}\) shown with blue lines. e) 0-D structure of \((\text{CH}_3\text{NH}_3\cdot2\text{H}_2\text{O})\text{PbI}_6\) (3) with isolated \text{PbI}_6 octahedra.

The near colorless crystals of the monohydrate 2 in air or vacuum spontaneously lose water in a period of minutes to form a black material shown to be perovskite 1 by the powder x-ray diffraction pattern (Figure 2, eq. 2).

\[
(\text{CH}_3\text{NH}_3\cdot\text{H}_2\text{O})\text{PbI}_6(\text{a}) \leftrightarrow \text{CH}_3\text{NH}_3\text{PbI}_3(\text{a}) + \text{H}_2\text{O}(\text{d}) \quad 2
\]

Figure 3 shows images from an optical microscope that illustrate how the change from colorless to black propagates for a crystal of 2 converting to 1. The conversion is retarded by a coating of paratone oil to permit observation of this transformation over a period of two hours. Inspection of the conversion from a single crystal of 2 to 1 is illustrated in figure 3 and a video in the SI indicates that the conversion is initiated from points of nucleation which then propagate through the entire crystal. The complete loss of the characteristic diffraction peaks at \(8.35^\circ\) and \(10.31^\circ\) of the monohydrate 2 and appearance of powder diffraction peaks at \(14.18^\circ\) and \(28.46^\circ\) corresponding to reflections from the 110 and 220 crystal planes of \(\text{I}^{23,31}\) show that the conversion process is quantitative and exclusively produces the 3-D perovskite \((\text{CH}_3\text{NH}_3\text{PbI}_3)\) as a polycrystalline material (Figure 2).

Light yellow crystals of 3 ((CH\(_3\)NH\(_3\))\(_2\)Pb\(_I_2\)\(_6\)\(\cdot2\text{H}_2\text{O}\)) in air developed a black surface characteristic of the perovskite 1 over a period of 12 hours. The bulk interior of the crystal of 3 is unchanged (figure 4). Formation of 1 from 3 removes the components of CH\(_3\)NH\(_2\), HI and water (eq. 3) and is much slower than forming 1 by loss of water from 2 (eq. 1). A video showing the formation of 1 on the surface of 3 is given in the SI. Every effort should be made to avoid formation of 3 in the preparation of perovskite-like 1 because 3 cannot be easily removed or converted to 1. This is best achieved by using rigorously dried solvents and using a minimal ratio of CH\(_3\)NH\(_3\)I to PbI\(_2\).

\[
(\text{CH}_3\text{NH}_3)_2\text{PbI}_6\cdot2\text{H}_2\text{O} \leftrightarrow \text{CH}_3\text{NH}_3\text{PbI}_3(\text{a}) + 3\text{CH}_3\text{NH}_3\text{I} + 2\text{H}_2\text{O}(\text{a}) \quad 3
\]

Figure 4: Single crystal of \((\text{CH}_3\text{NH}_3)_2\text{PbI}_6\cdot2\text{H}_2\text{O}\) (3) placed on a glass slide and observed under optical microscope at a) 5 minutes b) 12 hours and c) surface of crystal removed with spatula to reveal intact interior of 3.
A single crystal of the monohydrate (CH$_3$NH$_3$)PbI$_3$•H$_2$O (2) was stabilized for x-ray structure studies by immediately coating with paratone oil followed by mounting in the XRD instrument at 100K. The overall structure of 2 consists of 1-D chains of [PbI$_3$]$^{2-}$ and 1-D chains of [CH$_3$NH$_3$]•H$_2$O$^+$ cations with alternating methyl ammonium and water molecules held together by hydrogen bonding (Figure 1). Each Pb$^{2+}$ interacts with six iodides in a highly distorted octahedral-like array that includes one terminal iodide (figure 1). The crystal of 2 at 100K shows a diffraction pattern for a single crystal (figure 2). When the crystal of 2 is warmed to 298K the spontaneous conversion to 1 occurs and the spots associated with a single crystal of 2 are replaced by the circles associated with a powder diffraction pattern for 1 (figure 5).

The perovskite material (1) obtained from single crystals of 2 retains the bulk shape of the reactant crystals, but X-ray diffraction (figure 5) and SEM (Figure 6) indicate that a microcrystalline powder-like material is produced. The loss of one water molecule from 2 in forming 1 results in a 6% decrease in the unit cell volume. The SEM images show a porous micron scale substructure for particles of 1 formed by loss of water from a single crystal of 2 (figure 6a, figure S1, S2). Probing the substructure further by TEM suggests that 5-10 nm particles of 1 are initially produced in the solid state conversion of crystalline 2 which agglomerate into larger particles (figure 6b, c, figure S3, S4).

Solid state conversion for crystals of 2 to 1 is spontaneous at 298, but formation of 1 from 3 requires more forcing conditions. It is important to avoid the formation of 3 during the preparation of the perovskite 1 because the dihydrate 3 cannot be easily removed or converted to 1. The large structural changes and the expulsion of water that occur in the transformation from the 1-D to the 3-D arrays of PbI$_3^-$ units in the solid state conversion of crystals of 2 to the perovskite 1 destroys the long range order and produces a porous microcrystalline form of 1. The material reported here complements the single crystal and films of 1 previously utilized in solar voltaic applications.

Acknowledgments: The authors acknowledge the seed funding from an Energy Frontier Research Center at Temple University funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DESC0012575, a Targeted Research Grant from the Temple University Office of the Vice Provost for Research, and an instrumentation grant NSF-CHE-0923077 for the JEOL JEM-1400 TEM, the CoE-NIC facility at Temple University founded on DoD DURIP Award N0014-12-1-0777 from ONR and the expertise of Dr. D. A. Dikin in obtaining SEM images.

Notes and references

a) Department of Chemistry, Temple University, Philadelphia PA 19122.
* Corresponding authors: virao@temple.edu and bwayland@temple.edu

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/c000000x/

(14) Sum, T. C.; Mathews, N. Energy & Environmental Science 2014, 7, 2518.

(36) Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477.