This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Chemical Communications

COMMUNICATION

Luminescent lanthanide graphene for detection of bacterial spores and cysteine

Yuzhen Wang, Ying Li, Wenjin Qi and Yujun Song

Here, we describe a new approach for preparation of luminescent lanthanide graphene in the presence of dipicolinic acid (DPA). Hg2+ can competitively bind with DPA which greatly quenches the fluorescence and the resultant complex is able to selectively and sensitively detect cysteine with the detection limit of 5 nM.

As a rising star in material sciences, two-dimensional graphene has attracted tremendous attention in the past few years.1,4 Potential applications ranging from novel drug delivery, biosensing and clinical diagnosis have been actively explored.5,8 To meet end, water-soluble, visible fluorescent graphene is a suitable candidate because they can be easily tracked in situ diagnosis or drug delivery pathway in vivo. Due to the good water solubility and easy functionalization, graphene oxide (GO) was widely used in biological application.9,10 However, GO only exhibits a weak infrared fluorescence, which limits its use in vitro and in vivo.10 Much effort has been devoted for developing fluorescent graphene. Previous studies have demonstrated that most organic compounds have short fluorescence lifetime, and more importantly, their fluorescence are strongly quenched due to photoinduced electron transfer or energy transfer to graphene when organic fluorophores are bound to the graphene sheets.11 It has been reported that rare-earth compounds have been widely used as laser materials, optoelectronic devices and as fluorescence probes in immunoassays.12,13 This is attributed to the 4f orbitals of rare-earth elements are shielded by 5s5p6s orbitals, rare-earth compounds exhibit unique spectroscopic characteristics, such as long luminescence lifetime, large Stoke’s shift and sharp line-like atomic emission.13-15 As these properties can overcome autofluorescence and light scattering, rare-earth compounds are commonly used as fluorophores in chemical biology.13

In this work, we design and synthesize europium (Eu3+) or terbium (Tb3+) complex covalently modified graphene (GE-Eu/GE-Tb) (Fig. S1, Scheme 1). In the presence of dipicolinic acid (DPA), a biomarker and major constituent of B. anthracis spores, the complex exhibits strong red or green luminescence under UV excitation which attributes to the formation of the GE-Eu-DPA or GE-Tb-DPA complex. Due to the threats in biological attack, B. anthracis spores have aroused particular concern throughout the world in the past decades.16-20 Development of methods for rapid and ultrasensitive detection of B. anthracis spores is greatly important for prevention and control of anthrax disease. Both autofluorescence and light scattering, rare-earth compounds are commonly used as fluorophores in chemical biology.13 When organic fluorophores are bound to the graphene sheets, the luminescence complexes provide a rapid and simple method for DPA detection. The GE-Tb-DPA complex shows higher sensitivity than GE-Eu-DPA for detection of DPA. We found that mercury ions can competitively bind to DPA and thereby decrease the fluorescence intensity of GE-Eu-DPA, while the intensity was recovered in the presence of cysteine. As an essential amino acid for proteins and biologically activity, cysteine plays an important role in the human body, such as protein synthesis, detoxification,
metabolism. The concentration of cysteine is highly correlated to the physiological functions and useful in diagnosing the underlying disease. Therefore, a graphene-based biosensor is also developed to detect cysteine.

Syntheses of GE-Eu and GE-Tb are illustrated in Fig. S1 and detailed in the Experimental section. We firstly obtained amino functionalized graphene (GA) by covalently grafting 1,2-Bis(2-aminoethoxy)ethane onto graphene through the reaction of epoxy groups on graphene oxides and amino groups on 1,2-Bis(2-aminoethoxy)ethane in the presence of KOH. Subsequently, NaBH₄ was added to reduce the product. Then ethylenediamine tetraacetic acid dihydrate (EDTA) was covalently grafted onto the surface of graphene by the reaction of the amino group presenting on the graphene surface with the anhydride group of EDTA molecules. The EDTA ligand on graphene is then readily converted into a complex coordinating with Eu³⁺ or Tb³⁺ (GE-Eu or GE-Tb). Upon exposure of GE-Eu or GE-Tb to DPA, DPA will coordinate with EDTA-Eu or EDTA-Tb group to form luminescent GE-Eu-DPA or GE-Tb-DPA.

The covalently grafted 1,2-bis(2-aminoethoxy)ethane on graphene was confirmed by FTIR spectra of GA (Fig. S2). The strong CH₂ (2925 cm⁻¹, 2852 cm⁻¹) vibrations and a characteristic C–N stretch mode (1320 cm⁻¹, ν C–N binding with an aromatic ring) confirm that the 1,2-bis(2-aminoethoxy)ethane has been covalently grafted to the graphene sheet successfully. Due to the reduction of NaBH₄, GA shows a maximum absorption at 269 nm. Conjugation of EDTA ligands to GA (GE) was confirmed by TGA and FTIR measurements. The new peaks at 1726 cm⁻¹ and 1650 cm⁻¹ in the FTIR spectrum indicate the presence of -COOH and CO–NH groups in the GE. The amount of EDTA grafted on GA has been evaluated by thermogravimetric analysis (TGA) under N₂ atmosphere and the content of EDTA in GE was 21.8 % (Fig. S3a). After the graft of EDTA on GA, the solution was redispersed, which attribute to the enhancement of electrostatic repulsion in the presence of EDTA. The formation of GE-Eu-DPA complex on graphene was evaluated by Energy-dispersive X-ray (EDX) spectra (Fig. S3b). The signals in the EDX spectrum indicate that Eu³⁺/Tb³⁺ are introduced onto graphene surface. Furthermore, the XPS images showed that Eu³⁺/Tb³⁺ are averagely distributed on the graphene sheets (Fig. S4).

After DPA was introduced in EDTA-Eu, an intense narrow band in UV-Vis spectra at 274 nm was observed (Fig. S3c). The solution of GE-Eu-DPA exposed in UV light exhibits strong red florescence, also suggesting that EDTA-Eu-DPA complex was successfully grafted on the graphene surface (Fig. 1a, b). Our atomic force microscopy (AFM) images show that the height of EDTA-Eu-DPA is 3.8 nm, which is higher than GO (~1 nm) (Fig. 1c, d).

In our graphene based system, we found Tb³⁺ is more sensitive than Eu³⁺ for the detection of B. anthracis spore. In the absence of DPA, the solution of GE-Tb was essentially nonemissive upon excitation at 270 nm (Fig. 2). Due to nonradiative deactivation from vibronic coupling of the OH oscillators with the excited lanthanide, coordinated water molecules can quench Tb³⁺ luminescence. However, addition of DPA will make the solution exhibit sharp emission bands at 492, 546, 586 and 621 nm, respectively, corresponding to the deactivation of the Tb³⁺ excited states ⁵D₂→⁷F₅ (n = 6, 5, 4 and 3). The DPA detection limit for this system was estimated to be 30 nM. The result is comparable to the previous reported by Lin et al, suggesting that graphene almost has no impact on the sensitivity.

The luminescent Tb³⁺-complex tag was linked by a diamin linker, which not only covalently immobilized Tb³⁺-complex on the graphene sheets but also efficiently prevented graphene luminescence quenching effect of Tb³⁺ complex. We compared both of the complexes for detection of DPA, GE-Tb shows higher sensitivity than GE-Eu for detection of DPA.

With the addition of Hg²⁺, the fluorescent intensity of GE-Tb-DPA at 546 nm decreased gradually. Due to the π→π* transition of bound DPA, the UV absorption spectrum of EDTA-Tb-DPA exhibited two well observed peaks at 271 and 278 nm (Fig. S5). However, in the presence Hg²⁺, the peak at 271 nm was shifted to 273 nm and the peak at 278 nm was diminished. This resulted spectrum is very similar to DPA-Hg complex, suggesting that Hg²⁺ is competitively bound to DPA which inhibited EDTA-Tb binding to DPA. Therefore, the formation of DPA-Hg complex leads to the decrease of fluorescent intensity of GE-Tb-DPA.

It has been reported that cysteine can react with Hg²⁺ to form...
Notes and references