This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A simple fluorescence off-on probe for the discrimination of cysteine from glutathione†

Xinghui Gao, Xiaohua Li,* Lihong Li, Jin Zhou and Huimin Ma*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A simple and stable fluorescence off-on probe for discrimination of cysteine (Cys) from glutathione (GSH) has been developed by combining resorufin with 7-nitrobenzofurazan. The probe, displaying distinct emission patterns for Cys and GSH at just one excitation wavelength, can be used for simultaneous determination of Cys and GSH in human plasma.

Cysteine (Cys) and glutathione (GSH), two main thiol compounds with low molecular weight in biosystems, play important roles in several diseases such as cystinosis, liver damage, and cancer.1–3 Cysteine is a precursor not only for many proteins but also for GSH, and GSH levels are often used to evaluate the redox and detoxification status in organisms due to its protective ability against oxidative and free-radical-mediated injury.4 Therefore, it is of great importance to develop an efficient method for the simultaneous detection of Cys and GSH in clinical samples.

Toward this end, fluorescence measurement has attracted much attention because of its simplicity as well as high selectivity and sensitivity, and till now a number of fluorescent probes have been developed to detect Cys and GSH by using different chemical reactions.5–18 Among them, the most often used one is based on the Cys-induced nucleophilic aromatic substitution-rearrangement reaction. However, disadvantages such as low quantum yield, relatively short analytical wavelength, poor stability or water solubility still exist in the existing probes. In particular, with these probes (except the cyanine-based but unstable probe) fluorescence measurements usually have to be performed at two sets of excitation wavelengths, which not only makes the analytical operation inconvenient but also increases measurement errors. Thus, new stable fluorescent probes are still desired for the simultaneous determination of Cys and GSH with simple measurement operation. Herein, we develop such a fluorescence off-on probe (1; Fig. 1) for this purpose by combining resorufin with 7-nitrobenzofurazan (NBD). The probe exhibits high stability, and distinct emission patterns for Cys and GSH at just one excitation wavelength, which leads to the establishment of a simple and practical method for the simultaneous detection of Cys and GSH in clinical samples such as human plasma.

As shown in Fig. 1, probe 1 can be readily prepared by coupling resorufin with NBD through an ether bond. We chose the two fluorophores of resorufin and NBD on the basis of the following considerations: first, resorufin has good water solubility, high quantum yield, and especially a rather broad excitation spectrum in the wavelength range of 450-575 nm,19,20 which would greatly benefit the choice of single excitation wavelength in fluorescence measurements. Second, NBD possesses a unique property of nucleophilic aromatic substitution-rearrangement to Cys instead of GSH.21–23 This would result in the formation of different reaction products for Cys and GSH (Fig. 1), thereby showing distinct spectroscopic signals and achieving the discrimination of the two thiols.

The spectroscopic properties of the probe were first investigated in details (Figs. 2 and 3; see also Fig. S3 in ESI†). As shown in Fig. 2, the probe itself is almost colourless, but its reaction solution with Cys or GSH shows pink colour (the inset) with a strong absorption peak at 570 nm, indicative of the release of free resorufin. This was confirmed by mass spectral analysis (m/z = 212 [M]+; Fig. S4 in ESI†). Notably, the reaction products of 1 with Cys also give an additional shoulder peak at about 475 nm, which is ascribed to the formation of 3 from the Cys-induced nucleophilic aromatic substitution-rearrangement (m/z = 283 [M]+; Fig. S4A). The formation of 3 was further verified by using 3-
mercaptotripropionic acid as a model compound, which lacks the amino group (as compared to Cys) and thus cannot form an amino-substitution product (Fig. S5A in ESI†). On the other hand, because GSH also lacks the proximal amine group required for the intramolecular rearrangement, its reaction product (4; m/z = 469 [M] in Fig. S4B) from the NBD moiety of 1 keeps the direct connection of the S atom (strong fluorescence quenching ability) to the NBD skeleton (Fig. S5B), which causes a rather weak absorption at 425 nm.

Fig. 2 Absorption spectra of 1 (10 µM) before (a) and after reaction with 150 µM of Cys (b) or GSH (c) at 25 °C for 10 min. The inset shows the corresponding colour change of 1 before and after reaction.

Fluorescence excitation spectra of 1 reacting with Cys and GSH are shown in Fig. S3 (ESI†). For Cys, two fluorescent products, which were characterized to be 2 and 3 as noted above, display the excitation maxima at 570 nm and 470 nm (Fig. S3A), respectively, for GSH, only one excitation maximum at 570 nm is observed (Fig. S3B), which is ascribed to the formation of the single fluorescent product of 2 (Fig. S4B). To assure a considerable fluorescence generation from both of resorufin and and GSH, in which Cys produces two emissions at 540 nm and 585 nm while GSH generates only one emission at 585 nm. Thus, fluorescence from Cys or GSH (Fig. S7). Notably, different emission behaviours were observed for Cys and GSH, in which Cys produces two emissions at 540 nm and 585 nm while GSH generates only one emission at 585 nm. Therefore, the fluorescence from Cys rather resembles that from GSH, which indicates that in the presence of Cys the quantification of GSH may be achieved by subtracting the fluorescence contribution of Cys at 585 nm because of fluorescence additivity. Change of temperature from 25 °C to 45 °C has little effect on the fluorescence of the probe reacting with Cys and GSH (Fig. S7). Thus, room temperature of 25 °C was used in our experiment. Moreover, the fluorescence intensity increases to a maximum in about 5 min upon addition of Cys or GSH (Fig. S8), indicating a fast reaction of the probe with the two thiols. Importantly, the fluorescence from 1 and its reaction solution keeps unchanged for at least 6 h, demonstrating high stability of the present detection system.

Fig. 3. Fluorescence response of 1 (10 µM) to Cys (A) and GSH (B) at varied concentrations (from bottom to top: 0, 2, 5, 9, 12, 18, 25, 35, 70, 90, 200 and 500 µM). The reaction was conducted for 10 min in 10 mM PBS (pH 7.4) at 25 °C. \(\lambda_{em} = 470 \text{ nm} \).

The above different emission patterns at a single excitation wavelength of 470 nm. As is seen, the probe alone is almost non-fluorescent (quantum yield \(\Phi \approx 0.003 \)), but its reaction with Cys or GSH generates large fluorescence enhancement. Notably, different emission behaviours were observed for Cys and GSH, in which Cys produces two emissions at 540 nm and 585 nm while GSH generates only one emission at 585 nm. Thus, Cys can be clearly identified by the simultaneous appearance of the two emissions, whereas GSH can be characterized by the generation of the single emission at 585 nm. These phenomena, consistent with those from absorption spectra, also support the formation of different products between Cys and GSH. Namely, Cys induced the generation of 2 and 3, which are responsible to the emissions at 585 nm and 540 nm, respectively; whereas GSH resulted in the formation of one fluorescent product (2) and one non-fluorescent product (4), the former giving the characteristic emission of resorufin at 585 nm and the latter hardly showing fluorescence due to the strong quenching ability of the S atom. The above different emission patterns at a single excitation wavelength allows for the simultaneous detection of Cys and GSH at various concentrations (from bottom to top: 0, 2, 5, 9, 12, 18, 25, 35, 70, 90, 200 and 500 µM). The reaction was conducted for 10 min in 10 mM PBS (pH 7.4) at 25 °C. \(\lambda_{em} = 470 \text{ nm} \).
except homocysteine (Hcy). Hcy exhibits a similar fluorescence response to Cys due to their structural similarity. However, the concentration of Hcy is at least ten times lower than that of Cys in normal plasma,25,26 therefore the effect of Hcy could be ignored in the analysis (Fig. S11). These results suggest that probe 1 may be capable of selectively detecting Cys or GSH in clinical samples.

Although there are some fluorescent probes reported for the simultaneous determination of Cys and GSH, none of them has been applied to the simultaneous determination of Cys and GSH in human plasmas. Here we have made such an attempt by using our probe. Prior to measurements, the fluorescence additivity of the present detection system was verified by using different mixture samples of Cys with varied concentrations of GSH in the linear range. As shown in Fig. S12, the fluorescence spectra measured from the mixture samples accord well with the additive fluorescence spectra obtained through the theoretical calculation (error < 2%), clearly indicating that, if Cys and GSH coexist, Cys can be accurately determined at \(\lambda_{em} = 540 \text{ nm} \) first, and then GSH is quantified by subtracting the fluorescence contribution from Cys at 585 nm. In this way, human plasma samples, diluted appropriately to fit the linear detection requirement, were analyzed. As shown in Table 1, the average concentration of Cys in human plasmas is about 289 \(\mu M \), and that of GSH is about 29 \(\mu M \), which are in agreement with the reported results (130 to 290 \(\mu M \) Cys, and 5 to 50 \(\mu M \) GSH in human plasmas).3,25-28 Furthermore, different concentrations of Cys and GSH were added to the plasmas, and the recovery by the present method was determined. As is seen from Table 1, the recoveries of Cys and GSH range from 95 to 109\% and from 102 to 104\%, respectively, with a relative error of no more than 7\%, suggesting that the proposed method is of great potential for discriminative determination of Cys and GSH.

Table 1 Determination of Cys and GSH in human plasmas

<table>
<thead>
<tr>
<th>Analyte in plasmas</th>
<th>added ((\mu M))</th>
<th>found* ((\mu M))</th>
<th>Recovery* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys</td>
<td>0</td>
<td>289.4 ± 3.6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>479.6 ± 12.0</td>
<td>95 ± 6.0</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>727.0 ± 9.0</td>
<td>109 ± 2.2</td>
</tr>
<tr>
<td>GSH</td>
<td>0</td>
<td>29.0 ± 1.6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>54.8 ± 1.4</td>
<td>104 ± 6.4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>80.2 ± 3.4</td>
<td>102 ± 3.0</td>
</tr>
</tbody>
</table>

*Mean of three determinations ± standard deviation

In summary, by combining resorufin with 7-nitrobenzofurazan, we have developed a new fluorescent probe for the discriminative determination of Cys and GSH. The probe is rather stable, and displays a fast but distinct fluorescence off-on response to Cys and GSH at only one excitation wavelength, which makes it convenient to simultaneously determine Cys and GSH, and such a capability of the probe has been demonstrated for the measurement of Cys and GSH in human plasmas.

We are grateful for the financial support from the NSF of China (Nos. 91432101, 21435007, and 21321003), the 973 Program (Nos. 2015CB932001 and 2015CB856301), and the Chinese Academy of Sciences (XDB14030102).

Notes and references

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: mahn@iccas.ac.cn, lihx@iccas.ac.cn.

† Electronic Supplementary Information (ESI) available: apparatus and reagents, and other supporting data. See DOI: 10.1039/b000000x/