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A variety of branched alkenylstannanes can directly be 

synthesized with excellent αααα-selectivity by the copper-

catalyzed hydrostannylation using a distannane or a 

silylstannane, irrespective of electronic and steric characters 

of terminal alkynes employed.  Synthetic utility of the 

resulting branched alkenylstannane has been demonstrated 

by total synthesis of bexarotene. 

In view of high synthetic versatility of alkenylstannanes 

especially in carbon–carbon bond-forming processes via 

Migita–Kosugi–Stille coupling, tin–lithium exchange reaction, 

etc., the development of potent methods for making 

alkenylstannanes of defined structure in regio- and 

stereoselective manners has continued to be a key subject in 

modern synthetic organic chemistry.1  One of the most popular 

and straightforward routes to alkenylstannanes would be 

hydrostannylation of alkynes,2 and three isomers, namely α-

adduct and (E/Z)-β-adduct, can be generated in the case of 

terminal alkynes (eqn (1)).3  Hence the regio- and stereocontrol 

of the hydrostannylation is a pivotal issue, and (Z)- or (E)-linear 

alkenylstannanes have successfully been synthesized with high 

β-selectivity under radical conditions,4 Lewis acid5 or transition 

metal catalysis.6  Although selective access to branched 

alkenylstannanes has also been achieved in some cases 

depending upon direct addition of a tin hydride7-9 or 

stannylmetallation–protonation sequence,10 the existing 

methods are still not versatile, owing to limited substrate scope 

on alkynes in every reaction and the use of an excess amount of  

 

 
Scheme 1 Reported α-selective hydrostannylation of terminal alkynes. 

the development of a universal system for α-selective 

hydrostannylation of terminal alkynes, which gives us a direct 

and efficacious way to such pharmacologically significant 1,1-

disubstituted alkenes as bexarotene11 and isocombretastatin A-

4,12 has been a long-awaited goal.   

 We have recently riveted our attention on potential copper 

catalysis for metallation reactions of unsaturated carbon–carbon 

bonds, and have already disclosed that distannylation13 as well 

as various borylations14 of alkynes and alkenes facilely occur to 

afford organostannanes and –boranes of structural diversity by 
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Table 1 Cu-catalyzed hydrostannylation with a distannanea 

 
Entry R Time 

(h) 

Yield 

(%)b 
2:2’ Products 

1 nC12H25 (1a) 1.5 75 98:2 2a,2’a 

2 nC10H21 (1b) 2 89 97:3 2b,2’b 

3 

(1c) 

1.5 89 97:3 2c,2’c 

4 THPO(CH2)4 (1d) 1 84 94:6 2d,2’d 

5 TBSO(CH2)2 (1e) 1.5 85 96:4 2e,2’e 

6 BnO(CH2)2 (1f) 1 76 97:3 2f,2’f 

7 HO(CH2)8 (1g) 3 76 >99:1 2g 

8 Br(CH2)8 (1h) 24 43 89:11 2h,2’h 

9 (1i) 8 63 >99:1 2i 

10 BnOCH2 (1j) 6 37 92:8 2j,2’j 

11 2-Pyridyl (1k) 5.5 68 >99:1 2k 

12 
(1l) 

6 68 86:14 2l,2’l 

13 4-nBuC6H4 (1m) 24 61 >99:1 2m 

14 

(1n) 

2 80 >99:1 2n 

aGeneral procedure: 1 (0.30 mmol, 1 equiv), Me3Sn–SnMe3 (0.39 mmol, 1.3 

equiv), H2O (0.90 mmol, 3 equiv), Cu(OAc)2 (0.015 �mol, 5 mol %), PtBu3 

(0.053 mmol, 17.5 mol %), toluene (0.2 mL).  bIsolated yield. 

 

employing a distannane and a diboron as a metallating reagent.  

The distannylation of alkynes was found to proceed through 

intermediary formation of a β-stannylalkenylcopper species of 

enough nucleophilicity, which was finally convertible into vic-

distannylalkenes by capturing with a tin electrophile.  

Therefore, we envisioned that a copper catalyst would also 

promote hydrostannylation of alkynes in the presence of a 

suitable protic reagent for trapping the β-stannylalkenylcopper 

intermediate.15  Herein we report that the hydrostannylation of 

terminal alkynes smoothly takes place under the copper 

catalysis by use of water as a protic reagent, and that the 

universal system allows a variety of branched alkenylstannanes 

to be synthesized with excellent α-selectivity, irrespective of 

electronic and steric characters of terminal alkynes.   

 The α-selective hydrostannylation has proven to be feasible 

to provide a branched (2a) and a linear (2’a) alkenylstannanes 

in 75% yield (2a:2’a = 98:2), when we treated 1-tetradecyne 

(1a) with hexamethyldistannane and water in toluene at 110 °C 

in the presence of Cu(OAc)2–PtBu3 catalyst (Table 1, entry 

1).16,17  The reaction was also applicable to 1-dodecyne (1b) 

and an imide-substituted alkyne (1c), giving 2b and 2c with 

Table 2 Cu-catalyzed hydrostannylation with a silylstannanea 

 
Entry R Time 

(h) 

Yield 

(%)b 
3:3’ Products 

1c nC6H13 (1p) 43 43d >99:1 3p 

2 nC6H13 (1p) 4 73 86:14 3p,3’p 

3 nC8H17 (1q) 2 74 88:12 3q,3’q 

4 nBu (1r) 2 74 85:15 3r,3’r 

5 iAmyl (1s) 2 60 84:16 3s,3’s 

6 iBu (1t) 2 48 92:8 3t,3’t 

7 NC(CH2)3 (1u) 3 55 93:7 3u,3’u 

8 Cl(CH2)3 (1v) 2 44 92:8 3v,3’v 

9 BnO(CH2)2 (1f) 2 55 88:12 3f,3’f 

10 Bn (1w) 2 46 93:7 3w,3’w 

aGeneral procedure: 1 (0.45 mmol, 1.5 equiv), Me3Si–SnBu3 (0.30 mmol, 1 

equiv), H2O (0.45 mmol, 1.5 equiv), Cu(OAc)2 (0.03 �mol, 10 mol %), PCy3 

(0.11 mmol, 35 mol %), toluene (0.2 mL).  bIsolated yield.  cBu3Sn–SnBu3 

was used instead of Me3Si–SnBu3.  H2O = 0.4 mL (74 equiv).  dNMR yield. 

high degrees of α-selectivity in excellent yield (entries 2 and 3), 

and furthermore functionalized aliphatic alkynes bearing an 

acetal (1d), a silyl ether (1e) or a benzyl ether (1f) smoothly 

underwent the α-selective hydrostannylation, leaving these 

reactive moieties intact (entries 4–6).  The high functional 

group compatibility was also demonstrated by the reaction of a 

hydroxyl- (1g) or a bromo-substituted alkyne (1h), and 

propargyl-functionalized alkynes (1i and 1j), although the 

yields became moderate in some cases (entries 7–10).  The 

regioselective installation of a stannyl group into an internal 

carbon of aromatic terminal alkynes was achieved under the 

present conditions as well, and thus pyridyl (1k), naphthyl (1l) 

and phenyl (1m and 1n) acetylenes were efficiently 

transformable into the respective branched alkenylstannanes 

(2k–2n) (entries 11–14).  An internal alkyne, diphenylacetylene 

(1o) could participate in the reaction to furnish (E)-

trimethylstannylstilbene (2o) as the sole product (eqn (2)), 

showing that the hydrostannylation completely proceeds in a cis 

fashion.18   

 With the successful synthesis of diverse branched 

alkenylstannanes having a trimethylstannyl moiety, we next 

investigated α-selective installation of a tributylstannyl moiety.  

Although the reaction of 1-octyne (1p) with 

hexabutyldistannane in the presence of Cu(OAc)2–PCy3 

catalyst19 led to regioselective formation of a branched 

alkenylstannane (3p) in moderate yield (Table 2, entry 1), a 

silylstannane, tributyl(trimethylsilyl)stannane turned out to 

serve as a more effective and reactive stannylating reagent to 

afford a 74% yield of 3p and 3’p (3p:3’p = 86:14) (entry 2).17  

It should be noted that a silyl moiety was not incorporated into 

an alkyne at all in the reaction with a silylstannane, which is in 

marked contrast to the copper-catalyzed selective silyl- 

incorporation reactions into unsaturated hydrocarbons with a 
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Scheme 2 Cu-catalyzed deuteriostannylation with deuterium oxide. 

 
Scheme 3 Total synthesis of bexarotene. 

silylborane.20  The hydrostannylation using a silylstannane also 

took place smoothly with 1-decyne (1q), 1-hexyne (1r) and 

branched aliphatic terminal alkynes (1s and 1t) to provide 3q–

3t with high α-selectivity (entries 3–6), and furthermore 

functionalized terminal alkynes bearing a cyano (1u), a chloro 

(1v) or a benzyloxy moiety (1f), and 3-phenyl-1-propyne (1w) 

were transformable into the respective branched 

alkenylstannanes (entries 7–10).21   

 Since water can serve as a proton source in the 

hydrostannylation, we expected that the present system may be 

extend to deuteriostannylation by use of deuterium oxide.  

Surprisingly, the copper-catalyzed reaction of 1-tetradecyne 

(1a) with hexamethyldistannane in the presence of deuterium 

oxide produced a dideuteriostannylation product (2a-d2) 

predominantly (2a-d2:2a-d:2a = 79:7:14, eqn (a), Scheme 2).  

The formation of 2a-d2 can be rationalized by considering the 

deuteriostannylation of 1-tetradecyne-d (1a-d), which should be 

generated in situ prior to the deuteriostannylation.  Actually, 

hydrogen–deuterium exchange between 1a and deuterium oxide 

was demonstrated to occur smoothly under the copper catalysis 

(eqn (b), Scheme 2).   

 As depicted in Scheme 3, the branched alkenylstannane 

(2n) was found to be facilely convertible into 1,1-diarylalkene 4 

by the Migita–Kosugi–Stille coupling with ethyl 4-

iodobenzoate.  Hydrolysis of the ester moiety of 4 provided 

bexarotene 5 in 39% overall yield (3 steps, based on alkyne 

1n), which is widely used as a treatment for cutaneous T-cell 

lymphoma,11 demonstrating the synthetic significance of the 

 
Scheme 4 A plausible catalytic cycle for the hydrostannylation. 

present α-selective hydrostannylation.   

 Formation of a stannylcopper species (6) via σ-bond 

metathesis between a distannane (or silylstannane) and Cu–OH 

would initiate the hydrostannylation (Scheme 4).22  The 

resulting stannylcopper species (6) then adds across a carbon–

carbon triple bond of a terminal alkyne (stannylcupration) to 

produce a β-stannylalkenylcopper species (7), which is finally 

transformed into a hydrostannylation product through 

protonation with water.23  The formation of branched 

alkenylstannanes (2 and 3) with high α-selectivity should be 

attributable to the regioselective generation of 7, possessing the 

stannyl moiety at the internal carbon, in the stannylcupration 

step, which has already been well documented to be kinetically 

favored in a stoichiometric reaction of a stannylcopper species 

with a terminal alkyne.24   

 In conclusion, we have developed the universal system for 

the α-selective hydrostannylation of terminal alkynes by using 

a distannane or a silylstannane as a stannylating reagent in the 

presence of a copper–trialkylphosphine catalyst, that leads to 

the convenient and straightforward method for synthesizing 

diverse branched alkenylstannanes, irrespective of electronic 

and steric nature of terminal alkynes employed.  The resulting 

branched alkenylstannane has been demonstrated to be facilely 

transformable into bexarotene of pharmacologically 

significance via the cross-coupling reaction.  Further studies on 

copper-catalyzed stannylation reactions using a distannane or a 

silylstannane are in progress.   
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