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Macrocyclic polyenynes: A stereoselective route 

to vinyl-ether-containing skipped diene systems 

Thomas O. Ronson, Martin H. H. Voelkel, Richard J. K. Taylor* and Ian J. S. 
Fairlamb*

The stereoselective synthesis of a challenging macrocyclic 

polyene scaffold, containing a sensitive vinyl ether motif, has 

been accomplished using O,C-dilithiation/selective C-

alkylation, Pd-catalysed etherification and Wittig reactions as 

key steps. An end-game macrocyclisation strategy employed a 

regio- and stereoselective Stille cross-coupling using 

Pd(Br)(N-Succ)(AsPh3)2 (AsCat) as the precatalyst.  

Skipped diene (1,4-diene) motifs are synthetically valuable sub-

components found in an eclectic array of bioactive natural products. 

Examples include macrocyclic compounds such as phacelocarpus 2-

pyrone A,1 labillaride C,2 ripostatin B3 and neurymenolide A4 (Fig. 1). 

These chemical structures provide a stiff examination of any synthetic 

methodology that facilitates the construction of isolated or multiply 

bonded 1,4-diene systems embedded within these types of 

macrocycles.5 For ripostatin B two synthetic approaches to the 1,4-

diene motif were simultaneously reported by Christmann6 and Prusov7 

employing alkene metathesis. Fürstner8 employed alkyne metathesis, 

and a variety of organometallic cross-coupling methods, to access the 

1,4-dienes embedded within neurymenolide A, where he also applied 

an Au-catalysed process to reveal the core 2-pyrone motif. Related to 

the ripostatin family, Sigman developed a Pd-catalysed 1,4-

vinylvinylation methodology using 1,3-butadiene, vinyl triflates and 

vinyl boronates.9 Despite these successes there are still many challenges 

associated with the selective synthesis of 1,4-diene containing products. 

 Macrocycle 1 (Scheme 1) is a structural mimetic of phacelocarpus 

2-pyrone A, a target in which we have been interested for some time.10 

Only one model study towards this natural product, exploring a ring-

closing alkyne methathesis route, has previously been carried out.11 We 

wished to synthesise 1 for the following reasons: (a) it contains four 

skipped centres of unsaturation (two with Z-stereochemistry) and a 

novel embedded skipped 1,4-diene motif containing an (E)-vinyl ether; 

(b) formation of a polyene/yne macrocyclic structure, using Stille cross-

coupling in the final step, was particularly appealing as we have 

previously developed catalysts for this purpose;10c,10d (c) an arene 

mimetic could increase the intrinsic stability of the macrocycle, 

allowing new synthetic analogues to be identified for drug discovery.10e 
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Fig. 1 Exemplar macrocyclic natural products containing 1,4-diene motifs. 

  

Scheme 1 Proposed retrosynthetic analysis of macrocyclic target compound 1.  
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A retrosynthetic analysis to macrocycle 1 is shown in Scheme 1. We 

identified four key disconnections, revealing three synthetic fragments 

A–C. We recognised that the non-trivial trisubstituted vinyl ether could 

be accessed by a Pd-catalysed etherification reaction, allowing 

fragments A and B to be connected.12 The synthesis of the fragment A 

could be achieved by selective C-alkylation of the dilithium salt derived 

from m-cresol.13 The adventurous branch within the retrosynthetic route 

exploits the dual nucleophilic reactivity of (Z)-1-tributylstannyl-but-1-

en-4-triphenylphosphonium bromide (the key vinylstannyl–

phosphonium salt, fragment C), allowing sequential Wittig reaction14 

and Stille cross-coupling15 to be assessed, along with any associated 

regio- and stereoselectivity. We postulated that the Stille cross-coupling 

was best suited to the last step, to deliver the macrocyclic target 

compound 1.16 

 The forward synthetic route began with the synthesis of fragments 

A–C (Scheme 2). Fragment A was prepared from the homopropargylic 

alcohol 2, by silyl protection to give 3, then alkylation of the terminal 

alkyne with oxetane 4, giving 5 in high yield. Iodination to give 6, and 

then subsequent alkylation of the dilithium salt of m-cresol 7 with the 

primary iodide, gave compound 8 (fragment A) in good overall yield.

 Fragment B was efficiently prepared using Frantz’s method,17 by 

reaction of commercially available β-ketoester 9 with Me4NOH and 

Tf2O, giving (E)-enol triflate 10 (fragment B) selectively in 63% yield.  
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Scheme 2 Synthesis of fragments A–C. 

Fragment C was synthesised starting from homopropargylic bromide 

11, which was lithiated on the terminal alkyne and then trapped with n-

Bu3SnCl to give alkynyl stannane 12 in good yield. The synthesis of 

(Z)-stannane 13 was accomplished using in-situ generated Schwartz 

reagent, Cp2Zr(H)Cl,18 giving 13 which was reacted directly with PPh3 

to give phosphonium salt 14 (fragment C) in good yield. 

 The end-game synthetic route is described in Scheme 3. Phenolic 

compound 8 (fragment A) was subjected to a highly novel Buchwald–

Hartwig type etherification12 by reaction with (E)-enol triflate 10, 

mediated by a precatalyst consisting of Pd3(OAc)6 (>99% purity) and 

the XPhos ligand (Pd:XPhos = 1:2), which gave (E)-enol ether product 

15 in 84% yield. The vinyl ester functionality within 15 was then 

reduced to the alcohol with DIBAL-H and acetylated under standard 

conditions. Subsequent silyl deprotection with TBAF afforded 

compound 16 in 84% yield (over 3 steps). A mild and neutral protocol 

for the Dess–Martin perodinane (DMP) oxidation19 of 16 afforded 

aldehyde 17 in 86% yield.  

 The final sequence for the synthetic route involved reaction of 

Wittig reagent 14 (fragment C) with aldehyde 17 to give 18 in 43% 

yield.20,21 Only the Z stereoisomer was formed, and the (Z)-vinyl 

stannane was also retained. The last step unites the (Z)-vinyl stannane 

and allylic vinyl ether components. The allylic centre creates the 

potential for SN2 and SN2' products being formed from PdII(π-

allyl)(OAc)Ln or PdII(π-allyl)(R)Ln intermediates; any π-σ-π 

equilibration could influence the alkene stereochemistry. The Stille 

cross-coupling macrocyclisation reaction was run at low concentration 

(0.02 M). We initially evaluated the established and widely used 

catalyst system Pd2(dba)3•CHCl3/AsPh3 (Pd:AsPh3 = 1:2),22 which gave 

the target compound 1 in 28% yield (isolated product).  

O

TBDPSO

O

EtO

TBDPSO

HO

Pd3(OAc) 6, XPhos, K3PO4
Toluene,  100 °C, 2 h

(84%)

1. DIBAL-H, Et2O, –78 °C, 2 h

2. Ac2O, NEt 3, DMAP,

CH 2Cl2, RT, 17 h
3. TBAF, THF, RT, 1 h

O

HO

AcO

DMP 
CH2Cl2, RT, 2 h

(86%)

O

O

AcO

PPh3

SnBu3 Br

OAcO

SnBu3

O

AsCat (10 mol%), LiCl

DMF, 25 °C, 3 days

(44%)

NaHMDS, THF

–78 °C to RT, 3 h

Linear route: 

6.5% in 11 steps

(84% over 3 steps)

OTf
EtO2C

(43%)

Pd

AsPh3

AsPh3Br

N

O

O

AsCat

8

10

14

15

1617

18

(E,Z,Z-1)

 

Scheme 3 End-game synthesis of macrocycle 1. 
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Whilst the preliminary result encouraged us, we were pleased to 

establish that our in-house developed precatalyst for Stille cross-

couplings of benzyl halides with organostannanes,23 Pd(Br)(N-

Succ)(AsPh3)2 (‘AsCat’), worked well for this particular 

macrocyclisation Stille cross-coupling, affording 1 in 44% yield (E:Z 

ratio = 5:1 about the vinyl ether bond, determined by 1H NMR 

spectroscopy) after preparatory thin layer chromatography. 

 The structural connectivity of 1 was confirmed by NMR 

spectroscopic analysis. The 1H NMR data is collated in Fig. 2 (complete 
1H/13C correlations are collated in the E.S.I.). The location of the 

methylene protons (H-1') allowed us to track the connectivity through 

to H-5. A clear nOe contact between H-1' and H-5 was observed by a 

NOESY experiment, confirming the stereochemistry of the vinyl ether 

as E in the major isomer.  
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Fig. 2 Key 

1
H NMR spectroscopic data for (E,Z,Z)-1 (major stereoisomer). 

In summary, we have described the stereoselective synthesis of a 

challenging macrocyclic polyene scaffold 1, containing a sensitive 

vinyl ether motif. A series of key steps, namely selective O,C-

dilithiation/C-alkylation, Pd-catalysed etherification, Wittig and Stille 

cross-coupling reactions were needed to ensure success. A highlight of 

the synthetic route is the first use of a vinyl stannane containing an 

alkyl phosphonium bromide,21 where its intrinsic dual nucleophilic 

character has been used in sequential Wittig and Stille cross-coupling 

reactions. The utility of Pd(Br)(N-Succ)(AsPh3)2, ‘AsCat’, as a Stille 

cross-coupling precatalyst,23 has been demonstrated, holding much 

promise for its wider application in cross-coupling catalysis and target-

orientated synthesis.16 
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