ChemComm

ChemComm

Macrocyclic polyenynes: A stereoselective route to vinylether-containing skipped diene systems

Journal:	ChemComm
Manuscript ID:	CC-COM-03-2015-002091.R1
Article Type:	Communication
Date Submitted by the Author:	09-Apr-2015
Complete List of Authors:	Ronson, Thomas; University of York, Chemistry Voelkel, Martin; University of York, Department of Chemistry Taylor, Richard; University of York, Department of Chemistry Fairlamb, Ian; University of York, Department of Chemistry

SCHOLARONE[™] Manuscripts

Chemical Communications

RSCPublishing

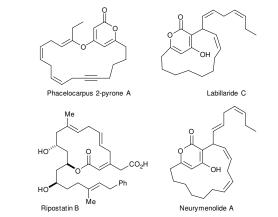
COMMUNICATION

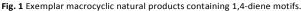
Macrocyclic polyenynes: A stereoselective route to vinyl-ether-containing skipped diene systems

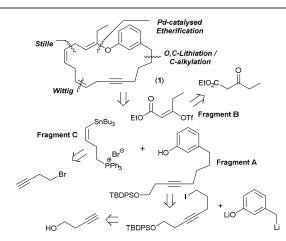
Cite this: DOI: 10.1039/x0xx00000x

Thomas O. Ronson, Martin H. H. Voelkel, Richard J. K. Taylor* and Ian J. S. Fairlamb*

Received ooth January 2015, Accepted ooth January 2015

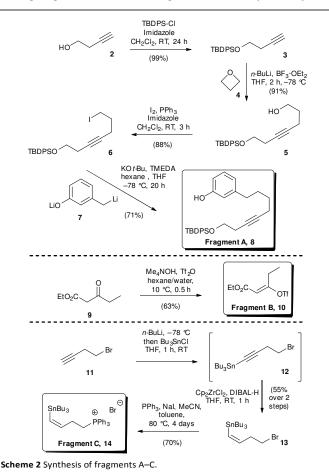

DOI: 10.1039/x0xx00000x


www.rsc.org/


The stereoselective synthesis of a challenging macrocyclic polyene scaffold, containing a sensitive vinyl ether motif, has been accomplished using O,C-dilithiation/selective Calkylation, Pd-catalysed etherification and Wittig reactions as key steps. An end-game macrocyclisation strategy employed a regio- and stereoselective Stille cross-coupling using Pd(Br)(N-Succ)(AsPh₃)₂ (AsCat) as the precatalyst.

Skipped diene (1,4-diene) motifs are synthetically valuable subcomponents found in an eclectic array of bioactive natural products. Examples include macrocyclic compounds such as phacelocarpus 2pyrone A,¹ labillaride C,² ripostatin B³ and neurymenolide A⁴ (Fig. 1). These chemical structures provide a stiff examination of any synthetic methodology that facilitates the construction of isolated or multiply bonded 1,4-diene systems embedded within these types of macrocycles.⁵ For ripostatin B two synthetic approaches to the 1,4diene motif were simultaneously reported by Christmann⁶ and Prusov⁷ employing alkene metathesis. Fürstner⁸ employed alkyne metathesis, and a variety of organometallic cross-coupling methods, to access the 1,4-dienes embedded within neurymenolide A, where he also applied an Au-catalysed process to reveal the core 2-pyrone motif. Related to the ripostatin family, Sigman developed a Pd-catalysed 1,4vinylvinylation methodology using 1,3-butadiene, vinyl triflates and vinyl boronates.9 Despite these successes there are still many challenges associated with the selective synthesis of 1,4-diene containing products.

Macrocycle **1** (Scheme 1) is a structural mimetic of phacelocarpus 2-pyrone A, a target in which we have been interested for some time.¹⁰ Only one model study towards this natural product, exploring a ringclosing alkyne methathesis route, has previously been carried out.¹¹ We wished to synthesise **1** for the following reasons: (a) it contains four skipped centres of unsaturation (two with *Z*-stereochemistry) and a novel embedded skipped 1,4-diene motif containing an (*E*)-vinyl ether; (b) formation of a polyene/yne macrocyclic structure, using Stille cross-coupling in the final step, was particularly appealing as we have previously developed catalysts for this purpose;^{10c,10d} (c) an arene mimetic could increase the intrinsic stability of the macrocycle, allowing new synthetic analogues to be identified for drug discovery.^{10e}

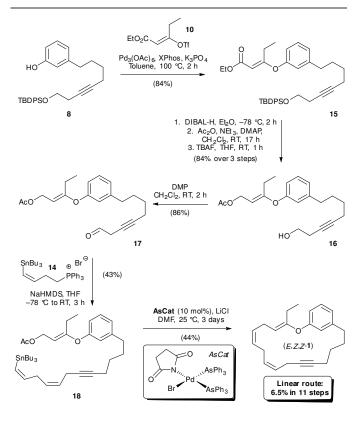


Scheme 1 Proposed retrosynthetic analysis of macrocyclic target compound 1.

A retrosynthetic analysis to macrocycle 1 is shown in Scheme 1. We identified four key disconnections, revealing three synthetic fragments A-C. We recognised that the non-trivial trisubstituted vinyl ether could be accessed by a Pd-catalysed etherification reaction, allowing fragments A and B to be connected.¹² The synthesis of the fragment A could be achieved by selective C-alkylation of the dilithium salt derived from *m*-cresol.¹³ The adventurous branch within the retrosynthetic route exploits the dual nucleophilic reactivity of (Z)-1-tributylstannyl-but-1en-4-triphenylphosphonium bromide (the key vinylstannylphosphonium salt, fragment C), allowing sequential Wittig reaction¹⁴ and Stille cross-coupling¹⁵ to be assessed, along with any associated regio- and stereoselectivity. We postulated that the Stille cross-coupling was best suited to the last step, to deliver the macrocyclic target compound 1.16

The forward synthetic route began with the synthesis of fragments A–C (Scheme 2). Fragment A was prepared from the homopropargylic alcohol **2**, by silyl protection to give **3**, then alkylation of the terminal alkyne with oxetane **4**, giving **5** in high yield. Iodination to give **6**, and then subsequent alkylation of the dilithium salt of *m*-cresol **7** with the primary iodide, gave compound **8** (fragment A) in good overall yield.

Fragment B was efficiently prepared using Frantz's method,¹⁷ by reaction of commercially available β -ketoester **9** with Me₄NOH and Tf₂O, giving (*E*)-enol triflate **10** (fragment B) selectively in 63% yield.

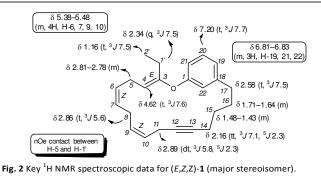


Fragment C was synthesised starting from homopropargylic bromide 11, which was lithiated on the terminal alkyne and then trapped with *n*-

Bu₃SnCl to give alkynyl stannane **12** in good yield. The synthesis of (*Z*)-stannane **13** was accomplished using *in-situ* generated Schwartz reagent, $Cp_2Zr(H)Cl$,¹⁸ giving **13** which was reacted directly with PPh₃ to give phosphonium salt **14** (fragment C) in good yield.

The end-game synthetic route is described in Scheme 3. Phenolic compound **8** (fragment A) was subjected to a highly novel Buchwald–Hartwig type etherification¹² by reaction with (*E*)-enol triflate **10**, mediated by a precatalyst consisting of $Pd_3(OAc)_6$ (>99% purity) and the XPhos ligand (Pd:XPhos = 1:2), which gave (*E*)-enol ether product **15** in 84% yield. The vinyl ester functionality within **15** was then reduced to the alcohol with DIBAL-H and acetylated under standard conditions. Subsequent silyl deprotection with TBAF afforded compound **16** in 84% yield (over 3 steps). A mild and neutral protocol for the Dess–Martin perodinane (DMP) oxidation¹⁹ of **16** afforded aldehyde **17** in 86% yield.

The final sequence for the synthetic route involved reaction of Wittig reagent **14** (fragment C) with aldehyde **17** to give **18** in 43% yield.^{20,21} Only the *Z* stereoisomer was formed, and the (*Z*)-vinyl stannane was also retained. The last step unites the (*Z*)-vinyl stannane and allylic vinyl ether components. The allylic centre creates the potential for S_N2 and S_N2' products being formed from $Pd^{II}(\pi-allyl)(OAc)L_n$ or $Pd^{II}(\pi-allyl)(R)L_n$ intermediates; any π - σ - π equilibration could influence the alkene stereochemistry. The Stille cross-coupling macrocyclisation reaction was run at low concentration (0.02 M). We initially evaluated the established and widely used catalyst system $Pd_2(dba)_3$ •CHCl₃/AsPh₃ (Pd:AsPh₃ = 1:2),²² which gave the target compound **1** in 28% yield (isolated product).



Scheme 3 End-game synthesis of macrocycle 1.

Journal Name

Whilst the preliminary result encouraged us, we were pleased to establish that our in-house developed precatalyst for Stille cross-couplings of benzyl halides with organostannanes,²³ Pd(Br)(N-Succ)(AsPh₃)₂ ('AsCat'), worked well for this particular macrocyclisation Stille cross-coupling, affording **1** in 44% yield (*E:Z* ratio = 5:1 about the vinyl ether bond, determined by ¹H NMR spectroscopy) after preparatory thin layer chromatography.

The structural connectivity of **1** was confirmed by NMR spectroscopic analysis. The ¹H NMR data is collated in Fig. 2 (complete ¹H/¹³C correlations are collated in the E.S.I.). The location of the methylene protons (H-1') allowed us to track the connectivity through to H-5. A clear nOe contact between H-1' and H-5 was observed by a NOESY experiment, confirming the stereochemistry of the vinyl ether as *E* in the major isomer.

In summary, we have described the stereoselective synthesis of a challenging macrocyclic polyene scaffold **1**, containing a sensitive vinyl ether motif. A series of key steps, namely selective *O*,*C*-dilithiation/*C*-alkylation, Pd-catalysed etherification, Wittig and Stille cross-coupling reactions were needed to ensure success. A highlight of the synthetic route is the first use of a vinyl stannane containing an alkyl phosphonium bromide,²¹ where its intrinsic dual nucleophilic character has been used in sequential Wittig and Stille cross-coupling reactions. The utility of Pd(Br)(*N*-Succ)(AsPh₃)₂, 'AsCat', as a Stille cross-coupling precatalyst,²³ has been demonstrated, holding much promise for its wider application in cross-coupling catalysis and target-orientated synthesis.¹⁶

EPSRC (EP/J500598/1) and the University of York are thanked for funding this work. This paper builds on work funded previously by EPSRC (EP/D078776/1). IJSF would like to thank the Royal Society for funding (University Research Fellowship). Ms J. Milani is thanked for measuring high field NMR spectroscopic data.

Notes and references

Department of Chemistry, University of York, York, YO10 5DD, U.K.. * Email: <u>richard.taylor@york.ac.uk</u> and <u>ian.fairlamb@york.ac.uk</u>

[†] Electronic supplementary information (ESI) available: Experimental and full characterisation details are provided, see DOI: 10.1039/c000000x/

Abbreviations: XPhos = (2-dicyclohexylphosphino-2',4',6'-triisopropyl biphenyl); DMP = Dess–Martin perodinane; DIBAL-H = diisobutylaluminium hydride; TBAF = tetra-*n*-butyl ammonium fluoride; DMAP = dimethyl aminopyridine; TBDPS = *tert*-butyldiphenylsilyl; TMEDA = tetramethylethyldiamine.

- R. Kazlauskas, P. T. Murphy, R. J. Wells and A. J. Blackman, *Aus. J. Chem.*, 1982, **35**, 113.
- W. L. Popplewell, Ph.D. Thesis, Victoria University of Wellington, New Zealand (2008), and references cited therein.
- H. Augustiniak, G. Höfle and H. Reichenbach, *Liebigs Ann.*, 1996, 1657.
- E. P. Stout, A. P. Hasemeyer, A. L. Lane, T. M. Daenport, S. Engel, M. E. Hay, C. R. Fairchild, J. Prudhomme, K. L. Roch, W. Aalbersberg and J. Kubanek, *Org. Lett.*, 2009, **11**, 225.
- Various synthetic approaches to skipped 1,4-dienes are known. Selected recent examples: (a) K.-Y. Ye, H. He, W.-B. Liu, L.-X. Dai, G. Helmchen and S.-L. You, J. Am. Chem. Soc., 2011, 133, 19006;
 (b) A. C. Gutierrez and T. F. Jamison, Org. Lett., 2011, 13, 6414; (c) P. Winter, C. Vaxelaire, C. Heinz and M. Christmann, Chem. Commun., 2011, 47, 394; (d) J. Pospíšil and I. E. Markó, J. Am. Chem. Soc., 2007, 129, 3516; (e) M. J. Schnermann, A. Romero, I. Hwang, E. Nakamaru-Ogiso, T. Yagi and D. L. Boger, J. Am. Chem. Soc., 2006, 128, 11799; (f) W. Tang and E. V. Prusov, Org. Lett., 2012, 14, 4690; (g) J. Gagnepain, E. Moulin and A. Fürstner, Chem. Eur. J., 2011, 17, 6964; (h) S. Xu, S. Zhu, J. Shang, J. Zhang, Y. Tang, and J. Dou, J. Org. Chem., 2014, 79, 3696.
- P. Winter, W. Hiller and M. Christmann, Angew. Chem., Int. Ed., 2012, 51, 3396.
- 7. W. Tang and E. V. Prusov, Angew. Chem., Int. Ed., 2012, 51, 3401.
- W. Chaładaj, M. Corbet and A. Fürstner, *Angew. Chem. Int. Ed.*, 2012, **51**, 6929.
- Utilising a three-component cross-coupling of a vinyl triflate, vinyl boronate and butadiene, catalysed by Pd, see: M. S. McCammant, L. Liao and M. S. Sigman, J. Am. Chem. Soc., 2013, 135, 4167.
- (a) M. J. Burns, Ph.D. Thesis, University of York, U.K. (2010); (b) M. J. Burns, T. O. Ronson, R. J. K. Taylor and Fairlamb, *Beil. J. Org. Chem.*, 2014, **10**, 1159. For use of our Pd(Br)(*N*-Succ)(PPh₃)₂ precatalyst in Stille cross-couplings, including 1,4-dienes, see: (c) C. M. Crawforth; S. Burling; I. J. S. Fairlamb, R. J. K. Taylor and A. C. Whitwood, *Chem. Commun.*, 2003, 2194; (d) C. M. Crawforth; I. J. S. Fairlamb and R. J. K. Taylor, *Tetrahedron Lett.*, 2004, **45**, 461. For examples of macrocycles in drug discovery, see: (e) J. Mallinson and I. Collins, *Future Med. Chem.*, 2012, **4**, 1409.
- 11. D. Song, G. Blond, A. Fürstner, *Tetrahedron*, 2003, **59**, 6899.
- (a) C. H. Burgos, T. E. Barder, X. Huang and S. L. Buchwald, *Angew. Chem. Int. Ed.*, 2006, **45**, 4321; (b) M. C. Willis, D. Taylor and A. T. Gillmore, *Chem. Commun.*, 2003, 2222; (c) Z. Wan, C. D. Jones, T. M. Koenig, Y. J. Pu and D. Mitchell, *Tetrahedron Lett.*, 2003, **44**, 8257.
- 13. (a) R. B. Bates and T. J. Siahaan, J. Org. Chem., 1986, 51, 1432; (b)
 H. Andringa, H. D. Verkruijsse, L. Brandsma and L. Lochmann, J. Organomet. Chem., 1990, 393, 307.
- (a) M. H. Becker, P. Chua, R. Downham, C. J. Douglas, N. K. Garg, S. Hiebert, S. Jaroch, R. T. Matsuoka, J. A. Middleton, F. W. Ng and L. E. Overman, *J. Am. Chem. Soc.*, 2007, **129**, 11987; (b) N. K. Garg, S. Hiebert and L. E. Overman, *Angew. Chem. Int. Ed.*, 2006, **45**, 2912.
- L. Del Valle, J. K. Stille and L. S. Hegedus, J. Org. Chem., 1990, 55, 3019.
- T. O. Ronson, R. J. K. Taylor and I. J. S. Fairlamb, *Tetrahedron*, 2015, **71**, 989.

Journal Name

- 17. D. Babinski, O. Soltani and D. E. Frantz, Org. Lett., 2008, 10, 2901.
- (a) B. H. Lipshutz, R. Keil and J. C. Barton, *Tetrahedron Lett.*, 1992,
 33, 5861; (b) Z. Huang and E.-i. Negishi, *Org. Lett.*, 2006, 8, 3675.
- 19. L. Wavrin and J. Viala, Synthesis, 2002, 326.
- 20. Wittig reaction of **14** with propanal gave the (Z)-alkene product in 93% yield.
- A similar vinylstannyl–phosphonium salt was used in the synthesis of arachidonic acid derivatives, but not in a Stille cross-coupling, see: E. J. Corey, M. d'Alarcao and K. S. Kyler, *Tetrahedron Lett.*, 1985, 26, 3919.
- 22. (a) V. Farina, B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585; (b) R. Faust, B. Göbelt, J. Prakt. Chem., 1998, 340, 90.
- (a) T. O. Ronson, J. R. Carney, A. C. Whitwood, R. J. K. Taylor and I. J. S. Fairlamb, *Chem. Commun.*, 2015, **51**, 3466. For earlier work on closely related Pd precatalysts, see: (b) C. M. Crawforth; S. Burling; I. J. S. Fairlamb; R. J. K. Taylor; A. C. Whitwood, *Chem. Commun.*, 2003, 2194; (c) C. M. Crawforth; I. J. S. Fairlamb; R. J. K. Taylor, *Tetrahedron Lett.*, 2004, **45**, 461; (d) C. M. Crawforth; S. Burling; I. J. S. Fairlamb; A. R. Kapdi; R. J. K. Taylor; A. C. Whitwood, *Tetrahedron*, 2005, **61**, 9736.