ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Journal Name

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Oxidation of Carbon Monoxide in Basic Solution Catalyzed by Nickel Cyano Carbonyls at Ambient Condition and the Prototype of a CO-Powered Alkaline Fuel Cell

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Wenfeng Lo,^{*a*} Chunhua Hu,^{*b*} Tyler Berenson,^{*a*} Nathaniel Tracer,^{*a*} Daniel Shlian,^{*a*} Michael Khaloo,^{*a*} Avraham Benhaim,^{*a*} and Jianfeng Jiang^{* *a*}

CO reduces nickel(2+) cyanides in basic solution to form tetrahedral $Ni^{0}(CN)(CO)_{3}$ or $Ni^{0}(CN)_{2}(CO)_{2}^{2}$. Both nickel(0) complexes can be oxidized back to nickel(2+) cyanide/hydroxide so that they behave as CO oxidation catalysts in basic solution. A primitive fuel cell was constructed to demonstrate the feasibility of a CO-powered fuel cell.

Carbon monoxide (CO) is an energy carrier molecule. It contains almost the same amount of energy as hydrogen gas (H₂) volume-wise in gas phase.¹ Like H₂, the oxidation of CO at room temperature is kinetically impossible without a catalyst.² However, unlike H₂, which has been used widely in many fuel cells for better energy efficiency,³ CO is still utilized mainly through combustion due to the lack of suitable CO oxidation catalysts. Catalytic oxidation of CO and construction of CO-powered fuel cells have always been an interesting topic to chemists in energy-related areas. In the past, people have reported that gold nanoparticles and polyoxometalate can be used as CO oxidation catalysts and several prototype CO-powered fuels have been built based on those catalysts.⁵ In this paper, we would like to report that the synthetic nickel cyano carbonyls can be used as CO oxidation catalysts in alkaline solution and to utilize this system to build a CO-powered alkaline flow-battery type fuel cell.

We are very interested in the carbonylation of first row transition metal cyanides. We recently reported that the reaction between cobalt(2+) salt and 4 equivalents of cyanide under 1 atmospheric CO in aqueous solution yielded Co^I(CN)₂(CO)₃ and $Co^{III}(CN)_6^{3-}$ through disproportionation.⁶ We have now expanded our study to nickel systems. Unlike cobalt, the carbonylation of nickel(2+) salt in neutral aqueous solution with 1 to 3 equivalents of cyanide did not yield any CO-containing product. However, the carbonylation of nickel(2+) salt with 1 or 2 equivalents of cyanide in strong basic solution led to the quantitative formation of nickel(0) cyano carbonyls. The reduction of nickel(2+) to nickel(0) by CO in basic solution is not unprecedented: A. A. Blanchard reported early in the 1930s that nickel(2+) sulfide or cyanide can be reduced by CO to the very toxic $Ni(CO)_4$ in alkaline solution with low yield.⁷ However, nickel cyano carbonyls were never isolated or suggested in his work. E. Peters described the oxidation of CO by Ni-amine

complexes in aqueous solution and an M-COOH intermediate was suggested. $^{\rm 8}$

RSCPublishing

In a typical experimental setup, 5mmol NiCl₂·6H₂O, 5mmol NaCN and 50mmol NaOH were stirred in 50mL water under 1 atm CO at 25°C. CO was kept in a gas reservoir (Figure S1 in supplementary information). The initially formed green precipitate was identified as nickel hydroxide by X-ray power diffraction. As the reaction progressed, the volume of CO decreased and the green color precipitate dissolved. After 36 hours, the reaction mixture became clear and colorless, and the gas absorption ceased. The gas in the reservoir was then checked by GCMS and it was still pure CO. The volume of CO consumed was 485mL (19.8mmol). The colorless solution was subsequently added to 150mL 0.05M $Ba(OH)_2$ solution under CO and white color precipitates ($BaCO_3$) formed immediately. The precipitate was filtered and washed with water and dried under vacuum overnight yielding a weight of 0.952 gram (4.83mmol). Addition of PPh₄Cl to the colorless reaction mixture followed by CH₂Cl₂ extraction led to the isolation of (PPh₄)[Ni(CN)(CO)₃] as white solid in good yield.⁶

From the amount of NiCl₂, NaCN, CO used and the amount of Ni⁰(CN)(CO)₃, BaCO₃ generated, the carbonylation of nickel(2+) with 1 equivalent of cyanide in alkaline solution can be expressed in **Reaction (1)**:

 $Ni^{2+} + CN^{-} + 4CO + 4OH^{-} \rightarrow Ni^{0}(CN)(CO)_{3}^{-} + CO_{3}^{2-} + 2H_{2}O$ (1)

Quantitative solution IR measurement showed that the formation of $Ni^0(CN)(CO)_3$ after the reaction mixture turned colorless is close to 100%. To ensure the purity of isolated (PPh₄)[Ni⁰(CN)(CO)₃], only 0.6 – 0.8 equivalents of PPh₄Cl were used in extraction.

 $Ni^{0}(CN)(CO)_{3}$ can further react with 1 equivalent of CN^{-} to form $Ni^{0}(CN)_{2}(CO)_{2}^{2}$ in either aqueous or $CH_{2}Cl_{2}$ solution through **Reaction (2)**:

Ni⁰(CN)(CO)₃ + CN → Ni⁰(CN)₂(CO)₂² + CO(2)

Both $Ni^0(CN)(CO)_3$ and $Ni^0(CN)_2(CO)_2^{-2}$ have been reported previously as reaction intermediates in the catalytic cycle of the phase-transfer-catalyzed carbonylation of allyl halides and other reactions and in theoretical computations.⁹ They have been isolated as Et₄N⁺ salts without structure identification.^{9a-c} Here, we are able to provide a much more straightforward preparation and to determine the structures of both complexes crystallographically. Both nickel complexes take tetrahedral geometry, thus, only one structural isomer is possible for either $Ni^{0}(CN)(CO)_{3}$ or $Ni^{0}(CN)_{2}(CO)_{2}^{2}$. The ORTEP drawings of both anions are shown in Figure 1. Selected bond distances and angles are shown in Table 1.

Figure 1: ORTEP drawings of $Ni^{0}(CN)(CO)_{3}^{-1}$ or $Ni^{0}(CN)_{2}(CO)_{2}^{2-1}$ anions at 50% probability level. Ni(CN)₂(CO)₂²⁻ has crystallographic C_{2v} symmetry.

Table 1: Selected bond distances and angles for $Ni^{0}(CN)(CO)_{3}^{-}$ and $Ni^{0}(CN)_{2}(CO)_{2}^{2}$.

Bond length (Å)		Bond angle (°)	
$Ni^{0}(CN)(CO)_{3}$			
Ni1-C1	1.942(2)	C1-Ni1-C2	111.84(9)
Ni1-C2	1.794(2)	C1-Ni1-C3	108.44(9)
Ni1-C3	1.795(2)	C1-Ni1-C4	105.95(9)
Ni1-C4	1.795(2)	C2-Ni1-C3	111.26(10)
		C2-Ni1-C4	108.70(10)
		C3-Ni1-C4	110.53(10)
$Ni^{0}(CN)_{2}(CO)_{2}^{2}$			
Ni1-C1	1.955(2)	C1-Ni1-C2	112.99(9)
Ni1-C2	1.759(2)	C1-Ni1-C1'	105.12(11)
		C1-Ni1-C2'	107.82(9)
		C2-Ni1-C2'	110.08(12)

* The primed atoms are generated by the symmetry operation (-x+1,y, -z+0.5).

 $Ni^{0}(CN)(CO)_{3}^{-}$ has C_{3v} molecular symmetry and $Ni^0(CN)_2(CO)_2{}^2$ has $C_{2\nu}$ molecular symmetry; thus, two CO stretching vibrations are allowed in IR spectra for each complex. The IR spectra of both complexes in CH₂Cl₂ solution are shown in Figure 2. The absorption at 1966cm^{-1} , 2049cm^{-1} in $\text{Ni}^{0}(\text{CN})(\text{CO})_{3}^{-1}$ and the absorption at 1866cm^{-1} , 1942cm^{-1} in $\text{Ni}^{0}(\text{CN})_{2}(\text{CO})_{2}^{-2}$ are assigned to CO stretches. The small absorption at 2098cm^{-1} in $Ni^{0}(CN)(CO)_{3}^{-}$ and 2063cm⁻¹ in $Ni^{0}(CN)_{2}(CO)_{2}^{-2}$ are assigned to CN stretches. The red shift of both CO and CN stretching frequencies when CO is substituted by CN⁻ agree with the trend shown in $Fe^{II}(CN)_3(CO)_3^-/Fe^{II}(CN)_4(CO)_2^{-2}/Fe^{II}(CN)_5(CO)_3^-$, $Fe(CN)(CO)_4^ /Fe(CN)_2(CO)_3^{2-}$ and $Co^{I}(CN)_2(CO)_3^{-}/Co^{I}(CN)_3(CO)_2^{2-}$ series.^{7,10}

Figure 2: IR spectra of $Ni^{0}(CN)(CO)_{3}$ or $Ni^{0}(CN)_{2}(CO)_{2}^{2}$ from $1800 - 2200 \text{ cm}^{-1}$ in CH₂Cl₂ solution.

Both Ni⁰(CN)(CO)₃⁻ and Ni⁰(CN)₂(CO)₂²⁻ are air-sensitive and

light sensitive. They can easily be oxidized by oxygen or other oxidants in solution and in solid form. Cyclic voltammetry measurements of Ni⁰(CN)(CO)₃⁻ were performed in basic aqueous solution, an irreversible oxidation was observed at -200mV vs Ag/AgCl reference electrode (Figure S2 in supplementary information). When quantitative amounts of O2 gas were injected to $Ni^{0}(CN)(CO)_{3}$ or $Ni^{0}(CN)_{2}(CO)_{2}^{2}$ solution in $CH_{2}Cl_{2}$ or water, the nickel complexes were destroyed and green color precipitate appeared. The identity of the green precipitate was not determined. However, once the green precipitate was mixed with hydroxide solution and kept stirring under CO, they quantitatively converted back to $Ni^{0}(CN)(CO)_{3}^{-}$ or $Ni^{0}(CN)_{2}(CO)_{2}^{2-}$. We assume that the green precipitates are nickel cyanide/nickel hydroxide and the oxidations of Ni⁰(CN)(CO)₃ or Ni⁰(CN)₂(CO)₂² by oxygen gas can be expressed as **Reaction** (3) and (4):

 $Ni^{0}(CN)(CO)_{3}$ ⁻ + ¹/₂ O_{2} + $H_{2}O$ → Ni^{2+} + CN^{-} + 3CO + $2OH^{-}$ (3) $Ni^{0}(CN)_{2}(CO)_{2}^{2-} + \frac{1}{2}O_{2} + H_{2}O \rightarrow Ni^{2+} + 2CN^{-} + 2CO + 2OH^{-}$ (4) Combining the formation of $Ni^{0}(CN)(CO)_{3}$ and $Ni^{0}(CN)_{2}(CO)_{2}^{2}$ in **Reaction** (1) and (2) and the oxidation of both complexes in (3) and (4), the net reaction becomes: $CO + \frac{1}{2}O_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$ (5)

Reaction (5) is the oxidation of CO at room temperature and - atmospheric pressure in alkaline solution catalyzed by nickel cyano carbonyls.

To test our hypothesis, we injected O_2 gas to the solution of 5mM Ni⁰(CN)(CO)₃⁻ in 200mL 1M NaOH under 1000mL CO gas at 1 atmospheric pressure and recorded the total gas volume change at 25° C. The volumes of O₂ injected ranged from 20 - 200mL. The - total volume of CO and O2 mixture started to decrease immediately - after O_2 was added. When the gas volume decrease stopped, the gas mixture sample was checked by GCMS and it was found that the peak of O_2 (m/z = 32) vanished completely, showing O_2 was totally consumed. This reaction was repeated 10 times using the same Ni⁰(CN)(CO)₃/NaOH solution. In each case, the total volume decrease was 3 times the volume of O₂ injected (with 5% error margin). In total, 600mL (24.5mmol) O₂ was injected and the total volume decrease was 1800mL. Finally, the reaction mixture was added to $1.5L \ 0.05M \ Ba(OH)_2$ and white precipitates (BaCO₃) formed immediately. The BaCO₃ formed was filtered, washed thoroughly and dried in vacuum to a weight of 9.670g (49mmol). The volume of O_2 , CO used and the amount of BaCO₃ obtained agreed well with the catalytic oxidation described in **Reaction** (5).

Initial kinetics of this nickel cyano carbonyl catalyzed CO oxidation was studied. A typical reaction setup was: 5.9mM Ni⁰(CN)(CO)₃, 1.0M NaOH, 17mL H₂O, 4.4mL O₂ and 58.3mL CO at 25°C (Figure S3 in supplementary information). The volume changes were recorded over a 12-hour period. It showed that the catalytic oxidation of CO is first-order with respect to O_2 partial pressure with a rate constant $k = 0.0038 \text{min}^{-1}$. (The plot of logarithm of O₂ partial pressure vs. time is given in Figure S4 in supplementary information.)

Reaction (5) has inspired us to build a CO-powered fuel cell. A primitive fuel cell setup is shown in Figure S5 in supplementary information. CO was kept over a 1M NaOH solution containing 5mM NiCl₂ and 5mM NaCN in the anode chamber. NaClO (6%) in 1M NaOH solution was used as an oxidant. An agar gel containing 1M NaCl was used as a salt bridge. Platinum net or copper wires were used as electrodes. The measured voltage from this primitive fuel cell was 1.1V and current was 3.2mA at room temperature.

Alternatively, we have tested a flow battery type fuel cell.¹¹ 5mM nickel cyano carbonyls generated in situ was used as the reductant and NaClO (6%) was used as the oxidant to build a cell using the same salt bridge described above. The voltage and current

Journal Name

Page 2 of 3

obtained were 1.1V and 5.5mA, respectively. In this flow battery design, the nickel(0) cyano carbonyls generated in the carbonylation flask were transferred to the anode to produce electricity and the nickel(2+) products generated after battery discharge were transferred back to the carbonylation flask to regenerate the reductant. Even though the discharge current from our primitive fuel cell was very low, it still showed nickel cyano carbonyls catalyzed CO-powered fuel cell is a real possibility. We are currently actively investigating the details of this fuel cell to improve its performance.

Conclusions

Journal Name

We have discovered a straightforward method to prepare nickel cyano carbonyls and demonstrated that a CO-powered fuel cell can be developed using these nickel cyano carbonyls as catalysts in alkaline solution.

We thank the National Science Foundation for financial support through (CHE-**1213241**) and the support of the CRIF Program (CHE-0840277) and the NSF MRSEC Program (DMR-0820341) for the purchase of Bruker GADDS microdiffractometer.

Notes and references

^{*a*} Department of Chemistry, Yeshiva University, 2495 Amsterdam Avenue, New York, NY 10033 (USA) E-mail: jiang@yu.edu

^b Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA)

[†] **Preparation of PPh₄[Ni⁰(CN)(CO)₃]-0.25CH₂Cl₂:** To a green solution of NiCl₂·6H₂O (238 mg, 1.00 mmol) in 30 mL H₂O under 1 atm CO, a solution of NaCN (49 mg, 1.0 mmol) and NaOH (800mg, 20mmol, excess) in 10 mL H₂O was added. The mixture was stirred under CO for 24 hours to give a clear colourless solution. A solution of PPh₄Cl (263 mg, 0.70 mmol) in 30 mL CH₂Cl₂ was added to the colourless aqueous solution and stirred under 1 atm CO for another hour. The CH₂Cl₂ layer was collected under 1 atm CO, dried under vacuum to afford 313 mg (59% yield) PPh₄[Ni⁰(CN)(CO)₃] as off-white solid. Elemental analysis calculated for NiC_{28.25}H_{20.5}NO₃PCl_{0.5}: C 64.10%, N 2.65%, H 3.90%; found: C 64.11%, N 2.58%, H 4.15%.

Preparation of (PPh₄)₂[Ni⁰(CN)₂(CO)₂]: To a colourless solution of PPh₄[Ni⁰(CN)(CO)₃]·0.3CH₂Cl₂ (120 mg, 0.23 mmol) in 5 mL CH₂Cl₂, a solution of PPh₄CN¹² (83 mg, 0.23 mmol) in 2 mL CH₂Cl₂ was added and the resulting solution was stirred for 2 hours. 20 mL hexane was added to the reaction mixture and pale green crystalline material was precipitated. The light green crystalline material was filtered and rinsed three times by 3 mL hexane and dried in vacuo to afford 105 mg (55% yield) (PPh₄)₂[Ni⁰(CN)₂(CO)₂] as light green powder.

Electronic Supplementary Information (ESI) available: [experimental details, crystallization, X-ray diffraction and cyclic voltagram of $Ni^0(CN)(CO)_3$]. See DOI: 10.1039/c000000x/

- 1 Committee on Alternatives and Strategies for Future Hydrogen Production and Use, US National Research Council, US National Academy of Engineering in *The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs*, National Academies Press, 2004, pp. 240.
- 2 I. Langmuir, Trans. Faraday Soc. 1922, 17, 621 654.
- a) V. Mehta, J S. Cooper, J. Power Sources 2003, 114, 32 53; b) G.
 F. McLean, T. Niet, S. Prince-Richard, N. Djilali, Int. J. Hydrogen Energy 2002, 27, 507 – 526; c) C.-Y. Wang, Chem. Rev. 2004, 104, 4727 – 4765.
- a) B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, R. J. Behm, J. Catalysis 2004, 224, 449 462; b) M. Kang, M. W. Song, C. H. Lee, Applied Catalysis, A 2003, 251, 143 156; c) S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, G. A. Somorjai, Nano Lett. 2010, 10, 2709 2713; d) K. S. Chan, J. Ma, S. Jaenicke, G. K. Chuah, J. Y. Lee, Applied Catalysis A 1994, 107, 201 207; e) S.-H. Oh, G. B.

Hoflund, J. Catalysis 2007, **245**, 35 – 44; f) N. Hickey, P. A. Larochette, C. Gentilini, L. Sordelli, L. Olivi, S. Polizzi, T. Montini, P. Fornasiero, L. Pasquato, M. Graziani, *Chem. Mater.* 2007, **19**, 650 – 651; g) S. Yu, H. J. Yun, D. M. Lee, J. Yi, J. Mater. Chem. 2012, **22**, 12629 – 12635; h) W. F. Maier, J. Saalfrank, *Chem. Eng. Sci.* 2004, **59**, 4673 – 4678; i) M. Krämer, T. Schmidt, K. Stöwe, W. F. Maier, *Applied Catalysis A* 2006, **302**, 257 – 263; j) A. Fukuoka, J.-I. Kimura, T. Oshio, Y. Sakamoto, M. Ichikawa, J. Am. Chem. Soc. 2007, **129**, 10120 – 10125.

- a) W. B. Kim, T. Voitl, G. J. Rodriguez-Rivera, J. A. Dumesic, Science 2004, 305, 1280 –1283; b) J. A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Pérez, Science 2007, 318, 1757 – 1760; c) C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic, V. R. Stamenkovic, Nano Lett. 2011, 11, 919 – 926.
- 6 W. Lo, C. Hu, M. Lumeij, R. Dronskowski, M. Lovihayeem, O. Ishal, J. Jiang, *Chem. Comm.* 2013, **49**, 7382 – 7384.
- 7 a) M. M. Windsor, A. A. Blanchard, J. Am. Chem. Soc. 1933, 55, 1877
 1883; b) A. A. Blanchard, J. R. Rafter, W. B. Adams Jr, J. Am. Chem. Soc. 1934, 56, 16 17.
- 8 a) E. Hirsch, E. Peters, *Can. Met. Quant.* 1964, **3**, 137; b) J. Halpern, *Comm. Inorg. Chem.* 1981, **1**, 3 – 15.
- a) F. Joo, H. Alper, Organometallics 1985, 4, 1775 1778; b) R. Nast,
 H. Z. Roos, Anorg. Allg. Chem. 1953, 272, 242 252; c) R. Del
 Rosario, L. S. Stuhl, Organometallics 1986, 5, 1260 1262; d) S.
 Dapprich, U. Pidun, A. W. Ehlers, G. Frenking, Chem. Phys. Lett.
 1995, 242, 521 526; e) A. W. Ehlers, S. Dapprich, S. F.
 Vyboishchikov, G. Frenking, Organometallics 1996, 15, 105 117; f)
 M. Mitoraj, A. Michalak, Organometallics 2007, 26, 6576 6580; g)
 R. Kalescky, E. Kraka, D. Cremer, Inorg. Chem. 2014, 53, 478 495;
 h) G. Ciancaleoni, N. Scafuri, G. Bistoni, A. Macchioni, F. Tarantelli,
 D. Zuccaccia, L. Belpassi, Inorg. Chem. 2014, 53, 9907 9916; i) R.
 Nast, H. D. Moerler, Chem. Ber. 1966, 99, 3787 3793; j) R. Nast, H.
 Schulz, H. D. Moerler, Chem. Ber. 1970, 103, 777 784; k) R. Del
 Rosario, L. S. Stuhl, Tetrahedron Letters 1982, 23, 3999 4002.
- a) J. Jiang, A. Acunzo, S. A. Koch, J. Am. Chem. Soc. 2001, 123, 12109 12110. b) T. B. Rauchfuss, S. M. Contakes, S. C. N. Hsu, M. A. Reynolds, S. R. Wilson, J. Am. Chem. Soc. 2001, 123, 6933 6934; c) J. Jiang, S. A. Koch, Angew. Chem. Int. Ed. 2001, 40, 2629 2631; d) J. Jiang, S. A. Koch, Inorg. Chem. 2002, 41, 156 158; e) S. A. Goldfield, K. N. Raymond, Inorg. Chem. 1974, 13, 770 775; f) A. Kayal, T. B. Rauchfuss, Inorg. Chem. 2003, 42, 5046 5048.
- C. Ponce de León, A. Frias-Ferrer J. Gonzalez-Garcia, D. A. Szanto, F. C. Walsh, J. Power Sources 2006, 160, 716 – 732; b) M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, M. Saleem, J. Electrochem. Soc. 2011, 158, R55 –R79.
- 12 S. Andreades, E. W. Zahnow, J. Am. Chem. Soc. 1969, 91, 4181–4190.