This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Charge-disproportionate ordered state with $\delta = 0.75$ in a chemically sensitive donor/acceptor $D^{\delta+}A^{\delta-}$ layered framework†

Hiroki Fukunaga, Takafumi Yoshino, Hajime Sagayama, Jun-ichi Yamaura, Takeshisa Arima, Wataru Kosaka, and Hitoshi Miyasaka

A novel charge-disproportionate state with $\delta = 0.75$ was observed in an electron-donor (D)/acceptor (A) $D^{\delta+}A^{\delta-}$ layered framework by chemically tuning the electron-donating affinity of D at the boundary between $D^{0.5+}A^{-}$ and $D^{+}A^{2-}$ phases, which was pressure-sensitive via the formation of the $D^{1+}A^{-}$ oxidation state.

Tuning of the charge-ordered state in a multi-dimensional framework material, which enables the direct control of electrical and magnetic properties of a material, is a challenging theme in solid-state chemistry and materials chemistry. For achieving this purpose, two techniques are commonly available: chemical techniques, i.e. chemical doping or modification and physical techniques, i.e. switching by external stimuli such as temperature, pressure, electric field or photo-irradiation. Some molecular systems have indeed demonstrated intriguing properties associated with the fine-tuning of their charge-ordered state. Among them, a family of metal-organic frameworks (MOFs) constructed from carboxylate-bridged paddlewheel-type diruthium(II, II) complexes (abbreviated as [Ru2(II)]) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) or N,N2-dicyanoquinodiminedime (DCNQI) derivatives, as donor (D)/acceptor (A)-MOFs (D/A-MOFs), provides a good platform, where the electronic/magnetic properties of the MOFs are tuneable as a function of the charge-ordered state of the framework. A variety of oxidation states, including $D^{0}A^{0}$, $D^{0.5+}A^{-}$, and $D^{+}A^{2-}$, have been obtained in a D$_2$A-type MOF, which can be systematically manipulated through the on-demand choice of D and A components on the basis of the relationship of energy gap between HOMO level of D and LUMO level of A: $\Delta E_{HOMO}\text{(DA)} = E_{LUMO}\text{(DA)} - E_{HOMO}\text{(N)}$, with the neutral (N) state and the ionic (I) state as $\Delta E_{HOMO}\text{(DA)} > 0$ and $\Delta E_{HOMO}\text{(DA)} < 0$, respectively (Fig. S1a). When we examine the ionic state of the $[\text{Ru}_2\text{TCNQ}]$ compounds, i.e. D$_2$A-type compounds, with $\Delta E_{HOMO}\text{(I)} < 0$, two types of oxidation states, $D^{0.5+}A^{-}$ and $D^{+}A^{2-}$, which involve one-electron and two-electron transfers to A, respectively, can be considered. These oxidation states provide different magnetic ground states: the $D^{0.5+}A^{-}$ state generally undergoes long-range ordering through TCNQ$^{-}$ with $S = 1/2$, whereas the $D^{+}A^{2-}$ state could lack ordering or have weak ordering because of the presence of diamagnetic TCNQ$^{-}$. Despite the same D$_2$A-type formulation and a common framework structure between them, these oxidation states should be alternated depending mainly on i) the electron-donation affinity of D vs. A used (i.e. the relationship between the ionisation potential of D and the electron affinity of A) and ii) the intrinsic on-site Coulomb repulsion (U) of the A species used. Given that the magnitude of U of TCNQ derivatives (TCNQR$_2$, $2,5$- or $2,3,5$-R-substituted 7,7,8,8-tetracyano-p-quinodimethane; R$_2$ = H$_2$, F$_2$, Cl$_2$, Br$_2$, $F\cdotPH$O, $Me\cdotOMe$, (OMe)$_2$; BTDA-TCNQ = bis[1,2,5]dithiazolotetracyanoquinodimethane) is proportional to the potential difference between the first and second redox potentials of TCNQR$_2$ (ΔE_1(A^{-}/A($solv$)), the order of U for the TCNQR$_2$ compounds is TCNQR$_2$Me$_2$ < TCNQR$_2$ < BTDA-TCNQ < TCNQRBr$_2$ < TCNQ < TCNQCl$_2$ (\approx DCNQIMe_2) < TCNQF$_4$ ≈ TCNQF$_2$ (Fig. S1b). Specifically, U is the smallest in TCNQR(MeO)$_2$ among this group; i.e. the energy window for $\Delta E_{HOMO}\text{(DA)}$, at which TCNQR,* is stably present, is 0.2–0.3 eV, which is much narrower than the window of 1.2–1.3 eV for TCNQR$_2$ or TCNQF$_2$ (Fig. S1b). This result indicates that the oxidation state of the ionic state between $D^{0.5+}A^{-}$ and $D^{+}A^{2-}$ can be tuned via a small modification or perturbation induced by chemical and/or physical techniques when TCNQR(MeO)$_2$ is used as A.

Here, we demonstrate charge control in layered D$_2$A systems with the TCNQR(MeO)$_2$ acceptor by slightly changing the electron-donating ability of D through modification of the substituent position (e.g. ortho-, meta- and para-positions) of the fluoro group in $[\text{Ru}_2\text{FPhCO}_2]_2$ ([FPhCO] = ortho-, meta- and para-fluorophenyl substituted benzolate). The present compounds are $([\text{Ru}_2\text{(FPhCO}_2)_2]_2\text{TCNQR(MeO}_2)]_n$ (solv) (x = ortho, n (solv) = $4\text{CH}_2\text{Cl}_2$, 1; x = meta, n (solv) = $4\text{CH}_2\text{Cl}_2$, 2; x = para, n (solv) = $3\text{CH}_2\text{Cl}_2$; PhNO$_2$, 3), in which the oxidation state was varied as $D^{0.5+}A^{-}$ for 1, $D^{+}A^{2-}$ for 2, and $D^{0.75+}A^{1.5-}$ for 3. Herein, we focus on the novel charge-ordered state of $D^{0.75+}A^{1.5-}$ in 3, in particular; this novel state was discovered in a superlattice comprising $[\text{Ru}_2\text{FPhCO}_2]_2$, $[\text{Ru}_2\text{I}_2\text{FPhCO}_2]_2$ TCNQR(MeO)$_2$ and TCNQR(MeO)$_2$– components in a formulation ratio of 3:3:1 caused by the disproportionation of intralayer electron transfers. This charge-ordered state can be regarded as an intermediate oxidation state between $D^{0.5+}A^{-}$ for 1 and $D^{+}A^{2-}$ for 2.
All compounds were synthesised by a similar diffusion method of D/A units typically used in relevant compounds (see ESI). Infrared (IR) spectra of compounds are useful for confirming the oxidation state of component units, which were measured by a microscopic technique using a single crystal coated with Paratone-N (HAMPTON Research, Inc.) to remove the effect caused by the elimination of crystallisation solvents. The ν(C≡N) mode for all compounds was observed as red-shifted multiplets: 2109, 2158 and 2202 cm⁻¹ for 1; 2098(br), 2154 and 2190 cm⁻¹ for 2; and 2113(br), 2167, 2191(sh) and 2202 cm⁻¹ for 3 (br = broad; sh = shoulder) (Fig. S2). These results indicate the reduced forms of TCNQ(MeO)₂, where the one-electron reduced form (TCNQ(MeO)₂⁺⁻) and two-electron reduced form (TCNQ(MeO)₂⁻⁻) are assigned for 1 and 2, respectively, and their mixed modes are assigned for 3.

Compounds 1 and 2, which had the D₂A formulation, crystallised in the triclinic P–1 space group (#2), where two kinds of [Ru₃] units and one TCNQ(MeO)₂ unit are structurally characterised as an asymmetric unit, all of which have an inversion centre at the midpoint of the units, resulting in Z = 1 (Fig. S3; Table S1). The TCNQ(MeO)₂ unit acts as a µ₂-bridging ligand to coordinate to the axial sites of [Ru₂] units, forming a two-dimensional (2-D) fishnet-like network spreading over the (101) plane for 1 and over the (100) plane for 2 (Fig. 1 and Fig. S4) (the crystallisation solvent molecules are located at void spaces between layers). On the basis of the trend of Ru–N = 2.22–2.23 Å for [Ru₁II,III] and Ru–N = 2.27–2.28 Å for [Ru₂II,III] (Tables S2 and S3), the oxidation state of [Ru₂] units is suggested as [Ru(1)]II,III⁺⁻ and [Ru(2)]II,III⁺⁻ in 1 and as [Ru₁II,III]⁺⁻ for both [Ru₁] units in 2 (Tables S2 and S3). This charge assignment for [Ru₃] units is supported by a more accurate indication based on a comparison of Ru–O distances (Oeq = equatorial oxygen atoms): 2.06–2.07 Å for [Ru₁II,III] and 2.02–2.03 Å for [Ru₂II,III] in 1, the average Ru–O bond distances for [Ru(1)] and [Ru(2)] units are 2.027 and 2.068 Å, respectively, indicating oxidation states of [Ru₁II,III]⁺⁺ and [Ru₂II,III]⁺⁻, respectively (Table S2). Meanwhile, in 2, the average Ru–O bond distances for both units are 2.023 and 2.026 Å for [Ru(1)] and [Ru(2)], respectively, which are in the range for [Ru₂II,III]⁺⁻ (Table S3).

Correspondingly, the oxidation state of TCNQ(MeO)₂⁻⁻ is assigned as TCNQ(MeO)₂⁻⁻ and TCNQ(MeO)₂⁺⁻ for 1 (2δ = 1.38) and 2 (2δ = 2.20), respectively, on the basis of the Kistenmacher relationship 2δ = ±(A₁c/(b+d)) + B₂, in relation to TCNQ (2δ = 0) with A₁c = –41.667 and B₂ = 19.833 (the bond lengths b, c and d are respective bond distances for 7.9, 1.7- and 1.2-positioned C–C sets in TCNQ(MeO)₂, respectively (Table S4). Specifically, the charge-ordered states for 1 and 2 can be written as [(Ru₁)]II,III⁺⁻–TCNQ(MeO)₂⁻⁻–[Ru(2)]II,III⁺⁻⁺⁻ and [(Ru₁)]II,III⁺⁻–TCNQ(MeO)₂⁺⁻–[Ru(2)]II,III⁺⁻⁺⁻, respectively, leading to the conclusion that 1e and 2e transfer systems, respectively, occur in an identical D₂A system.

In the case of 3, a similar unit cell in the triclinic P–1 space group and with a cell volume similar to that of 1 and 2 was considered; in this unit cell, two kinds of [Ru₂] units and one TCNQ(MeO)₂ unit with respective inversion centres were determined as an asymmetric unit with Z = 1 in an identical 2-D layered fishnet-like network (ESI; Fig. S5; Table S1). This structural analysis is consistent with the charge assignment of D₃h₃, assuming that the presence of such a half-value of charge presumes three possible charge states of charge state in the D₂A system: i) a delocalised charge distributed state, ii) a charge-ordered state as a steady state and iii) a novel charge-disordered state with a superlattice as a steady state. In the present case, model (iii) was adopted because diffraction spots indicating the half-index value for the c-axis q = (0, 0, ½) were observed when X-ray diffraction spots were carefully measured (Fig. 2a), which demonstrates the occurrence of unit-cell doubling such that the c-axis is twice as large as the original minimum cell with Z = 1.

In the superlattice, three types of [Ru₃] units (D₁, D₂ and D₃ in Fig. 2b) and two types of TCNQ(MeO)₂ units (A₁ and A₂ in Fig. 2b) are structurally identified, where D₁ and D₃ and both TCNQ(MeO)₂ units (A₁ and A₂) have an inversion centre at the midpoint of the respective units, whereas all atoms of D₂ are determined as an asymmetric unit; hence, the unit cell has Z = 2. The average Ru–Oeq length is 2.064, 2.025 and 2.027 Å for D₁–D₃, respectively (Table S5): D₂ and D₃ are assigned to [Ru₁II,III]⁺⁻, whereas D₁ is [Ru₂II,III]⁺⁻. The Ru–N lengths agree with these assignments, although the Ru(2)–N(2) bond (2.256(4) Å) was observed as an intermediate value for between [Ru₁II,III]⁺⁻ and [Ru₂II,III]⁺⁻ (Table S5). The Kistenmacher analysis on the two TCNQ(MeO)₂ moieties (A₁ and
Thus, the two types of charge arrangements, D\(^{0.5+}\) and D\(^{1.5-}\) anisotropy, susceptibilities (\(\chi\)) were measured at several different field intensities. a) An \(H-T\) phase diagram, where AF and P indicate antiferromagnetic and paramagnetic phases, respectively. b) Field dependence of the magnetization measured at several temperatures.

The magnetic state of the present \([\text{Ru}_{2}^{II,III}]\)TCNQ system is variable, depending on the charge-ordered states; spin components of \([\text{Ru}_{2}^{II,III}]\) (S = 1) and \([\text{Ru}_{2}^{II,III}]\) (S = 3/2) possess strong magnetic anisotropy, whereas TCNQ\(^{0}\) and TCNQ\(^{-}\) are diamagnetic and paramagnetic (S = 1/2) is paramagnetic. In addition, the magnetic exchange coupling (J) between \([\text{Ru}_{2}^{II,III}]\) and \([\text{Ru}_{2}^{II,III}]\) is known to be very strong, often exceeding 100 K with the support of A \(\rightarrow\) D\(^{+}\) low-energy charge transfer. Furthermore, the magnetically ordered state is known to be strongly affected by interlayer environments associated with interlayer dipole interactions.

The unique charge-ordered state of 3 has two types of TCNQ(MeO)\(^{2-}\), i.e. TCNQ(MeO)\(^{2-}\) and TCNQ(MeO)\(^{2-}\), which are surrounded by two \([\text{Ru}_{2}^{II,III}]\) units and two \([\text{Ru}_{2}^{II,III}]\) units for TCNQ(MeO)\(^{2-}\), as in 1, and four \([\text{Ru}_{2}^{II,III}]\) units for TCNQ(MeO)\(^{2-}\), as in 2, respectively. These situations alternately occur along the c-axis, which appears to be an intermediate state between the 1e\(^{+}\) and 2c\(^{+}\) transfer states, i.e. intermediate between 1 and 2. The \(\chi\) measured at 1 kOe, 1.15 \(\times\) 10\(^{-3}\) cm\(^{3}\) mol\(^{-1}\) at 300 K, gradually increases as the temperature is decreased to approximately 30 K and then abruptly increases without any peak as the temperature is decreased to 1.8 K (3.53 \(\times\) 10\(^{-3}\) cm\(^{3}\) mol\(^{-1}\) at 1.8 K) (Fig. 4a); this basic behaviour is common at lower fields applied at 30 Oe (Fig. S4). Thus, the present compound exhibits a typical magnetic behaviour predicted from the \([\text{Ru}_{2}(1.5-)\text{TCNQ(MeO)}^{2-}\text{–[Ru}(2)_{1.5+}]\) charge-ordered state, which undergoes long-range magnetic ordering that is explained by intralayer ferrimagnetic ordering at \(T_{N} = 88\) K followed by interlayer antiferromagnetic ordering at \(T_{N} = 83\) K (Fig. 3a and Fig. S7). Notably, 1 indeed locates at an antiferromagnetic ground state under the field-cooling condition (Fig. 3b; Fig. 3c shows a phase diagram of 1), but maintains a ferrimagnetic state after undergoing a transition to this state under an applied magnetic field, even at temperatures below the \(T_{N}\), indicating the occurrence of field-induced ferrimagnetic transition. Actually, typical hysteresis curves were observed in the magnetization (M) vs. \(H\) plots obtained under effective coercive fields at temperatures up to the \(T_{N}\) (Fig. 3d).
(Fig. S11). The remnant magnetization value is also small in the same temperature range. In addition, the coercive field is smaller than that for 1; rather, the hysteresis loop for 3 resembles a miniature version of that for 1. This behaviour can be explained by an alternating arrangement of strongly coupled ferrimagnetic domains via TCNQ(MeO)₂ − and weakly coupled paramagnetic species around diamagnetic TCNQ(MeO)₂ ² moieties.

An ‘intermediate’ oxidation state such as that observed in 3 could trigger a phase transition to another stabilised oxidation state (e.g. D₂δA²−, as observed in 2) induced by an external stimulus such as pressure. Hydrostatic pressures up to 7.34 kbar were applied to 3 using a piston-cylinder-type cell fabricated from a Cu–Be alloy, in conjunction with a Pb probe.¹²,¹³ The magnetization at low temperatures, which increases steeply at approximately Tc = 27 K, gradually decreased with increasing pressure and almost disappeared at P = 3 kbar, suggesting a transition to a paramagnetic state (Fig. 5a). This behaviour was confirmed by the M–H curve measured at 1.8 K: the hysteresis curve of 3 disappeared at P = 3 kbar (Fig. 5b). The final M–H feature is almost linear, typical for a paramagnetic state. Thus, the application of pressure to 3 successfully changed its oxidation state from D₂δA²− to D₂A²−. Notably, the original state of 3 was almost recovered when the pressure was released.

![Fig. 5. Pressure-induced changes in the magnetization of 3, as observed in M–T(a) and M–H (b) curves.](image)

In summary, following the prediction based on the ionisation diagram of ΔE_(2A)(DA) vs. (E_(2B)(A) − E_(2A)(A)) (Fig. S1b),¹⁰ D/A sets at around the boundary between D₂δA²− and D₂A²− were investigated; consequently, three types of charge-transfered-state D₂δA²−, with δ = 0.5, 1, and 0.75 for 1–3, respectively, were rationally obtained through modification of the position of the F substituent (i.e. either o-, m- or p-) of [Ru₂(μ₃-FPhCO₂)₆] as D, respectively. Compound 3 has a novel charge-ordered state—a superlattice comprising [Ru₂(μ₃-FPhCO₂)₆], TCNQ(MeO)₂ − and TCNQ(MeO)₂ ² components in a formulation ratio of 1:3:1:1 — caused by the disproportionation of intralayer electron transfers. This oxidation state appears to be an intermediate state between D₂δA²− and D₂A²−. This unique charge-ordered state is sensitive to applied pressure and changes into D₂A²−, demonstrating that the charge-ordered states in D/A frameworks are flexibly controllable via the application of adequate external stimuli. Thus, D/A-MOFs have a strong potential for the design of molecular electronic/magnetic devices with multiple tunability via external stimuli.

We thank Keiko Kubo (Tohoku University) for her assistance in synthesising compounds. A portion of the X-ray diffraction study was performed using the facilities of the Institute for Solid State Physics, the University of Tokyo. This work was supported by a Grant-in-Aid for Scientific Research (No. 24425012) and on Innovative Areas (‘Coordination Programming’ Area 2107, No. 24108714) from the MEXT of Japan, the ICC-IMR project, the LC-IMR project and the Asahi Glass Foundation.

Notes and references

¹ Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
² Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
³ Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0001, Japan
⁴ Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
⁵ Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan
⁶ Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, E-mail: miyasaka@imr.tohoku.ac.jp
† Electronic supplementary information (ESI) available: Details of experiments, techniques, and structures; Table S1-S6, Fig. S1-S11. For ESI and crystallographic data in CIF or other electronic format see DOI: