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Electron-deficient fullerenes in triple-channel 
photosystems† 

Javier López-Andarias,a Altan Bolag,b Christoph Nançoz,b Eric Vauthey,b Carmen 
Atienza,a Naomi Sakai,b Nazario Martín*a and Stefan Matile*b  

Fullerenes of increasing electron deficiency are designed, 
synthesized and evaluated in multicomponent surface 
architectures to ultimately build gradients in LUMO levels 
with nine components over 350 meV down to -4.22 eV. 

The development of synthetic methods to build large 
multicomponent architectures is important because biological 
function originates from structures of highest sophistication and 
our ability to build organic materials on the same level of 
precision is quite limited.1-3  To help improving on this 
situation, we became interested to learn how to grow 
multicomponent architectures directly on solid surfaces.  This is 
of interest to control directionality.  Over the years, synthetic 
methods such as zipper assembly,4 self-organizing surface-
initiated polymerization (SOSIP),5 templated stack-exchange 
(TSE)6 and templated self-sorting (TSS)7 have been introduced.  
SOSIP-TSE emerged as the method of choice to build 
photosystems with co-axial molecular channels to transport 
holes and electrons, so-called supramolecular n/p-
heterojunctions (SHJs).6  Transcribing a more complex lesson  
from nature, double-channel photosystems have been equipped 
with antiparallel redox gradients of up to three components to 
drive holes and electrons apart after their generation with light.8  
Moreover, the synthesis of triple-channel architectures has been 
achieved recently with SOSIP-TSE.9 

 In triple-channel architectures with [60]fullerene stacks for 
electron transport1,2 along oligothiophene stacks for hole 
transport1,3 and co-axial naphthalenediimide (NDI) stacks for 
electron transport, photocurrents increased with decreasing 
energy of the LUMO of the [60]fullerenes 1-4 (Figure 1).10  
This finding called for the synthesis of more electron-deficient 
fullerenes.  Moreover, the availability of π-acidic fullerenes 
with solubility in polar solvents and linkers for dynamic 
covalent11 interfacing in complex systems is of general interest 
to transport electrons1-3,8,10 and bind, transport and transform 
anions.12  Here, we report the synthesis of five π-acidic 
fullerenes to complete a nine-component redox gradient over 
350 meV down to -4.22 eV, and demonstrate their 
compatibility with triple-channel SOSIP-TSE architectures. 
 All electron-deficient [60]fullerenes 5-9 contain two 
triethyleneglycol (TEG) tails to assure solubility in aprotic 
polar solvents and a peripheral benzaldehyde to connect into 
multicomponent surface architectures.10  To gradually increase 
their π-acidity, one, two or three electron-withdrawing cyano 
groups were attached either directly to the aromatic truncated 

icosahedron13 or as a substituent of the methano-14 or malonate-
derived cyclopropanes (Figure 1).15  Synthetic methods to 
introduce these cyano acceptors were available for all 
variations.13-15  The preparation of 6 and 7 requires the standard 
Bingel reaction with the respective malonate.  Meanwhile, in 5, 
8 and 9, the Bingel reaction is done with cyanoacetates instead 
of malonates.  Compared to Bingel fullerenes 6 and 7, this 
modification caused the lack of one TEG tail, thereby, to 
restore solubility in aprotic apolar solvents, a new solubilizer 
carrying two TEG tails had to be introduced.  Only fullerene 5 
is a monodisperse compound.  In fullerenes 6-9, the position of 
the additional withdrawing substituents is not defined with 
respect to the Bingel cyclopropane, i.e., they exist as mixtures 
of regioisomers.  Synthetic and analytical details on all other 
new fullerenes can be found in the Supporting Information 
(Schemes S1-S2).† 

 The energy levels of the LUMO of the new, electron-
deficient fullerenes 5-9 were determined by differential pulse 
voltammetry (DPV) against the Fc+/Fc couple as internal 
standard (Figure S1).10  Not surprisingly, highest LUMO 
energies were found at -4.10 eV for 5 with only one cyano 
acceptor without direct connection to the aromatic system.  The 
two cyano acceptors attached directly to the fullerene core in 6 
caused a decrease of 30 meV to -4.13 eV.  Interestingly, two 
cyano groups in the cyclopropane in 7 further increased π-
acidity to -4.15 eV.  Fullerenes with three cyano acceptors were 
the most π-acidic, with two cyano acceptors in the 
cyclopropane of 8 being slightly weaker than two cyano 
acceptors directly attached to the fullerene surface of 9.  
Together with the previously reported fullerenes 1-4,10 these 
results yield an electron transfer cascade of nine components of 
high structural similarity, covering 350 meV down to -4.22 eV. 
 The new, electron-deficient fullerenes were engineered into 
multicomponent surface architectures under the conditions 
developed for electron-rich series (Figure 2, Scheme S3).  As 
exemplified for the most π-acidic 9, oxime formation with the 
reported quaterthiophene gave dyad 10 (Figure 2).  The acetal 
in 10 was hydrolysed under acidic conditions, and the liberated 
aldehyde was used for templated stack exchange (TSE)6,10 with 
dynamic covalent hydrazone chemistry.11  The obtained triple-
channel architecture 11 is expected to contain hole-transporting 
oligothiophene stacks between electron-transporting channels 
composed of co-axial strings of fullerenes and NDIs.  Triple-
channel architectures with all other new fullerenes were 
prepared analogously. As expected for the bulky dyads, TSE 
yields were between 51-74% (Figures S2, S3). 
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Fig. 2.  Structure of dyads 10 and schematic architecture of triple-
channel photosystems 11 exemplified for the most π-acidic fullerene 9. 
 
 Photocurrent generation by the new photosystems was 
measured under the conditions used before to assure 
comparability of the results.10  Without going into details, 
photosystems were characterized as working electrode with a 
platinum wire as counter electrode and triethanolamine as hole 
acceptor in solution.  Results obtained with this set-up have 
served well to extract trends in proof-of-principle studies but 
they are not comparable with results from optimized 
optoelectronic devices.9  The highest short-circuit photocurrent 
densities JSC = 8.1 µA/cm2 were obtained with the photosystem 
containing the least π-acidic fullerene 5 (Figure 1b).  All other 
photosystems with more electron-deficient fullerenes 6-9 had 
similar activity around JSC = 5.5 ± 0.5 µA/cm2.  These results 

suggested that activity in triple-channel photosystems 11 does 
not directly increase with increasing π-acidity of the fullerene, 
although hole transfer to the oligothiophene after excitation of 
the fullerene should improve.10,16  Further analysis did not 
reveal distinct differences with regard to charge recombination 
efficiencies (35-64%), open-circuit voltages (270-320 mV) or 
activation energies (196-258 meV, Figures S4, S5, Table S2).  
Characterization of dyads in solution by femtosecond 
fluorescence up-conversion did not provide helpful 
explanations for the observed trends.  Compared to slow 
fluorescence decay of isolated quaterthiophenes (τ = 550 ps), 
fluorescence lifetimes of all dyads analog to 10 were much 
shorter.  The lifetimes of the dyad with fullerene 4 (τ1 = 1.4 ps, 
τ2 = 16.9 ps) and the more π-acidic fullerene 9 (τ1 = 1.4 ps, τ2 = 
17.2 ps) were roughly identical (Table S3).  Only the slightly 
longer lifetime of dyads with the most π-basic fullerene 1 (τ1 = 
2.2 ps, τ2 = 30.0 ps, Table S3) could support slow charge 
separation as origin of the exceptionally poor activity of the 
respective triple-channel photosystem (JSC = 2.2 µA/cm2, 
Figure 1b).  This conclusion would also agree with previous 
observations in the action spectra.10   
 Inspection of the structures of nine fullerenes under 
evaluation revealed that best activities were found for fullerenes 
with the best preserved π-system, i.e., fullerenes 4 (JSC = 12.0 
µA/cm2) and 5 (JSC = 8.1 µA/cm2) with just one cyclopropane 
added. Photosystems with fullerene 3, characterized by a 
defined positioning of the two cyclopropanes, generated 
significant photocurrent as well (JSC = 7.8 µA/cm2).  All 
mixtures of regioisomers gave clearly weaker activity (Figure 
1b).  In the only systems with directly comparable structures 
and structural disorder and with clearly different LUMO levels 
(230 meV), i.e. photosystems with the more π-basic fullerene 2 
(JSC = 2.1 µA/cm2) and the more π-acidic fullerene 7 (JSC = 5.3 
µA/cm2), photocurrents did increase significantly with 
increasing π-acidity.  These observations suggested that the 
preserved integrity and structural homogeneity of the fullerenes 
is most important for activity in the described triple-channel 
photosystems, whereas decreasing LUMO energies are clearly 
beneficial10,16 but overall less important. 

Fig. 1.  Structure of the new electron-deficient [60]fullerenes 5-9 compared to the previously reported electron-rich 1-4.10  a) Energy of the LUMO in eV 
against vacuum, assuming -5.1 eV for Fc+/Fc.  Determined by DPV (Figure S1).  b) Short-circuit photocurrent density JSC in µA cm-2 generated in triple-
channel photosystem together with oligothiophene donors (HOMO:  -5.9 eV, LUMO:  -3.2 eV, see Figure 2). 

N
H

N
N
O

O
N
O

O NH
O

H2O3P PO3H2

H
N
O

O

O
NH

S

S

H2O3P PO3H2

e-h+

NO

NO
S S O NN

HSS
S S O NN

H
NN

H
O NN
H

n

11

NO

N N
H

N
O

O
N
O

O

e-

N

N

O
O

O
O

O

NH

O

NH

N

O

SS

NHN

n

SS
S S

SS
S S

O

NO OS
S

S
SN

H

O H
N

O
N
H

O

10

O

NOS
S

S
SN

H

O H
N

O
N
H

O

CNO
O

O

O
O O

O
O O

O
O

CN

CN

CNO
O

O

O
O O

O
O O

O
O

CN

CN

-3.99
-4.05

-3.93
-3.87

-4.15
-4.21

-4.13
-4.10

-4.22

O

O
O

O
O

O

O O
O
O

O
O

O

O O

O

O
O

O
O

O

O O
O

O

O

O O

O

O
O

O
O

O

O O
O
O

O
O

O

O O

O

O
O

O
O

O

O O
O

O

O

O O
O

O
O

O
O

O

O O
O

O

O

O O

CNNC

O

O
O

O
O

O

O O
O

O

O

O O

NC
CN

O

NC
O

O
O

O
O

O
O

O

O
O

OCNNC
NC

CN

HH
HH

O

NC
O

O
O

O
O

O
O

O

O
O

O

O

NC
O

O
O

O
O

O
O

O

O
O

O

1 2 3 4 5 6 7 8 9

7.8

12.0

2.12.2

5.3 6.05.2

8.1

5.0

a)

b)

Page 2 of 4ChemComm



������
������ ����
����	����

�
���������
�������
������
����������	��
������������� ��������������������������� �

 Taken together, the synthesis of a series of electron-
deficient fullerenes allowed us to build a redox gradient of nine 
components over 350 meV down to -4.22 eV.  Incorporated 
into triple-channel photosystems, decreasing LUMO energies 
give higher activity for strictly comparable fullerenes, but the 
preserved integrity and structural homogeneity of the strained 
π-system is more important.  Possible origins of these trends 
include poorer organization of the strings of fullerenes with 
regioisomers and thus reduced charge mobility, or weakened 
electron affinity with decreasing tension in the π-system.  After 
all, the -4.22 eV reached with fullerene 9 is quite remarkable in 
the context of fullerenes but not further impressive in the 
general context.  For example, two cyano acceptors placed in 
the core of naphthalenediimides affords LUMOs at -4.78 eV.12  
These indications that structural integrity and homogeneity are 
essential for function are interesting and important.  They 
support the general implication from nature that the 
construction of complex architectures with molecular level 
precision could provide access to organic materials with 
interesting activities, and thus encourage continuing synthetic 
methods development to get there.4-10 However, the activities 
observed for all components is clearly sufficient for the 
construction of triple-channel architectures with gradients in 
fullerene channel composed of up to nine components.  This is 
a tantalizing number that goes far beyond lessons from nature 
and precedence from double-channel architectures.8  We also 
hope that the reported series will be of use in other functional 
systems and for other purposes, reaching from optoelectronic 
devices1-3 to binding, transport and catalysis with anion-π 
interactions on π-acidic fullerene surfaces.12 
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