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Evidence for hydrophobic catalysis of DNA strand 
exchange 
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The catalytic role of hydrophobic co-solutes on DNA strand 
exchange is demonstrated by FRET kinetics. Two 
mechanisms contribute: base stacking destabilisation and 
nucleation-promoted DNA strand invasion. We propose that 
hydrophobic catalysis is involved in the strand-exchange 
activity of recombination enzymes. 

DNA strand exchange, catalysed in vivo by gene recombination 
enzymes such as RecA and Rad51, is fundamental to homologous 
recombination and DNA repair. The detailed mechanisms of these 
enzymes are still poorly understood but, based on the structures of 
assembled protein-DNA complexes, stretching and destabilization of 
the DNA helix by close protein-DNA contacts facilitating search for 
homology and reject of mismatches are considered essential1. A 
recent discovery, that GC-rich DNA upon stretching undergoes a 
change into a stable elongated conformation, has added a new twist 
to the understanding of the strand exchange mechanism. It was 
proposed that the elongated conformation undergoes 
disproportionation into stacked base-pairs surrounded by larger gaps, 
like the heterogeneous structure found in complex with RecA, with 
triplets of stacked bases.2 In addition, strand exchange is central to 
various biotechnical and nanotechnical applications, including the 
use of oligonucleotides to fuel DNA motors as well as in situ 
formation of self-assembled DNA nanotechnology.3 Therefore, it is 
highly interesting to develop artificial DNA strand exchange model 
systems with catalytic ability, both in order to better understand the 
underlying mechanisms of biological enzymes as well as to facilitate 
the development of DNA-based nanotechnical devices. 
 
We here demonstrate that DNA strand exchange in vitro can be 
catalysed by the presence of two hydrophobic and structurally 
related compounds, 1,2-dimethoxyethane (DME) and polyethylene 
glycol (PEG), but not by the more hydrophilic dextran or Ficoll. We 
shall denote this effect ‘hydrophobic catalysis’, as we can argue that 
the catalytic activity is caused mainly by hydrophobic close contact 
between the DNA and co-solute molecules. 

We have earlier speculated that strand exchange between 
oligonucleotides in presence of PEG-6000 (average molecular 
weight 6000) may be accelerated by either of two possible 
mechanisms: hydrophobic interactions or volume exclusion.4 As to 
the first putative effect, close PEG-DNA contacts may decrease 
water activity around DNA, thereby weakening the strength of 
nucleobase stacking. Consequently DNA breathing will be promoted 
which could provide nucleation sites for single strand invasion. The 
alternative possibility relates to the reduced effective reaction 
volume caused by the high molecular weight of PEG-6000. The 
volume excluded by PEG-6000 is much larger than the size of the 
PEG polymer itself5, so the effective concentration of available 
single strands surrounding each unreacted DNA duplex is higher 
than the bulk concentration, which could accelerate strand exchange. 
 
A FRET (fluorescence resonance energy transfer) assay is here used 
to monitor strand exchange, one strand of a 20-mer DNA duplex 
(Sequences in Fig S1, ESI) is labelled with FAM 
(carboxyfluorescein) at the 5’ end and the other strand with TAMRA 
(carboxytetramethylrhodamine) at the 3’ end. An unlabelled strand 
(sequence identical to the TAMRA-strand) is added five times in 
excess. Upon strand exchange, the unlabelled strand displaces the 
TAMRA strand, which dissociates the quenched FRET pair (see ESI 
for experimental details). The same assay has been used in several 
earlier DNA strand exchange studies.4, 6  
 
The effects of hydrophobic interactions and volume exclusion have 
previously not been separated from each other as both increase with 
the molecular crowding of PEG polymers. We here varied the 
molecular weight of PEG, also including 1,2-dimethoxyethane 
(DME) to represent a PEG “monomer”. DME can be regarded to 
have a negligible volume of exclusion, but due to its structural 
similarity to PEG it should provide a similar kind of hydrophobic 
environment. The influence of PEG-6000 and DME as co-solutes on 
strand exchange kinetics is shown in Figure 1. 
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