This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A micro-cubic Prussian blue (PB) without coordinated water is first developed by electron exchange between graphene oxide and PB. The obtained reduced graphene oxide/PB composite exhibited complete redox reactions of the Fe sites and delivered ultrahigh electrochemical performances as well as excellent cycle stability as a cathode in sodium-ion batteries.

Lithium-ion batteries (LIBs) have been proposed to be appropriate energy storage devices in electric vehicles (EVs) and large-scale energy storage systems (LESS).\(^\text{[1-3]}\) However, the high cost and limited resources of lithium restrict their broader application. As a consequence of recent advances in cathode and anode materials, room-temperature rechargeable sodium-ion batteries (SIBs) have demonstrated great potential, especially in LESS. Compared with LIBs, SIBs are more sustainable because of the abundant sodium resources on Earth.\(^\text{[4-8]}\) The development of electrode materials that are composed of simple, inexpensive and environmentally friendly elements and that exhibit high electrochemical performance would represent an important advancement of SIB technology.

In cathode materials, many pioneering works have pointed to Prussian blue (PB) and its analogues (PBAs) as feasible cathode materials because of their open and zeolite-like framework, which allows Na\(^+\) ions to pass through rapidly. Furthermore, PBAs exhibit high specific capacities and good cycle stabilities and can be prepared from eco-friendly raw materials via a simple synthetic process.\(^\text{[9-15]}\) In the cubic framework of PB, the Fe site is bounded by Fe(CN)\(_6\) groups. Thus, two types of Fe sites are present in the Fe-C≡N-Fe lattice framework: one with a C end in the low-spin state (Fe1) and another with an N end in the high-spin state (Fe2). The redox reactions of Fe1 and Fe2 should occur at different redox potentials with a similar number of coulombs consumed because the number of Fe1 sites is almost equal to the number of Fe2 sites. When PB is used as a cathode material in SIBs, two voltage plateaus with similar capacities corresponding to Fe1 and Fe2 should be observed. However, in most previous reports, the PB cathode only delivers one distinct voltage plateau at potential less than 3.0 V, corresponding to Fe2; in contrast, the corresponding voltage plateau of Fe1 is inconspicuous or extremely short for reasons that remain unknown.\(^\text{[9, 11, 12]}\) The redox potential of Fe1 is higher than that of Fe2. The insufficient reaction of Fe1 may result in decreased capacity and a low discharge medium voltage of SIBs. To promote the practical application of PB in SIBs, clarification of the aforementioned phenomenon is important to improve the PB’s specific capacity and the charge/discharge voltage plateau of Fe1.

Herein, we first investigate the relationship between the coordinated water and the voltage plateau of Fe1 in PB. As far as we know, the literature contains no reports related to the negative effects of coordinated water on the electrochemical performance of PB, such as its discharge capacity and redox voltage during the insertion/extraction of Na\(^+\). The main barrier is that the coordinated water located in the vacant sites of the framework is difficult to remove with simple methods.\(^\text{[16]}\) In this research, we developed an effective method to remove the coordinated water from the PB structure. Briefly, heat-treatment of a graphene oxide/PB composite (GOPC) released the coordinated water from the PB framework via an electron exchange between the cubic PB particles and the graphene oxide (GO) at high temperature.

The cubic, micron-sized PB was synthesised by self-decomposition of Na\(_4\)Fe(CN)\(_6\) in hot, acidic solution (See S1 of ESI). Na\(_4\)Fe(CN)\(_6\) decomposed slowly to generate Fe\(^{2+}\), which reacted with the Fe(CN)\(_6\) group to form the well-shaped cubic PB, as shown in Figure 1a. The chemical composition of the obtained PB was revealed to be Na\(_{0.81}\)Fe[Fe(CN)\(_{0.79}\)] \(\times \) \(\square\) (\(\square\) = Fe(CN)\(_6\) vacancy) by elemental analysis and inductively coupled plasma (ICP) analysis. The concentration of Fe(CN)\(_6\) vacancies reached approximately 21% based on all Fe(CN)\(_6\) sites in the perfect PB framework. In the hot acidic solution, Fe(CN)\(_6\)\(^{4-}\) and Fe\(^{2+}\) can be oxidised to Fe(CN)\(_6\)\(^{3-}\) and Fe\(^{3+}\). Thus, the prepared PB product might contain some Fe\(^{2+}\)-Fe(CN)\(_6\)\(^{4-}\), Fe\(^{3+}\)-Fe(CN)\(_6\)\(^{3-}\) and Fe\(^{3+}\)-Fe(CN)\(_6\)\(^{2-}\) bonds in addition to the main Fe\(^{2+}\)-Fe(CN)\(_6\)\(^{4-}\) bonds in the crystal framework. Thermogravimetric analysis (TG) showed that the water content of the PB was 11.5 wt.% (See S2 of ESI).

Figure 1. Scanning electron microscopy images of (a) PB, (b) RGOPC1, (c) RGOPC2 and (d) RGOPC3.
Absorbed water, zeolitic water and coordinated water were all present in the PB. The zeolitic water was just physically adsorbed in the interstitial lattice sites. However, the coordinated water bound to the Fe ions might affect the surrounding electronic states of the Fe ions or the Fe(CN)_6 groups.

To ensure that the PB particles were in good contact with the GO flakes, the graphene oxide/PB composites (GOPCs) with different GO contents (GOPC with 9 wt.% GO as GOPC3, GOPC with 5.7 wt.% GO as GOPC2 and GOPC with 2.9 wt.% GO as GOPC1) were fabricated using a spray-drying method. The GOPCs were then heated at 220°C to form reduced graphene oxide (RGO)/PB composites (RGOPCs) with a lower concentration of coordinated water.[17]

Figure 1a shows the X-ray diffraction (XRD) patterns of the PB, GOPC3, RGOPC2 and RGOPC3. (a) The second galvanostatic charge–discharge profiles of PB, RGOPC1, RGOPC2 and RGOPC3 between 2.0 V and 4.0 V at 30 mA/g. (c) Cyclic voltammograms of PB and RGOPC3 recorded at a scan rate of 0.03 mV/s between 2 V and 4 V. (d) FT-IR spectra of PB, RGOPC1, RGOPC2 and RGOPC3.

Figure 2. (a) X-ray diffraction patterns of PB, RGOPC1, RGOPC2 and RGOPC3. (b) The second galvanostatic charge–discharge profiles of PB, RGOPC1, RGOPC2 and RGOPC3 between 2.0 V and 4.0 V at 30 mA/g. (c) Cyclic voltammograms of PB and RGOPC3 recorded at a scan rate of 0.03 mV/s between 2 V and 4 V. (d) FT-IR spectra of PB, RGOPC1, RGOPC2 and RGOPC3.

Figure 3. A schematic mechanism for the removal of coordinated water from RGOPC.
RGOPCs might still contain coordinated water, but it could not be measured precisely. Nonetheless, on the basis of the charge/discharge curves of RGOPCs, we concluded that the residual water in the PB framework only slightly affected the electrochemical performance of RGOPC2 and RGOPC3 in SIBs.

The removal of coordinated water was further confirmed by the Rietveld refinement results of the XRD patterns. These XRD patterns of PB and RGOPCs were refined with GSASII software, as shown in Figure S5 and Table S1.[25-27] The fitted XRD patterns indicate that all samples are in the single crystalline phase. In the fcc structure of the samples, the Fe2 is located at the 4a (0, 0, 0) crystallographic position, while the Fe1 occupies the 4b (1/2, 1/2, 1/2) crystallographic position. From the Table S1, the amount of O atoms in the RGOPC3 decreased when compared with the PB, indicating that the coordinated water was removed in the RGOPC3 and the amount of vacancies increased from PB to RGOPC3. The d-spacing of these samples are 10.3423 Å for PB, 10.3361 Å for RGOPC1, 10.2735 Å for RGOPC2 and 10.2591 Å for RGOPC3, respectively, which are big enough for Na⁺ to pass through. The decreased lattice parameter for RGOPC3 may be due to the fact that the removal of water generates the cation vacancies and then affects the residual stress of the crystals.

Figure 4. (a) Mössbauer spectrum of PB. (b) Mössbauer spectrum of RGOPC3. (c) Raman spectra of PB, RGOPC1, RGOPC2 and RGOPC3.

A possible mechanism for removing coordinated water from PB is shown in Figure 3 (See S7 and S8 of ESI). At a high temperature (220°C), Fe1 and Fe2 in the PB structure are active and easily lose or gain electrons, especially in the case of Fe2 because of the low bond strength of Fe-N≡C.[28] The oxide group acquires one electron from Fe2⁺ in the external PB crystal to break from the GO first, and Fe2⁺ is oxidised to Fe2³⁺. Then, the PB requires an additional electron or cation vacancy to maintain electrical neutrality. The PB framework contains numerous Fe(CN)₆³⁻/Fe(CN)₆⁴⁻ ratios. Therefore, these reactions can occur from the surface to the interior of the PB particles, as confirmed by the Raman spectra of RGOPC3 heated for different times (See S12 of ESI). The ratio of Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ in the RGOPC3 decreased as the heating time was increased.

Figure 5. (a) Cycling performances of PB, RGOPC1, RGOPC2 and RGOPC3 between 2.0 V and 4.0 V at 200 mA/g. (b) The rate performance of PB, RGOPC1, RGOPC2 and RGOPC3 at different current densities between 2 V and 4 V.

The electrochemical performances of the RGOPCs were investigated further. Figure 5a compares the long-term cycle performances of the RGOPCs with pure PB at a current density of 200 mA/g and in the potential range between 2.0 and 4.0 V. The RGOPCs clearly exhibited remarkably improved cycling performance. The initial discharge capacities of RGOPC3, RGOPC2 and RGOPC1 were 149.7 mAh/g, 130 mAh/g and 110.9 mAh/g, with capacity retentions of 91.9% (137.6 mAh/g), 88.8% (115.5 mAh/g) and 71.6% (79.43 mAh/g), respectively, after 500 cycles. The pure PB only delivered an initial discharge capacity of 101.6 mAh/g, with a capacity retention of 57.5% (58.4 mAh/g) after 500 cycles. Notably, the RGOPC3 sample exhibited the most attractive performance among all of the investigated samples. Furthermore, when RGOPC3 was placed in water again and then dried under vacuum, its charge/discharge curve still exhibited two obvious voltage plateaus for Fe1 and Fe2 (See S13 of ESI). This phenomenon indicates that the framework of RGOPC3 was stable and in good order after the coordinated water was removed; the vacancies were not refilled by water.

In addition to the water removal effect, the superior electrical conductivity of the RGO also greatly contributed to the rate completely eliminate the negative effects of the coordinated water, whereas the original 5.7 wt.% GO content in the RGOPC is sufficient to provide good electrochemical performance.

In order to analyse the changes of the Fe1 and the Fe2, we measured the Mössbauer spectra of pristine PB and RGOPC3 (Figure 4a and 4b). The fitted curves are also presented. Table S2 summarized the fitted parameters. From the Figure 4a and 4b, the Fe١²⁺/Fe٢³⁺ in the PB and the RGOPC3 are calculated to be 4.64 and 2.23, while the Fe١²⁺/Fe٢³⁺ are calculated to be 2.95 and 1.33, respectively.[18,19] The increased amount of Fe١³⁺ and Fe٢³⁺ in the RGOPC3 are consistent with the mechanism for the removal of coordinated water. The Raman spectra present similar results, as shown in Figure 4c. The Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ ratios were calculated to be 3.29, 2.51, 1.35 and 1.14 for PB, RGOPC1, RGOPC2 and RGOPC3, respectively (See S10 and S11 of ESI). The number of Fe(CN)₆³⁻ groups in the PB framework increased because of charge transfer between the Fe1 site and the Fe2 site through the C≡N bridge.[30] In the adjacent sites of the formed cation vacancies, the cation vacancies functioned as electron-withdrawing sites to induce the redox reactions of Fe١²⁺=C=N-Fe١³⁺ and Fe١¹⁻=C=N-Fe٢²⁺, thereby decreasing the Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ ratio. Therefore, these reactions can occur from the surface to the interior of the PB particles, as confirmed by the Raman spectra of RGOPC3 heated for different times (See S12 of ESI). The ratio of Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ in the RGOPC3 decreased as the heating time was increased.

The number of Fe(CN)₆³⁻ groups in the PB framework increased because of charge transfer between the Fe1 site and the Fe2 site through the C≡N bridge.[30] In the adjacent sites of the formed cation vacancies, the cation vacancies functioned as electron-withdrawing sites to induce the redox reactions of Fe١²⁺=C=N-Fe١³⁺ and Fe١¹⁻=C=N-Fe٢²⁺, thereby decreasing the Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ ratio. Therefore, these reactions can occur from the surface to the interior of the PB particles, as confirmed by the Raman spectra of RGOPC3 heated for different times (See S12 of ESI). The ratio of Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ in the RGOPC3 decreased as the heating time was increased.
performance of the RGOPCs. Figure 5b shows the discharge capacities of the RGOPCs and pure PB samples charged/discharged at different current densities between 2.0 and 4.0 V vs. Na+/Na. The RGOPC3 electrode clearly exhibited the best rate performance, especially at high current densities. The average discharge capacity of the RGOPC3 cathode was 112 mAh/g at a current density of 800 mA/g. In contrast, the discharge capacity of the pure PB electrode was only 41 mAh/g under the same discharge conditions. Figure S13b shows the electrochemical impedance spectra of PB and RGOPCs after ten charge/discharge cycles at 200 mA/g. The RGOPC3 exhibited the lowest charge transfer resistance, consistent with its rate performance.

Conclusions

In summary, we successfully synthesised RGOPCs with coordinated water removed by thermal heating of GO/PB composites. We first demonstrated the relationship between the coordinated water and the redox voltage plateau of Fe1, which is significant for SIBs. During the co-heating process of the GO and PB, the oxide group of the GO acquired one electron from the Fe2 site of Fe22+-(NC)5(OH2) in the PB to deviate from the GO. Then, the (OH)2 of Fe22+-(NC)5(OH2), which experienced a weak ligand field, was removed to form a cation vacancy to compensate the electric change of the Fe22+/3+ in the PB framework. Meanwhile, the cation vacancies functioned as electron-withdrawing sites to induce redox reactions of Fe12+-N-Fe23+ and Fe13+-C≡N through the C=N bridge. Accompanying this process, the coordinated water in the Fe(CN)x vacancies were removed. When RGOPC3 was used as a cathode in SIBs, it delivered a high specific capacity of 163.3 mAh/g (30 mA/g), which is close to the theoretical specific capacity of PB, with two voltage plateaus for Fe1 and Fe2; in contrast, the pure PB exhibited a specific capacity of only 131.2 mAh/g (30 mA/g), which is close to the theoretical specific capacity of PB, with two voltage plateaus for Fe1 and Fe2; in contrast, the pure PB exhibited a specific capacity of only 41 mAh/g. Thus, almost all of the redox sites in RGOPC3 responded to the insertion/exaction of Na+, whereas only portion of the redox sites in PB responded to the Na+ insertion/exaction. RGOPC3 also exhibited excellent cycling stability and good rate properties, with a specific capacity of 112 mAh/g at a current density of 800 mA/g. After 500 cycles, the capacity retention of the RGOPC3 cathode still reached 91.9% at 200 mA/hg. Hence, the high rate performance and excellent cycling stability strongly suggest that RGOPC3 is a feasible cathode material for SIBs. Furthermore, the relationship between the coordinated water and low-spin Fe sites of Fe(CN)x are also significant for other similar materials, especially PBAs when they are used in SIBs.

The authors appreciate the financial supports from the Natural Science Foundation of China (21336003 and 21073120), the Major Basic Research Program of China (2014CB239700), the Science and Technology Commission of Shanghai Municipality (14DZ2250800), and the Shanghai Natural Science Foundation (15ZR142300).

Notes and references

* Shanghai Electrochemical Energy Devices Research Center,
† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/