# ChemComm

## Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/chemcomm

#### ChemComm

# Journal Name

## **RSCPublishing**

### COMMUNICATION

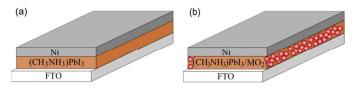
## Thermally-activated recombination in one component of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> / TiO<sub>2</sub> observed by photocurrent spectroscopy

Received 00th January 2012, Accepted 00th January 2012

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

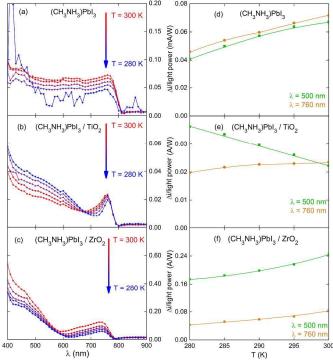
www.rsc.org/


Patrick Cottingham,<sup>*a*</sup> David C. Wallace,<sup>*a*</sup> Ke Hu,<sup>*b*</sup> Gerald Meyer,<sup>*b*</sup> and Tyrel M. McQueen<sup>*a*, *c*, *d*</sup>

Photocurrent measurements on devices containing the perovskite  $(CH_3NH_3)PbI_3$  show two distinct spectral responses when deposited in a mesoporous oxide matrix, compared with one response for planar perovskite alone. With a TiO<sub>2</sub> matrix, the shorter wavelength response has an inverted temperature response with increasing performance on cooling.

Organometallic halide perovskites have been the subject of intense research in recent years. Interest in these materials stems in part from their ability to function as efficient light absorbers and electron- and hole-transport materials in photovoltaic (PV) devices. These materials are especially attractive for PV applications because of their earth-abundant components and the wide variety of lowenergy synthetic techniques<sup>1.4</sup> by which they can be produced. Early studies of PV devices containing organometallic halide perovskites used the perovskite (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> deposited into a mesoporous TiO<sub>2</sub> matrix.<sup>5-7</sup> Later studies demonstrated that efficient devices could be constructed using (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> and larger-bandgap oxides such as Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub> in which the energy of the conduction band minimum is too high for electron injection from (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> to occur.<sup>8-11</sup> Perovskite PV cells not containing any oxide matrix ('planar' devices) have also produced high efficiencies.<sup>2,9,12,13</sup>

It has been suggested that in addition to providing a driving force for charge separation at the  $(CH_3NH_3)PbI_3 / TiO_2$  interface,  $TiO_2$ enhances the performance of devices by acting as an electrontransport material.<sup>14</sup> However, devices with  $(CH_3NH_3)PbI_3$ deposited in highly-insulating Al<sub>2</sub>O<sub>3</sub>, where the conduction band minimum of the oxide is well above that of the perovskite, achieve similar or better performance than devices on TiO<sub>2</sub>.<sup>8</sup> Given the performance of Al<sub>2</sub>O<sub>3</sub>-containing devices, the role of the oxide matrix in charge separation remains unclear. A recent study of the structure of  $(CH_3NH_3)PbI_3$  in a TiO<sub>2</sub> matrix shows that the matrix has a profound effect on the structure of the perovskite.<sup>15</sup> PDF (pair distribution function) analysis of x-ray total scattering data suggests that when  $(CH_3NH_3)PbI_3$  is deposited into mesoporous TiO<sub>2</sub> it forms two components withthe same crystal structure: a relatively disordered component consisting of ~1.4 nm diameter nanocrystals which are confined by pores of the matrix and one with much longer-range coherence. More recent work suggests that the catalytic action of water may be essential for the formation of the perovskite phase.<sup>16</sup>


In order to explore the mechanisms of charge separation in planar devices versus devices based on  $TiO_2$  or highly-insulating oxides, we report temperature-dependent photocurrent measurements on a range of devices. The planar perovskite (Fig.1a) and perovskite on mesoporous  $TiO_2$  or  $ZrO_2$  (Fig. 1b) devices were prepared following published procedures.<sup>6</sup> X-ray diffraction was used to check film purity (see Fig. S1). Briefly, 40.3 weight % perovskite precursor solution was prepared with an equimolar ratio of  $CH_3NH_3I$  and  $PbI_2$  in  $\gamma$ -butyrolactone and spin-coated onto an FTO (fluorine-doped tin oxide) substrate or onto mesoporous  $TiO_2$  or  $ZrO_2$  on FTO substrate. (see SI for details). The substrates were mechanically compressed against a nickel foil electrode using a spring-loaded clamp.



**Fig. 1** Schematic illustration of two devices containing  $(CH_3NH_3)PbI_3$ . All devices contain an absorber layer compressed between one FTO electrode and one nickel electrode. The device in (a) contains a planar  $(CH_3NH_3)PbI_3$  absorber layer. The device in (b) contains  $(CH_3NH_3)PbI_3$  embedded in a mesoporous  $MO_2$  matrix, where M is Ti or Zr.

Photocurrent measurements were conducted by mounting the samples on a bespoke probe and illuminating the samples using a monochromated lamp. All data is normalized per Watt of incident light (see SI for details).

Fig. 2a shows the photocurrent of the device containing planar (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub>. The photocurrent is approximately constant with wavelength from  $\lambda = 400$  nm until the photocurrent onset at  $\lambda = 800$  nm. This spectral shape is commonly associated with the photoconductivity of a directbandgap semiconductor. In devices of this kind, containing neither a strong interfacial electric field nor a dedicated electron- or hole-transport layer, charge separation may occur by diffusion.<sup>17</sup> As the temperature of the sample is decreased, the photocurrent decreases at all wavelengths above the photocurrent edge by an approximately constant factor.



**Fig. 2** (a), (b), and (c) respectively show the photocurrent of devices containing planar (CH<sub>3</sub>NH<sub>3</sub>)Pbl<sub>3</sub>, (CH<sub>3</sub>NH<sub>3</sub>)Pbl<sub>3</sub> in TiO<sub>2</sub>, and (CH<sub>3</sub>NH<sub>3</sub>)Pbl<sub>3</sub> in ZrO<sub>2</sub> as a function of temperature. (d), (e), and (f) show the photocurrent of those devices at  $\lambda = 500$  nm, and  $\lambda = 760$  nm as a function of temperature. All lines are guides to the eye. Noise at T = 280 K is due to failure of the light bulb.

Fig. 2b shows the photocurrent of a device with mesoporous TiO<sub>2</sub>. The photocurrent spectrum for this device contains two distinct responses. The first response is centered at shorter wavelengths and shows a gradual decrease in intensity on scanning to longer wavelengths. The second response has a peak-like shape and is centered at around  $\lambda = 760$  nm. This kind of distinct upturn near the band-edge has been previously observed in devices containing (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> and oxide when the data is reported in terms of external quantum efficiency.<sup>2,18,19</sup> The photocurrent of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in mesoporous ZrO<sub>2</sub> (Fig. 2c) shows two similarly shaped responses.

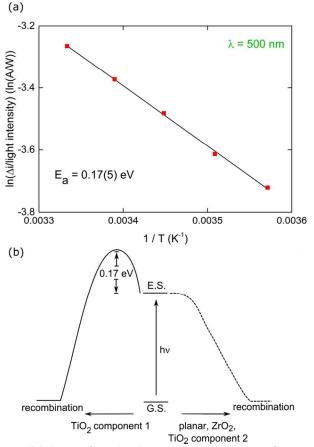
Page 2 of 4

A plausible explanation for the appearance of two responses in the photocurrent when (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> is deposited on a mesoporous matrix is the formation of two components as observed by Choi et al.<sup>15</sup>; this is also consistent with our observation that planar (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> devices with a compact, but not mesoporous, TiO<sub>2</sub> layer also only show a single response (Fig. S2). The peak-like shape of the longerwavelength response is reminiscent of a quantum dot, suggesting that it derives from the short-range ordered component. However, quantum confinement effects blue-shift the absorption of nanocrystals, suggesting that the photocurrent at shorter wavelengths derives from the short-range ordered component. If the shorter-wavelength response does correspond to the short-range ordered component, the Brus equation<sup>20</sup> for the energy of transitions in a semiconductor cluster (Eqn. 1)

$$\Delta E(r) = E_{gap} + \frac{h^2}{8r^2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$
(1)

can be used to calculate the effective mass of a free carrier in this component by assuming that the electron and hole effective masses,  $m_e^*$  and  $m_h^*$ , are equal.  $\Delta E(r)$  is the energy of the transition in the cluster,  $E_{gap}$  is the bandgap of the bulk semiconductor, r is the radius of a cluster, and h is the Planck constant. The effective mass calculated using this equation is  $m^* = 15 m_0$ , which differs substantially from the values of  $m_e^* = 0.23 m_0$  and  $m_h^* = 0.29 m_0$  determined from density functional theory (DFT) calculations<sup>21</sup>. This discrepancy suggests that the difference in the photocurrent edge between the two components derives from differences in structure, composition, or disorder or from space-charge effects rather than quantum confinement.

As it is not possible to definitively assign the two features in the photocurrent spectrum to either the short-range ordered or the medium-range ordered component of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub>, they will be referred to below as component 1 (giving rise to the feature at shorter wavelengths) and component 2 (giving rise to the feature centered at  $\lambda = 760$  nm).


Plotting the photocurrent at  $\lambda = 500$  nm and  $\lambda = 760$  nm as a function of temperature shows profound differences between different devices. For planar (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> (Fig. 2d), the responses at both wavelengths vary almost linearly with temperature and have approximately the same positive slope. For (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in TiO<sub>2</sub>, however, the response at  $\lambda = 500$  nm *decreases* with increasing temperature while the response at  $\lambda = 760$  nm increases with increasing temperature (Fig. 2e). For (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in ZrO<sub>2</sub>, the two response at both wavelengths both increase with increasing temperature (Fig. 2f).

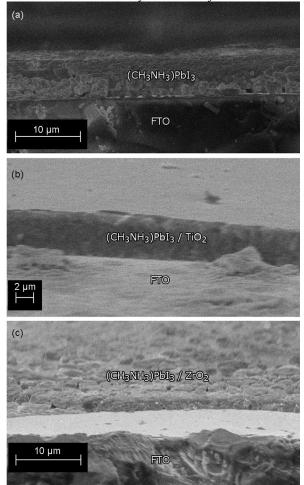
The short-wavelength photocurrent efficiency decreases with increasing temperature for the  $TiO_2$ -containing devices and increases for all other samples; this implies that  $TiO_2$  is responsible for this behaviour.

The changes in photocurrent at  $\lambda = 500$  nm for the TiO<sub>2</sub>containing devices can be described well by an expression for thermally activated recombination containing a constant term which represents the photocurrent in the absence of recombination and an Arrhenius-type term which accounts for recombination (Eqn. 2). Here  $\Delta i$  is the measured photocurrent normalized for the incident light intensity,  $E_a$  is the energy barrier for recombination, *C* is a constant which represents the photocurrent in the absence of recombination, and *A* is a free scaling parameter. The sign of *A* is opposite to that of  $\Delta i$  and *C* because the Arrhenius term represents recombination which reduces the overall photocurrent.

$$\Delta i = C + A e^{-E_a/k_B T}$$

 $\Delta i = C + Ae^{-Tk_BT}$  (2) If the value of C = 0.06(1) A/W determined from fitting is subtracted from  $\Delta i$ , the Arrhenius term can be isolated and shown in a typical  $\ln(k)$  vs. 1/T -type plot (Fig. 3a). The energy barrier determined from the fit is  $E_a = 0.17(5)$  eV. The results of the fit can be used to construct a model of charge recombination for the three devices(Fig. 3b). For all of the devices, free charge carriers are generated when the absorption of a photon generates an electron-hole pair. For planar (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub>, component 2 of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in TiO<sub>2</sub>, and both components of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in ZrO<sub>2</sub>, recombination proceeds through a pathway in which thermal activation is not the rate-limiting step. In contrast, for component 1 of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in TiO<sub>2</sub>, recombination occurs with an effective energy barrier of  $E_a = 0.17(5)$  eV.




**Fig. 3** (a) Shows a fit to the change in photocurrent as a function of temperature for the device containing  $(CH_3NH_3)PbI_3$  in TiO<sub>2</sub> at  $\lambda$  = 500 nm. (b) Shows a model of charge recombination in component 1 of  $(CH_3NH_3)PbI_3$  in TiO<sub>2</sub>, compared with planar  $(CH_3NH_3)PbI_3$ ,  $(CH_3NH_3)PbI_3$  in ZrO<sub>2</sub>, and component 2 of  $(CH_3NH_3)PbI_3$  in TiO<sub>2</sub>.

The absence of thermally-activated recombination in component 2 of  $(CH_3NH_3)PbI_3$  in  $TiO_2$  suggests that charge collection from this component proceeds through a pathway not involving  $TiO_2$ , perhaps involving percolation through a network of nano-scale domains. It is plausible for such networks to exist given Choi et al.'s observation<sup>15</sup> that ~70% of  $(CH_3NH_3)PbI_3$  on  $TiO_2$  consists of the short-range ordered component.

The thermally-activated recombination of carriers from component 1 of (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in TiO<sub>2</sub> likely consists of a

combination of back-electron transfer and/or recombination related to transport through TiO<sub>2</sub>. Experimentally determined values for the offset between the conduction band minima of  $(CH_3NH_3)PbI_3$  and TiO<sub>2</sub> range from 0.07 eV<sup>7</sup> to 0.4 eV<sup>22</sup>. DFT including spin-orbit coupling has been used to calculate an offset of 0.2 eV.<sup>23</sup> With an energy offset in this range electron transfer from TiO<sub>2</sub> to  $(CH_3NH_3)PbI_3$  is possible. This is in contrast to ZrO<sub>2</sub> where the conduction band minimum is more than 1 eV above that of TiO<sub>2</sub><sup>24</sup> and electron transfer to the oxide is unlikely. Studies of transport in TiO<sub>2</sub>-based dye-sensitized solar cells (DSSCs) have also found activation energies for electron mobility of  $E_a = 0.15 \text{ eV}.^{25}$  The thermal activation of recombination may involve transport to recombination sites in TiO<sub>2</sub> or to an interface where recombination or back-electron transfer occurs.

It is unclear from the data above why charge injection to  $TiO_2$  does not occur from component 2. One explanation is that this component is physically separated from  $TiO_2$ , likely by component 1. Alternately, it is possible that the conduction band minimum of component 2 is below that of  $TiO_2$  and carriers diffuse away from the (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> /  $TiO_2$  interface before hot-carrier or thermally-activated injection can occur.



**Fig. 4** Scanning electron microscope (SEM) images of (a) planar (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub>, (b) (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in TiO<sub>2</sub>, and (c) (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> in ZrO<sub>2</sub>.

One aspect of the photocurrent data which is not fully explained by the model in Fig. 3b is the substantially larger photocurrent at all wavelengths of the device containing  $(CH_3NH_3)PbI_3$  on  $ZrO_2$ . The difference may result from differences in sample thickness. Scanning electron microscopy (SEM) imaging shown in Fig. 4 indicates that the TiO<sub>2</sub>containing samples were ~2.5 times thicker than ZrO<sub>2</sub>containing samples. This difference is approximately the same as the difference in photocurrent between the samples at longer wavelengths where injection into TiO<sub>2</sub> is not a factor. Similar decreases in incident photon conversion efficiency (IPCE) have been observed with increasing (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> / TiO<sub>2</sub> layer thickness for complete PV cells and has been attributed to increased recombination.<sup>26</sup>

#### Conclusions

The observation of two distinct responses in the photocurrent spectra of devices containing  $(CH_3NH_3)PbI_3$  on an oxide matrix, compared to one response for planar  $(CH_3NH_3)PbI_3$ , supports previous crystallographic observations of two distinct components in  $(CH_3NH_3)PbI_3$  on TiO<sub>2</sub>. The inverted temperature dependence of the photocurrent from one component of  $(CH_3NH_3)PbI_3$  in TiO<sub>2</sub> indicates that thermally activated recombination occurs when charge injection and transport occur through TiO<sub>2</sub>. The other component of  $(CH_3NH_3)PbI_3$  in TiO<sub>2</sub> appears to separate and transport charge through a mechanism not involving TiO<sub>2</sub>. Fitting the activation energy of recombination with an Arrhenius term gives an energy barrier for recombination of  $E_a = 0.17(5)$  eV.

#### Notes and references

<sup>*a*</sup> Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore 21218.

<sup>b</sup> Department of Chemistry, University of North Carolina at Chapel Hill, 123 South Rd., Chapel Hill, NC 27599

<sup>c</sup> Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore 21218.

<sup>d</sup> Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore 21218.

Work supported by the American Chemical Society Division of Inorganic Chemistry Exxon-Mobil Solid State Faculty Fellowship and the National Science Foundation (NSF) Division of Materials Research (DMR) CAREER grant #1253562

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/c000000x/

- M. H. Kumar. N. Yantara, S. Dharani, M. Grätzel, S. Mhaisalkar, P. P. Boix and N. Mathews, *Chem. Comm.*, 2013, 49, 11089.
- 2 J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhu, Y. Yang. *ACS nano*, 2014, **8**, 1674.
- 3 J. Burschka, N. Pellet, S.-J. Moon, R. Humphrey-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, *Nature*, 2013, 499, 316
- P. Docampo, F. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith, T. Bein, *Adv. Energy Mater.*, 2014, 4, 1400355
- 5 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050.
- 6 J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, and N.G. Park, *Nanoscale*, 2011, **3**, 4088.
- 7 H.-S. Kim, C.-R. Lee, J.-K. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, *Sci. Rep.*, 2012, 2, 591.

- 8 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, *Science*, 2012, **338**, 643.
- 9 J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, *Energy Environ.* Sci., 2013, 6, 1739.
- 10 D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, *RSC Adv.*, 2013, **3**, 18762.
- H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, and J. Bisquert, *Nat. Commun.*, 2013, 4, 2242.
- 12 M. Liu, M. B. Johnston, H. J. Snaith, Nature, 2013, 501, 395.
- M. H. Kumar, N. Yantara, S. Dharani, M. Grätzel, S. Mhaisalkar, P. P. Boix, N. Mathews, *Chem. Commun.*, 2013, 49, 11089.
- E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen, *Nano Lett.*, 2014, 14, 1000.
- 15 J. J. Choi, X. Yang, Z. M. Norman, S.J.I. Bilinge, J.S. Owen, *Nano Lett.*, 2014, 14, 127.
- 16 K. K. Bass, R. E. McAnally, S. Zhou, P. Djurovich, M. E. Thompson, and B. Melot, *Chem. Commun.*, 2014, 50, 15819.
- 17 T. Ripolles-Sanchis, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, J. *Phys. Chem. C*, 2012, **116**, 16933.
- 18 A. Abrusci, S.D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen, H.J. Snaith, *Nano. Lett.* 2013, **13**, 3124.
- 19 H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, T. Liu, Y. Yang, *Science*, 2014, **345**, 542.
- 20 L. Brus, J. Phys. Chem., 1986, 90, 2555.
- 21 G. Giorgi, J. -I. Fujisawa, H. Segawa, K. Yamashita. J. Phys. Chem Lett., 2013, 4, 4213.
- 22 R. Lindblad, D. Bi, B.-W. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E. M. J. Johansson, H. Rensmo. J. Phys. Chem. Lett. 2014, 5, 648.
- 23 J. Evan, L. Pedesseau, J.-M. Jancu, C. Katan., J. Phys. Chem. Lett., 2013, 4, 2999.
- 24 L. Chai, R.T. White, M.T. Greiner, and Z.H. Lu. *Phys. Rev. B*, 2014, **89**, 035202.
- 25 H. G. Agrell, G. Boschloo, A. Hagfeldt. J. Phys. Chem. B., 2004, 108, 12388.
- 26 J.H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. -S. Lim, J. A. Chang, Y. H. Lee, H.- J. Kim, A. Sarkar, Md. K. Nazeeruddin, M. Grätzel, S.I. Seok, *Nat. Photonics*, 2014, 7, 486.