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A variety of terminal alkynes are facilely convertible into cis-
boryl(stannyl)alkenes with regioselectivity inverse to those of 
the previous borylstannylation by the copper-catalyzed three-
component reaction using a masked diboron.  Synthetic 
utility of the resulting boryl(stannyl)alkenes has been 
demonstrated by chemoselective coupling reactions. 

Transition metal-catalyzed dimetallation of alkynes has 
commanded considerable attention,1 because it provides 
convenient and direct method for constructing regio- and 
stereo-defined dimetallated alkenes, whose carbon–metal bonds 
are utilizable for carbon–carbon bond-forming processes2 to 
give multisubstituted alkenes, which constitute an important 
class of biologically and pharmaceutically active molecules.  
One of the most valuable dimetallations would be 
borylstannylation, in which the resulting hetero-dimetallic 
moieties can tandemly undergo chemoselective cross-coupling 
reactions (Suzuki–Miyaura3 and Migita–Kosugi–Stille 
coupling4) with high functional group compatibility under 
controlled reaction conditions.  Since the pioneering work was 
reported by Tanaka,5a the borylstannylation has hitherto been 
achieved by direct insertion of alkynes into a B–Sn bond of 
borylstannanes under palladium catalysis.5  On the other hand, 
we have recently disclosed a different mode of the 
borylstannylation by a copper-catalyzed three-component 
coupling using a diboron and a tin alkoxide.6-8  Irrespective of 
the catalytic systems and the reaction modes, terminal alkynes 
exclusively accept regioselective addition of the boryl group at 
the terminal carbon and the stannyl group at the internal carbon 
in a cis fashion to give (Z)-1-boryl-2-stannyl-1-alkenes  

 
Scheme	
  1	
  Reported	
  borylstannylation	
  of	
  terminal	
  alkynes.	
  

(Scheme 1), and thus we have focused our attention on reversal 
of regioselectivity, which increases structural diversity of vic-
boryl(stannyl)alkenes and thereby broadens the synthetic utility 
of the borylstannylation.  Herein we report that the use of a 
masked diboron9 in the copper-catalyzed three-component 
borylstannylation of terminal alkynes completely inverts the 
regioselectivity, and that this method provides convenient and 
direct entry to unprecedented hetero-dimetallated alkenes 
having masked boryl and stannyl moieties.10   
 First we conducted the reaction of 1-octyne (1a) with a 
masked diboron ((pin)B–B(dan), pin: pinacolato, dan: 
naphthalene-1,8-diaminato11) and tributyltin methoxide in THF  
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Table 1 Ligand effect on Cu-catalyzed borylstannylation of 1-octynea 

 
Entry Cu catalyst Time (h) Yield (%)b 2a:2’ac 

1 (SIPr)CuCl 7 74 96:4 
2 (SIMes)CuCl 2 81 90:10 
3 (tBu-SIPr)CuCl 20 69 94:6 
4 (IPr)CuCl 5 75 96:4 
5 (IPr*)CuCl 11 80 96:4 
6d P(tBu)3, CuCl 2 81 93:7 
7 (PPh3)3CuCl 48 75 44:56 
8d PCy3, CuCl 14 60 84:16 
9e (SIPr)CuCl 10 86 96:4 
a General procedure: 1a (0.30 mmol, 1 equiv), (pin)B–B(dan) (0.36 mmol, 
1.2 equiv), Bu3SnOMe (0.36 mmol, 1.2 equiv), Cu catalyst (6.0 µmol, 2 
mol%), THF (1 mL).  b Isolated yield.  c Determined by 1H NMR.  d Ligand = 
4 mol%.  e Bu3SnOMe = 2 equiv. 

at room temperature in the presence of an N-heterocyclic 
carbene (NHC)-coordinated copper complex ((SIPr)CuCl), and 
found that the cis-borylstannylation took place with 
regioselectivity inverse to those of the previous 
borylstannylation (74% yield, 2a:2’a = 96:4), leading to the 
introduction of the boryl group at the internal carbon and the 
stannyl group at the terminal carbon (Table 1, entry 1).  It is 
noteworthy that the B(dan) moiety was solely installed in the 
product, and a borylstannylation product having the B(pin) 
moiety was not formed at all.  The regioselectivity for the 
formation of 2a was generally high with bulky ligands (SIMes, 
tBu-SIPr, IPr, IPr*12 and P(tBu)3) (entries 2–6), whereas the use 
of triphenylphosphine ((PPh3)3CuCl) led to the formation of 
regioisomeric mixtures (2a:2’a = 44:56, entry 7).  In addition, 
the reaction with PCy3, used for the previous borylstannylation 
with bis(pinacolato)diboron,6a also afforded 2a preferentially 
(2a:2’a = 84:16, entry 8), which reveals that the choice of a 
diboron as well as a ligand is the key for the present 
regioselectivity.13  Since the increase in an amount of tributyltin 
methoxide resulted in the increase in the yield with the highest 
regioselectivity (86% yield, entry 9), we selected the conditions 
for further studies.14   
 With the optimum conditions in hand (Table 1, entry 9), the 
substrate scope on alkynes was next investigated (Table 2).  
Such aliphatic terminal alkynes as 1-hexyne (1b), 4-methyl-1-
pentyne (1c) and 4-phenyl-1-butyne (1d) also underwent the  

Table 2 NHC–Cu-catalyzed borylstannylation of terminal alkynes a 

 
Entry R Yield (%)b 2:2’c Products 

1 nBu (1b) 78 94:6 2b, 2’b 
2 iBu (1c) 81 99:1 2c, 2’c 
3 Ph(CH2)2 (1d) 74 94:6 2d, 2’d 
4 Br(CH2)2 (1e) 87 99:1 2e, 2’e 
5 NC(CH2)3 (1f) 79 95:5 2f, 2’f 
6 1-Cyclohexenyl (1g) 81 99:1 2g, 2’g 
7 Ph (1h) 73 99:1 2h, 2’h 
8 MeOCH2 (1i) 66 >99:1 2i 
9 BnOCH2 (1j) 66 >99:1 2j 
10 THPOCH2 (1k) 66 >99:1 2k 
11 Et2NCH2 (1l) 69 >99:1 2l 
12 Me3Si (1m) 75 >99:1 2m 
a General procedure: 1 (0.30 mmol, 1 equiv), (pin)B–B(dan) (0.36 mmol, 1.2 
equiv), Bu3SnOMe (0.60 mmol, 2 equiv), (SIPr)CuCl (6.0 µmol, 2 mol%), 
THF (1 mL).  b Isolated yield.  c Determined by 1H NMR. 
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borylstannylation with high degrees of regioselectivity to give 
2b, 2c and 2d in 78, 81 and 74% yield (entries 1–3).  The 
functional group compatibility of the reaction was sufficiently 
high, and thus a C–Br bond15 in 1e and a cyano group in 1f 
remained intact throughout the reaction (entries 4 and 5).  The 
present regioselectivity was also observed by using enyne 1g 
and phenylacetylene 1h (entries 6 and 7), and furthermore the 
reaction of propargyl ethers (1i and 1j) or a THP-protected 
propargyl alcohol (1k) resulted in the exclusive formation of 
2i–2k (entries 8–10).  In addition, propargyl amine 1l and 
trimethylsilylacetylene 1m accepted the addition of the B(dan) 
moiety at their internal carbon with perfect regioselectivity 
(entries 11 and 12).16  The versatility of the borylstannylation  
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Scheme	
  3	
  A	
  plausible	
  catalytic	
  cycle	
  for	
  borylstannylation.	
  

 
Scheme	
  4	
  Regioselectivity	
  in	
  the	
  borylcupration.	
  

was further expanded by application to 1,7-octadiyne17 (1n) and 
allenes18 (3a and 3b): both of the triple bonds were convertible 
regioselectively into the borylstannylalkenes in the former case, 
and the regio- and stereoselective reaction proceeded to provide 
(Z)-1-stannyl-2-boryl-2-alkenes (4a and 4b) as the single 
product, although the regioselectivity is similar to that of the 
previous borylstannylation with bis(pinacolato)diboron6b in the 
latter case (Scheme 2).   
 Similarly to the previous copper-catalyzed 
borylstannylation with bis(pinacolato)diboron,6 generation of a 
borylcopper species, Cu–B(dan), from Cu–OMe and a masked 
diboron commences the reaction (Scheme 3, step A).  
Subsequent insertion of an alkyne into the Cu–B(dan) bond 
which produces a β-borylalkenylcopper species (borylcupration, 
step B),19 followed by capturing with a tin methoxide furnishes 
the product (step C).20  The formation of Cu–B(dan) (vs. Cu–
B(pin)) can be rationally explained by selective interaction 
between the Lewis acidic B(pin) moiety of (pin)B–B(dan) and 
the methoxy moiety of Cu–OMe in step A, leading to the 
exclusive introduction of the masked boryl moiety across the 
triple bond of alkynes.  The orientation of a borylcopper species 
in the borylcupration step entirely governs the regiochemical 
outcome of the borylstannylation (Scheme 4), and the mode of 
the borylcupration with Cu–B(dan) would simply be controlled 
by steric repulsion between a substituent on alkynes and a 
bulkier copper moiety as was the case with the 
hydroboration.10a  Hence, the B(dan) moiety is solely installed 
into the internal carbon of terminal alkynes,21,22 which results in 
the inverse regioselectivity in the present borylstannylation.   

 
Scheme	
  5	
  Transformation	
  of	
  borylstannylation	
  products.	
  

 Synthetic utility of the boryl(stannyl)alkenes was 
demonstrated by the chemoselective cross-coupling: a C–Sn 
bond of 2i was solely convertible into a C–C bond by the 
palladium-catalyzed Migita–Kosugi–Stille reaction to provide 
an 82% yield of 5 with a masked boryl moiety remaining intact 
(Scheme 5).  Furthermore, the masking enabled the copper-
mediated oxidative homocoupling to take place at the C–Sn 
bond selectively, affording 1,4-diboryl-1,3-butadienes (6–8) 
stereoretentively in high yield.  Unmasking of the resulting 1,4-
diboryl-1,3-butadiene, followed by the Suzuki–Miyaura 
reaction with 4-iodotoluene furnished 1,1,4,4-tetraarylbutadiene 
9.   
 In conclusion, we have disclosed that the borylstannylation 
of terminal alkynes proceeds with inverse regioselectivity by 
the copper-catalyzed three-component reaction using a masked 
diboron, which gives us convenient and potent approach to 
diverse cis-boryl(stannyl)alkenes bearing the masked boryl 
moiety at the internal carbons.  Moreover, synthetic versatility 
of the resulting boryl(stannyl)alkenes has been shown by the 
chemoselective coupling reactions depending on the difference 
in the reactivity between the masked boryl and the stannyl 
moieties.  Further studies on copper-catalyzed borylation 
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reactions by use of a masked diboron as well as on details of 
the mechanism are in progress.   
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