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Here we report a new and mild Rh(III)-catalyzed and 

alcohol-involved carbenoid C–H insertion of N-

phenoxyacetamides by α-diazomalonates. This reaction 

provided a straightforward way for installing both α-

quaternary carbon center and free-OH moiety into the phenyl 10 

rings, thus giving access to privileged 2-(2-hydroxyphenyl)-2-

alkoxymalonates with good substrate/functional group 

tolerance.  

Transition-metal-catalyzed functionalization of inert C–H 

bonds has emerged as one of the most popular and powerful tools 15 

for step- and atom-economical construction of diversified 

complex molecules, and to date, significant progress has been 

made in this hot area of research.1 In general, to achieve the 

efficient C–H functionalization, the use of a combination of 

directing groups (DGs) and stoichiometric or excess amounts of 20 

external oxidants is commonly required. Indeed, they could 

improve the regioselectivity as well as reaction efficiency of the 

C–H activation reactions. However, in spite of the success, this 

strategy also presents two main disadvantages: (1) the 

introduction of DGs often leaves a chemical trace in the products, 25 

limiting their structural diversity; (2) the compulsive use of 

external oxidants involves relatively harsh reaction conditions 

and produces stoichiometric amounts of related metal wastes. 

To address aforementioned drawbacks, recently one emerging 

strategy to develop an innovative oxidizing-directing group 30 

(ODG) which acts simultaneously as both DG and internal 

oxidant has attracted much attention.2 As a consequence, 

remarkable advances has been made and several versatile ODGs 

such as N–OR,3 N–NR4 and O–NHAc5 are stood out.  

On the other hand, recently diazo compounds have been widely 35 

used as powerful cross-coupling partners for transition-metal-

catalyzed direct C–H functionalization, of which Rh catalysts 

plays a particularly prominent role.6,7 For example, inspired by 

the pioneering work of Yu,7a afterwards the groups of  Rovis,3k 

Glorius,7b Li,7c,d Cui,3l,7e Yu,7f Wang,7g,h Chang,7i Zhou,7j 
40 

Cramer,7k Liu7l and our groups7m,n have displayed the successful 

exploration of diazo compounds as the cross-coupling partners in 

Rh(III)-catalyzed C–H functionalization with a DG-assisted 

strategy. 
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Taking advantage of above information and in continuation of 

our interest in the Rh(III)-catalyzed C–H functionalization, we 

herein describe a new and mild Rh(III)-catalyzed carbenoid C–H 50 

insertion (ortho-alkylation) of diverse N-phenoxyacetamides by 

α-diazomalonates for direct synthesis of 2-(2-hydroxyphenyl)-2-

alkoxymalonates, in which O–NHAc group was used as the ODG 

((eqn (1)). Notably, in this reaction, alcohol also employed as the 

reagents to mediate the alcoholysis of intermediate F via a similar 55 

1,4-addition pathway, thereby installing both α-quaternary carbon 

center and free-OH moiety into the phenyl ring, which was very 

different from the reported reactions of Rh(III)-catalyzed 

carbenoid insertion.3k,l,7 

 60 

Table 1 Optimization Studies
a
 

O
N
H

O

COOEt

COOEt

N2

OH

COOEt
COOEt

OCH3

H

cat. [Rh (III)]

CH3OH, RT

1a 2a 3a  
Entry Catalyst system (mol %) Solvent (mL)  Yield

b
 (%) 

1 [Cp*Rh
III

(MeCN)3](SbF6)2 (5) CH3OH (1.0) 83 

2 [Cp*Rh
III

(MeCN)3](SbF6)2 (2.5) CH3OH (1.0) 81 

3 [Cp*Rh
III

(MeCN)3](SbF6)2 (1) CH3OH (1.0) 45 

4 [Cp*Rh
III

(MeCN)3](SbF6)2 (2.5) CH3OH (0.5) 70 

5 [Cp*Rh
III

(MeCN)3](SbF6)2 (0) CH3OH (1.0) 0 

6 [Cp*RhCl2]2 (2.5)/AgSbF6 (100) CH3OH (1.0) 58 

7 [Cp*Rh(OAc)2]2 CH3OH (1.0) 0 

8
c
 [Cp*Rh

III
(MeCN)3](SbF6)2 (2.5) CH3OH (1.0) 78 

a
Reaction conditions: 1a (0.10 mmol, 1.0 equiv), 2a (0.12 mmol, 1.2 equiv), Rh catalyst (X 

mol%), solvent (0.5 or 1.0 mL), 10 h, under air. 
b
Isolated yields.

 c Performed on a 2.0 

mmol scale. 65 

 

Given the successful history of [Cp*Rh(MeCN)3](SbF6)2 in the 

field of  C–H activation,8 therefore, at the outset of this study, we 

chose it as the Rh(III) catalyst for the reaction development with 

N-phenoxyacetamide 1a as the model substrate and MeOH as the 70 

solvent (Table 1). To our surprise, a preliminary survey of diazo 

compounds9 showed that the reaction of 1a with diethyl 2-

diazomalonate 2a at room temperature for 10 h proceeded 

successfully to deliver the free-OH-substituted alkylation product 

3a in 83% yield (entry 1), in which O–NHAc group was used as 75 

the ODG5 and MeOH was used not only as the solvent but also as 

the reagent in the catalytic reaction, thereby leading to installing a 

α-quaternary carbon center into the ortho-position of hydroxy 

group. Encouraged by this finding, we next investigated the 

effects of catalyst loading and concentration for this reaction 80 

optimization. Reducing the loading of catalyst from 5 mol% to 

2.5 mol% resulted in the isolation of 3a in 81% yield (entry 2). 

However, further reducing the loading of catalyst to 1 mol%  led 

to a significant decrease in the product yield (45% yield, entry 3). 

Similarly, decreasing the amount of MeOH also gave lower 85 

conversion (entry 4). As predicted, no desired product was 
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formed in the absence of catalyst (entry 5). Finally, change of 

catalyst [Cp*Rh(MeCN)3](SbF6)2 to other well-known Rh(III) 

catalysts such as [Cp*RhCl2]2 and  [Cp*Rh(OAc)2]2 inhibited the 

process (entries 6-7). In summary, the optimal conditions were 

identified as the following: 2.5 mol% [Cp*Rh(MeCN)3](SbF6)2 in 5 

1.0 mL of MeOH at room temperature for 10 h under an 

atmosphere of air. Finally, the reaction could be performed on a 

2.0 mmol scale under the optimized conditions with decent 

isolated yield (78%, entry 8). 
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Scheme 1  Scope of  N-phenoxyacetamides. Reaction conditions: 1 (0.10 

mmol) and 2 (0.12 mmol) in MeOH (1.0 mL) at room temperature  for 10 h 

under air. Isolated yields. 
a
The ratio was determined by isolated yields. 
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With this efficient catalytic system established, we sought to 

explore the scope of substrates and generality of this reaction. As 

shown in Scheme 1, diazomalonate 2a efficiently coupled with a 

variety of substituted N-phenoxyacetamides in MeOH to provide 

the corresponding 2-(2-hydroxyphenyl)-2-alkoxymalonates in 20 

moderate to good yields. Substitutions at the para- (3b-e and 3l), 

meta- (3f-i), or ortho- (3j-k) postion were all well tolerated. 

Importantly, the reaction also showed good compatibility with a 

wide range of valuable functional groups such as methyl, 

methoxy, bromo chloro, fluoro, ester, and trifluoromethyl 25 

substituents. Tolerance to the chloro (3j), bromo (3d, 3k and 3p), 

and ester (3e) functional groups was especially noteworthy since 

they could be used as versatile building-blocks for further 

synthetic transformations. The electronic nature of the 

substituents on the benzene ring of substrates 1 had no obvious 30 

influence on the reaction outcome, and in the present cases, N-

phenoxyacetamides bearing both electron-donating and -

withdrawing groups showed excellent reaction efficiency. 

Interestingly, substrates 1f and 1g bearing methyl and 

terfluoromethyl groups at meta-position, respectively, provided 35 

the corresponding products in moderate yields with exclusive 

regioselectivity. However,  meta-fluoro-substituted derivative 1h 

afforded the dialkylated product in 61% yield, where an 

additional substituent (1,3-diethoxy-1,3-dioxopropan-2-yl) was 

attached at the less-hindered site. Conjunctively, meta-methoxyl-40 

substituted N-phenoxyacetamide 1i gave a 3:1 mixture of 

products 3i (i) and 3i (ii). Taken together, these results revealed 

that the type of the substituent at the meta-position played a key 

role in determining the reaction process. Moreover, polyaromatic 

diphenyl substrate could be accommodated in the catalytic system, 45 

giving the desired product 3l in reasonably good yield (82%). 

Notably, the alkylation reaction with 2a also tolerated the alkenyl 

substrate, which produced the interesting furanone 3n in 55% 

yield with a stereogenic α-carbon center. In addition, tert-butyl 

diazomalonates 2b-c was also investigated in the Rh(III) system. 50 

As shown in Scheme 1, 2b-c coupled efficiently with N-

phenoxyacetamides to offer the corresponding ortho-alkylation 

product 3n-p in synthetically useful yields (78% for 3n, 72% for 

3o and 70% for 3p), where tert-butyl moiety was retained 

perfectly. The results further illustrated the remarkable robustness 55 

of our developed Rh(III) catalysis.  
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Scheme 2 Scope of  alcohols. Reaction conditions: 1 (0.10 mmol) and 2 (0.12 
mmol) in the corresponding alcohol (1.0 mL) at room temperature  for 10 h 60 

under air. Isolated yields. 
a
These reactions ran at 80 

o
C. 

 

Since methanol has played dual roles as both reactant and 

reaction medium in this reaction (as shown above), subsequently 

several alkyl alcohols were evaluated in the current catalytic 65 

system (Scheme 2). As expected, the reactions occurred 

successfully under air to give the corresponding ortho-alkylated 

products 3q-3s in 64%, 51% and 57% yields, respectively. Of 

note, the reaction also worked well in CD3OD to afford the 

methyl-deuterated 3t in good isolated yield (76%), which 70 

provided hints of the reaction mechanism. 

Inspired by the above results and to obtain better insight into 

the reaction mechanism, a set of additional experiments were 

carried out (Scheme 3). First, 1a was treated with 

[Cp*Rh(MeCN)3](SbF6)2 in CD3OD (Scheme 3a) in the absence 75 

of diazomalonates. After stirring at room temperature for 3 h, 98% 

of 1a was recovered and no deuterium incorporation was 

observed, revealing that the C–H bond activation step was largely 

irreversible. Next, the isotope-labeling experiment was conducted 

with a deuterium-labeled N-phenoxyacetamide [D5]-1a. As 80 

demonstrated in Scheme 3b, treatment of 2a with the same 

amounts of both 1a and [D5]-1a for 30 min under standard 

conditions gave a relatively large KIE value (kH/kD = 2.7). The 

result suggested that C–H bond-cleavage process might be 

involved in the rate-limiting step. Subsequently, the competition 85 

experiment of equimolar amounts of 1f and 1g under the standrad 

reaction conditions with 2a was carried out to to delineate the 

action mode of the reaction (Scheme 3c). The ratio of products 

showed that electron-deficient 1g was preferentially converted 

(3f/3g = 1:10), revealing that the C-H activation might be via a 90 

concerted-metallation-deprotonation (CMD) mechanism.3k,10 

Moreover, N-methyl-substituted phenoxyacetamide 1o was 

prepared and was designated as a substrate to evaluate the role of 

N–H bond (Scheme 3d). As expected, the reaction of 1o and 2a 

did not proceed, indicating that the N–H bond of O–NHAc was 95 

indispensable for this transformation, which is consistent with 
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previous report by Lu and co-workers.5b Finally, an experiment 

using 2a as the sole substrate in MeOH was performed under 

otherwise identical conditions. As demonstrated in Scheme 3e, 

the diethyl 2-methoxymalonate 4a was not detected, providing 

clear evidence that MeOH was not involved in the classic metal-5 

carbene insertion into C(sp3)−H bond mechanism.11 
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Scheme 3  Mechanistic experiments. 
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Taking the above observations and the mechanism studies of 

precedent literature into consideration, a plausible reaction 

mechanism is proposed in Scheme 4. First, the coordination of N-

phenoxyacetamide 1a to a [Cp*Rh(III)] species was the key rate-

determining step for the regioselective C−H bond cleavage to 15 

form a five-membered rhodacyclic intermediate A. Further 

coordination of  A with 2a afforded the diazonium intermediate B. 

Subsequently, Rh(III)–carbene migratory insertion from B 

provided six-membered rhodacycle intermediate C with the 

emission of N2. Protonolysis of C delivered the intermediate D 20 

via the Rh−N bond cleavage. Subsequently, the intramolecular 

coordination of intermediate D was occured to form intermediate 

E, followed by α-H elimination/intramolecular rearrangement to 

afford  intermediate F with extrusion of acetamide. Finally,  

intermediate F underwent a similar 1,4-addition step by using 25 

MeOH as reactant to give the desired product 3a along with the 

regeneration of the rhodium(III) catalyst. 
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Scheme 4  Proposed mechanism. 30 

 

Importantly, the obtained  2-(2-hydroxyphenyl)-2-

alkoxymalonates could serve as useful platforms for further 

synthetic manipulations. As illustrated in Scheme 5, product 3a 

could undergo an esterlysis/decarboxylation in the presence of 35 

LiOH to give the valuable ethyl 2-hydroxy-α-methoxy-

benzenacetate 5a. In addition, product 3a also could produce the 

important 6a through a standrad intramolecular-transesterification. 

Further transformation of 6a via an esterlysis/decarboxylation 

process yielded the 3-substituted benzofuran-2(3H)-one  7a, a 40 

very valuable skeleton in natural products and biologically active 

compounds.12 
OH
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 Scheme 5 Derivatization of 3a.  
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In summary, we have developed the first example of Rh(III)-

catalyzed and alcohol-involved carbenoid C–H insertion (ortho-

alkylation) of N-phenoxyacetamides by α-diazomalonates for 

direct and highly efficient synthesis of privileged 2-(2-

hydroxyphenyl)-2-alkoxymalonates with a α-quaternary carbon 50 

center and free-OH moiety, in which O–NHAc group was 

employed as the versatile ODG. Considering the valuable 

structures of the products, mild reaction conditions, and good 

substrate/functional group tolerance, the reaction should have 

potential of wide synthetic utility.  55 
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