Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

1	Determination of ochratoxin A and citrinin in fruits using	
2	ultrasound-assisted solvent extraction followed by dispersive	
3	liquid-liquid microextraction with HPLC with fluorescence	
4	detection	
5		
6	Authors: Chunqiang Ruan,	
7	Xue Diao	
8	Na Li	
9	He Zhang,	
10	Yan Pang,	
11	Chenglan Liu	
12		
13	Affiliations: Key Laboratory of Natural Pesticide and Chemical Biology, Ministry	
14	of Education, South China Agricultural University, Guangzhou, China	
15		
16	The responding author: Chenglan Liu	
17	<i>E-mail</i> : liuchenglan@scau.edu.cn (C. L. Liu);	
18	Telephone: +862085284925;	
19	Fax: +862085280293	
20		
21		
22		

23 Abstract

24	A novel analytical method was developed for simultaneous determination of
25	ochratoxin A and citrinin in fruit samples using ultrasound-assisted extraction (USAE)
26	combined with dispersive liquid-liquid microextraction (DLLME), followed by
27	high-performance liquid chromatography with fluorescence detection (FLD). Fruit
28	samples were first extracted with 1% acetic acid in acetonitrile by USAE, and after
29	centrifugation, the upper phase (acetonitrile) was used as the dispersant solvent in the
30	subsequent DLLME step. $CHCl_3$ was used as the extraction solvent in the DLLME
31	procedure. The experimental parameters controlling the performance of DLLME
32	(sodium chloride percentage, sample pH, volume of extraction and disperser solvent),
33	were optimized by means of an experimental design. To determine the presence of a
34	matrix effect, calibration curves for standards and fortified fruit extracts (matrix
35	matched calibration) were studied. Under optimum conditions, the mean recovery
36	values of ochratoxin A and citrinin from three fruit samples were in the range of
37	75.0-103.0% (except for citrinin in apple), with relative standard deviations lower
38	than 5.3%. Limits of detections (LODs) were in the range 0.06-0.16 μ g kg ⁻¹ . The
39	proposed method was also applied for the analysis of ochratoxin A and citrinin in
40	fifteen fruit samples purchased from markets in Guangzhou, China and no samples
41	were contaminated with the two mycotoxins. The results show that UASE-DLLME
42	combined with HPLC-FLD is a fast and simple method of determining of ochratoxin
43	A and citrinin in fruit samples.

Keywords: Ochratoxin A; Citrinin; Ultrasound-assisted solvent extraction;

Page 3 of 28

Analytical Methods

46	Introduction
47	Ochratoxin A (OTA) is a toxic secondary metabolite produced mainly by several
48	species of Aspergillus (Aspergillus carbonarius) and Penicillium (Penicillium
49	<i>verrucosum</i>) molds. ¹⁻³ OTA is commonly found in cereals and their products, dried
50	fruits, spices, beer and wine ⁴⁻⁸ and is classified as Group 2B, possibly carcinogenic to
51	humans. ⁹ Citrinin (CIT) is a secondary metabolite produced by several fungal species,
52	including <i>Penicillium</i> and <i>Aspergillus</i> . ^{10,11} Toxicity studies have shown that CIT has
53	nephrotoxic, hepatotoxic, immunotoxic, and carcinogenic properties. ¹² CIT
54	commonly contaminates grains, food and feedstuffs, such as wheat, corn, rice and
55	fruit juices. ¹³⁻¹⁶ CIT is also frequently found in foods and feeds in combination with
56	OTA. ^{10,13,17,18} Research has shown that some toxigenic fungi isolated from fresh fruits,
57	could produce OTA and CIT. ^{19, 20} Therefore, an analysis and assessment of the OTA
58	and CIT levels in fresh fruits should be conducted, and we must develop rapid and
59	sensitive analytical methods of detecting OTA and CIT in fresh fruit samples.
60	To date, several sample treatment methods used for the determination of OTA or/and
61	CIT in foods have been developed, such as liquid-liquid extraction (LLE) , 21
62	solid-phase extraction (SPE), ²² solid-phase microextraction (SPME), ²³ matrix
63	solid-phase dispersion (MSPD), ²⁴ ultrasonic extraction ²⁵ and QuEChERS
64	extraction. ²⁶ In recent years, a novel microextraction method known as dispersive
65	liquid-liquid microextraction (DLLME) has been demonstrated by Aezaee and

Analytical Methods Accepted Manuscript

45 Dispersive liquid-liquid microextraction; Fruit samples; HPLC-FLD

Analytical Methods Accepted Manuscript

66	co-workers. ²⁷ The DLLME extraction is based on a ternary component solvent system
67	(aqueous sample, dispersive solvent and extraction solvent). The appropriate mixture
68	of extraction solvent (organic solvent) and dispersive solvent (water-organic miscible
69	solvent) is rapidly injected into the aqueous sample by syringe. A cloudy solution is
70	thereby formed. After centrifugation, the analytes are separated into the organic
71	phase. ^{27, 28} To date, DLLME has been successfully applied for the determination of
72	many mycotoxins (e.g., aflatoxins, ochratoxin A, citrinin, patulin) in various samples,
73	such as cereals, wines, apple juices, beer, dried fruits, edible nuts and seeds, edible
74	oils, and water. ²⁹⁻³⁹ Compared with conventional extraction methods, DLLME may be
75	a wiser choice because of its many distinct advantages, such as its high enrichment
76	ability, simple operation, low organic solvent consumption, high recovery and low
77	cost. ^{27, 39, 40} Moreover, DLLME is not only a suitable sample preparation technique for
78	a wide range of analytical instruments, but it can also be easily combine with most
79	other sample preparation methods.
80	Ultrasound-assisted solvent extraction (UASE) is an inexpensive, simple and efficient
81	alternative for organic compound extraction from different solid matrices that
82	provides more efficient contact between the solid and the solvent due to increases in
83	both pressure (favoring penetration and transport) and temperature (improving
84	solubility and diffusivity). ^{41, 42, 43} Because of this advantage, the novel UASE
85	technique has been widely used to extract organic compounds from different
86	matrices. ^{41, 44}

87 The objective of the present work was to present the first attempt to combine the

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ I 22
22
23
24
25
26
27
28
29
30
31
22
22
აა ი_
34
35
36
37
38
39
40
41
42
43
10
 1 E
40
46
4/
48
49
50
51
52
53
54
55
55
00 57
ວ/ ເວິ
58
59
60

88	advantages of USAE and DLLME to develop a new pre-treatment method for the
89	determination of OTA and CIT in fresh fruit samples by high performance liquid
90	chromatography-fluorescence detection (HPLC-FLD). Factors affecting the DLLME
91	procedure were optimized via an experimental design and the methodology was then
92	validated through calibration, precision and accuracy studies in different fruits (pear,
93	grape and apple).

94 Materials and methods

95 Chemicals and standards

96	The ochratoxin A (OTA) and citrinin (CIT) standards were purchased from Pribolab
97	(Singapore) with purities greater than 98%. HPLC-grade acetonitrile (ACN) and
98	methanol (MeOH) were obtained from Shanghai ANPEL Scientific Instrument
99	Corporation (Shanghai, China). Analytical-grade carbon tetrachloride (CCl ₄),
100	chlorobenzene (C_6H_5Cl), chloroform (CHCl ₃) and dichloromethane (CH ₂ Cl ₂) were
101	obtained from Tianjin Xingyue Chemical Co. (Tianjin, China). Sodium chloride
102	(NaCl), anhydrous magnesium sulfate (MgSO ₄) and acetic acid (AcOH) were
103	purchased from Chinasun Specialty Products Co. LTD (Changsha, China). Ultrapure
104	water (UNIQUE-R20 purification system with UV+UF optional accessories, Research,
105	China) was used throughout this work. A 0.22 μ m cellulose membrane filter
106	(Sterlitech, Kent, WA, USA) was used for filtration of the stock standard solution and
107	fruit samples.

Analytical Methods Accepted Manuscript

108 The stock solutions of OTA and CIT were prepared at 100 mg L^{-1} in acetonitrile and

Analytical Methods Accepted Manuscript

1
2
3
4
5
6
7
/ 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
20
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39 40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
00
5/ 50
20
59
60

109	stored in amber glass vials at -20 °C. The standard curve and spiking solutions were		
110	prepared from appropriate dilutions of stock solution with acetonitrile. Working		
111	solutions were prepared immediately before use.		
112	Sampling and sample preparation		
113	Pear, grape and apple samples were purchased from local markets in Guangzhou city,		
114	China. The samples were crushed homogeneously and stored at -20°C until analysis.		
115	For recovery determination, 5 g fruit samples were spiked with different volumes of		
116	standard solutions and stored at room temperature for 2 h before analysis.		
117	The mycotoxins were extracted from the fruits using ultrasound-assisted solvent		
118	extraction, followed by DLLME. In the first step, a 5 g homogenized fruit samples		
119	was weighed into a 50 mL centrifuge tube. Then, 5 mL of acetonitrile with 50 μL of		
120	acetic acid was added and extraction proceeded in an ultrasonic bath for 5 min at		
121	room temperature. To induce phase separation, 2 g of anhydrous $MgSO_4$ and 0.5 g of		
122	NaCl were added. The tube was closed and immediately shaken vigorously on a		
123	vortex mixer for 1 min. Centrifugation was performed at 3000 rpm for 5 min, and the		
124	supernatant (ACN extract) was filtered through filter paper (Whatman No 44) and		
125	used as dispersant solvent in the subsequent DLLME step. In the DLLME step, 361		
126	μL of CHCl3 (extract solvent) was added to 788 μL of ACN extract (disperser solvent),		
127	and the mixture was rapidly injected via syringe into 5 mL of deionized water (4.9%		
128	NaCl, pH 4.5) and placed in a conical bottomed glass centrifuge tube, and the tube		
129	was vortex-shaken for 1 min. After centrifugation for 5 min at 3000 rpm, the		

Page 7 of 28

Analytical Methods

130	sedimented CHCl ₃ phase was quantitatively transferred to a small vial and blown to
131	dryness under a mild nitrogen stream. The dried extract was redissolved with 100 μL
132	of ACN and transferred into a vial, and an aliquot of 20 μL was injected into the liquid
133	chromatography via an autosampler.
134	HPLC-FLD analysis
135	The chromatographic HPLC system (Agilent 1260 series, Germany) was equipped
136	with a quaternary pump, an automatic sample injector, a degasser, and a fluorescence
137	detector. HPLC separations were performed in a KR100-10 C_{18} column (5 μ m, 150
138	mm×4.6 mm, Kromasil Limited). The mobile phases A and B were acetonitrile and 2%
139	(v/v) acetic acid in water, respectively, operating under gradient elution. For the pear
140	sample, the optimized program consisted of an isocratic step with a 50:50 A: B
141	mixture for 14 min, and a linear gradient to 90% A over 2 min, which was held for 3
142	min. Finally, the initial conditions were re-established over 5 min and held for 7 min.
143	For the grape and apple samples, the initial mobile phase was 45:55 A: B. The elution
144	was isocratic for the first 12 min, and then changed to 55:45 A: B over 1 min and
145	maintained for 4 min. Then, the composition was changed to 90:10 A: B over 2 min
146	and maintained for 2 min, and returned to the initial composition over 5 min. The
147	flow-rate was set at 0.5 mL/min. The temperature of the column was 30° C, and the
148	injection volume was 20 $\mu L.$ The detection wavelengths of citrinin were 331 nm
149	(excitation) and 500 nm (emission) from start to 12 min (pear sample) or 13 min
150	(grape and apple samples), respectively, and were changed to 333 nm (excitation) and
151	460 nm (emission) for OTA from 12 to 31 min (pear sample) and from 13 to 32 min

3
1
-
5
6
7
Ω.
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
20
32
33
34
35
200
30
37
38
30
39
40
41
42
12
44
45
46
17
4/
48
49
50
51
51
52
53
54
55
00
56
57
58
50
59

1 2

	· · · · · ·	
152	(grane and annle samples)	respectively
154	(grape and apple samples),	respectively

153 **Results and Discussion**

154	Optimization	of extr	action	solvent	during	sonication	stage
	- p						~

155	The extraction solvent during the sonication stage must also play the role of the
156	disperser solvent during the DLLME stage. Therefore, acetonitrile, methanol and
157	acetone, possessing this ability, were selected as extracting solvents for the sonication
158	stage and the effect of these solvents on the extraction of OTA and CIT from fruits
159	was investigated. Following a report by Hackbart and coworkers,45 1% acetic acid
160	was added to the extract solvents in our experiments. The experiments were
161	performed in triplicate using a pear sample spiked with OTA and CIT at a
162	concentration of 5.0 μ g kg ⁻¹ . A total of 5 g of spiked pear samples was extracted with
163	5 mL of the three extraction solvents for 5 min using an ultrasonic cleaner. Then, 2 g
164	of anhydrous MgSO ₄ and 0.5 g of NaCl were added and shaken vigorously by hand.
165	After centrifugation, the upper phase was directly analyzed by HPLC-FLD to
166	investigate the effect on the extraction recovery (ER). The results indicated that ER
167	was higher from when using acetonitrile than when using acetone or methanol (Figure
168	1A). The effect of acetic acid content (0, 0.5, 1 and 1.5% in ACN) on extraction
169	recovery was examined and the best ER was obtained with 1.0% acetic acid in
170	acetonitrile (Figure 1B). Therefore, 1% acetic acid in acetonitrile was selected as the
171	extraction solvent for the sonication stage and as the disperser solvent for the DLLME
172	procedure.

Analytical Methods

2
3
1
4
5
6
7
8
0
9
10
11
12
13
1/
14
15
16
17
18
19
20
20
21
22
23
24
25
20
26
27
28
29
20
30
31
32
33
34
25
00
30
37
38
39
10
40
41
42
43
44
45
40
40
41
48
49
50
51
50
52
53
54
55
56
50
5/ 50
58
59
60

173	DLLME optimization
174	In the DLLME procedure, the disperser solvent must solubilize the extraction solvent
175	and should also be miscible in water to allow the formation of droplets of the
176	extraction solvent in the aqueous sample. For this reason, 1% acetic acid in
177	acetonitrile, which was used as the extraction solvent in the sonication stage, was
178	selected as the disperser solvent. The extraction solvent during DLLME must have
179	relatively high density, lower solubility in the aqueous phase and greater extraction
180	capacity for the analytes. According to the literature, ^{27, 28, 39} halogenated solvents,
181	including CCl ₄ , CHCl ₃ , CH ₂ Cl ₂ , and C ₆ H ₅ Cl, are usually selected as extraction
182	solvents. The results showed that CHCl ₃ provided the highest ER (recoveries of 62.6%
183	and 56.3% for OTA and CIT, respectively). Thus, $CHCl_3$ was selected as the DLLME
184	extraction solvent.
185	Preliminary experiments
186	Once the extraction and dispersion solvents were selected, preliminary experiments
187	were performed in duplicate to test the effect of the individual variation in the amount
188	of NaCl, the sample pH, and the volumes of acetonitrile as the dispersion solvent and
189	CHCl ₃ as the extraction solvent in the DLLME procedure, and to select the levels of

Analytical Methods Accepted Manuscript

190 the factors in the experimental design (see Figure 2). Initially, 5 mL of deionized

- 191 water (5.0 μ g kg⁻¹ of OTA and CIT) with different NaCl amounts (0, 4, 6 and 10%
- 192 (w/v), to induce salting-out effects) was extracted with a mixture of 250 μ L of CHCl₃
- 193 (extraction solvent) and 1 mL of 1% acetic acid in acetonitrile (disperser solvent). As

Analytical Methods Accepted Manuscript

2
2
4
4
5
6
7
8
ă
10
10
11
12
13
14
15
16
10
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
3/
25
30
36
37
38
39
<u>40</u>
40
41
42
43
44
45
46
40 //7
41 40
48
49
50
51
52
52
55
04
55
56
57
58
59

60

1

194	seen in figure 2A, added 6% of NaCl provided better results for the two mycotoxins
195	(recoveries of 68.2% and 61.2% for OTA and CIT, respectively). therefore, that level
196	was used in subsequent experiments. Then, 5 mL of deionized water at different pH
197	values (3, 4, 5, 6 and 7) with 6% NaCl was extracted in the same fashion. Figure 2B
198	shows the effect of sample pH on the extraction efficiency of the two mycotoxins. The
199	use of high pH values provided low recovery values. When the pH was 4, the
200	extraction recoveries improved. Therefore, a solution of 5 mL of deionized water
201	containing 6% (w/v) NaCl at pH 4 was subsequently extracted with 1 mL of 1% acetic
202	acid in acetonitrile and different volumes of $CHCl_3$ (100, 150, 200, 250, 300, 350, 400
203	and 450 $\mu L).$ In general, the recovery values increased as the volume of $CHCl_3$
204	increased (Figure 2C). The amount of acetonitrile was evaluated at values of 600, 800,
205	1000, 1200 and 1400 μL with a constant amount of CHCl3 (350 $\mu L).$ As seen in
206	Figure 2D, approximately 800 μ L of acetonitrile provided the best results.
207	Experimental design
208	After these experiments, a central composite design (CCD) was selected to optimize

209 the four main factors (A: sample pH, B: NaCl quantity, C: volume of acetonitrile and

210 D: volume of CHCl₃) affecting the DLLME extraction yield as interactions among

them may also occur. According to the design, each of the four factors (A, B, C and D)

- 212 was studied at five levels. For each of the four studied variables, high and low set
- 213 points were constructed in an orthogonal design (Table 1). The design included six
- 214 replicates of the central point. The resulting 30 experiments, in which 5 mL of

215 deionized water was spiked with 5.0 μ g kg⁻¹ of OTA and CIT and submitted to the

Analytical Methods

216	DLLME procedure, were randomly performed. Individual recovery of the two
217	mycotoxins and the mean recoveries were introduced separately as the response by
218	statistical software. Eq. (1) shows the response surface methodology (RSM) model in
219	terms of the coded values for the mean recoveries of CIT and OTA.
220	R=88.90-1.71A-0.86B+2.14C+2.07D-0.49AB-0.29AC+0.36AD+0.59BC+0.97BD
221	$+0.12$ CD -3.22 A $^{2}-2.84$ B $^{2}-2.11$ C $^{2}-1.38$ D 2 (1)
222	where R is the mean recovery of CIT and OTA as a function of A (salt amount), B
223	(pH), C (disperser solvent volume) and D (extraction solvent volume).
224	In addition to describing the linear effects of the factors on the response, CCD
225	explains the interaction and quadratic effects of the variables. Analysis of variance
226	(ANOVA) was used to evaluate the significance of each factor and interaction term
227	(Table 2). The quality of the model equation was shown by the cooperation of
228	determination (R^2 , adjusted R^2). An R^2 of 0.9519 and adjusted R^2 of 0.9069 showed a
229	good relationship between the experimental data and the fitted model, as well as the
230	high predictive potential of the model. The ANOVA summary showed that the model
231	was significant, with a <i>p</i> -value less than 0.0001 and an <i>F</i> -value of 21.19. A lack-of-fit
232	<i>p</i> -value of 0.0001 implies that the lack-of-fit is not significantly associated with the
233	pure error.
234	In general, when the response was studied for each mycotoxin, high volumes of
235	CHCl3 and intermediate amounts of NaCl, as well as low volumes of acetonitrile,
236	provided high recovery values. With respect to sample pH, higher recoveries were

Analytical Methods Accepted Manuscript

237	obtained when this parameter increased from 3 to 4. However, a compromise value
238	must be fixed when simultaneously extracting the two mycotoxins, which is also the
239	aim of the experimental design. Figure 3 shows the response surfaces of the extraction
240	of the two mycotoxins, choosing mean recovery percentage as response. From figure
241	3, it can be clearly deduced that higher volumes of acetonitrile and CHCl ₃ , as well as
242	intermediate-to-high-NaCl percentages and pH values, provided the highest response.
243	In fact, the final optimum DLLME conditions were predicted as follows: 4.9 % NaCl
244	(w/v), pH 4.5, 361 μL of CHCl3 and 788 μL of acetonitrile. Several experiments were
245	then developed under these optimum conditions, obtaining the highest extraction for
246	the two mycotoxins. Furthermore, additional extractions were carried out by slightly
247	varying each factor at its optimum value and it was observed that recoveries did not
248	increase.
249	Finally, to test the repeatability of this procedure, five extractions of deionized water
250	at three different concentration levels were developed at optimum conditions. The
251	results showed that the mean recoveries ranged between 78.6% and 102.3%, with an
252	RSD less than 2.2% for the two mycotoxins (data not shown).
253	Method validation
254	To validate the proposed method, the linearity, precision, limit of detection (LOD) and
255	limit of quantification (LOQ) were evaluated for pear, grape and apple samples. First,
256	the matrix-matched calibration standards were run to compensate for the signal

257 suppression/enhancement of the two mycotoxins in matrix solution compared with

Analytical Methods

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
20
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
- -
40
4/
48
49
50
51
52
53
50
04 55
55
56
57
58

258	their response in pure acetonitrile solvent. According to the literature, ⁴⁶ pear, grape
259	and apple samples have the medium or mild matrix effects for the two mycotoxins
260	(table 3). For OTA and CIT, the calibration curves were linear, with square of
261	regression coefficients better than 0.9987 in the concentration range of 1-40 ng mL ^{-1}
262	(table 3).
263	The recovery and repeatability validation experiments were conducted in pear, grape
264	and apple matrices, at three spiking levels for OTA and CIT. These experiments were
265	performed five times according to the sample preparation described above. The results
266	are presented in Table 4. Mean recovery values in the range of 75.5-103.0% (except
267	CIT in apple samples) were obtained (RSD<5.3% in all cases). The limits of detection
268	(LODs) of the proposed method were determined at a signal-to-noise ratio of 3:1 for
269	OTA and CIT. The LODs were between 0.06 and 0.16 μ g kg ⁻¹ . The lowest fortified
270	level of 0.5 μ g kg ⁻¹ was used as the LOQ for the two mycotoxins in the three fruit
271	samples (Table 4).
272	Application to real samples
273	With the aim of demonstrating the potential of the proposed methodology for the
274	monitoring of OTA and CIT in pear, grape and apple samples, fifteen commercial
275	samples (five samples for each type of fruit) purchased in local markets were
276	analyzed. All fruit samples showed no traces of the two mycotoxins. However, a more
277	thorough and long-term investigation of fruit-derived mycotoxins is necessary to
278	ensure consumer safety. Figure 4 shows the chromatograms of spiked and non-spiked

279	pear, grape and apple samples, respectively, obtained by UASE-DLLME-HPLC-FLD.
280	A clean separation and a good chromatogram are readily achieved without the
281	presence of sample matrix interference.
282	Comparison of the proposed method with other extraction methods
283	The efficiency of UASE combined with DLLME is comparable with conventional
284	techniques to extract mycotoxins from different food samples. As seen in Table 5, in
285	the proposed method, the required sample and solvent volume are smaller, and this
286	extraction procedure is very simple and less time consuming, and the sample handling
287	is reduced. The LODs of the proposed method are lower than or comparable with
288	those of other methods. All of these results indicate that the UASE-DLLME method is
289	a fast, reproducible and simple technique that can be used for the pre-concentration of
290	OTA and CIT from fresh fruit samples.

291 Conclusions

A simple and reliable UASE-DLLME method combined with HPLC-FLD was developed and optimized for the quantitative determination of trace levels of OTA in pear, grape and apple samples and CIT in pear and grape samples. The combination of UASE with DLLME enables an inexpensive sample pretreatment that ensures a high enrichment factor and low detection limits. The method is simple, precise, highly sensitive, rapid and reproducible (mean recoveries were between 75.0% and 103.0%, except for CIT in apple), with LODs with the range of 0.06-0.16 μ g kg⁻¹, and uses small volumes of solvents and samples, reducing the risks to human health and to the

Analytical Methods

2
3
3
4
5
6
7
0
8
9
10
11
40
12
13
14
15
16
10
17
18
19
20
20
Z1
22
23
24
27
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
51
38
39
40
/1
40
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
55
55
56
57
58
50
59
60

300	environment. The comparison of the calibration equations of standards and fruits
301	extracts showed the existence of a middle matrix effect for the two mycotoxins. The
302	applicability of the entire method was tested by analyzing fifteen commercial fruit
303	samples. All fruit samples showed no traces of OTA and CIT. This work represents the
304	first application of UASE-DLLME-HPLC-FLD for the analysis of OTA and CIT in
305	fresh fruits samples.
306	Acknowledgements
307	The authors are grateful to Mr. Shaohua Chen for his assistance with the experimental
308	design.
309	References
310	1 M. J. Sweeney and A. D. Dobson, Int. J. Food Microbiol., 1998, 43, 141-158.
311	2 P. Bayman, J. L. Baker, M. A. Doster, T. J. Michailides and N. E. Mahoney, <i>Appl. Environ.</i>
312	Microb., 2002, 68 , 2326-2329.
313	3 M. L. Abarca, F. Accensi, M. R. Bragulat, G. Castella and F. J. Cabanes, J. Food Protect.,
314	2003, 66 , 504-506.
315	4 R. Mateo, E. M. Medina, F. Mateo and M. Jiménez, <i>Int. J. Food Microbiol.</i> , 2007, 119 , 79-83.
316	5 C. Bircan, Food Chem. Toxicol., 2009, 47, 1996-2001.
317	6 K. R. N. Neddy, B. Salleh, B. Saad, H. K. Abbas, C. A. Abel and W. T. Shier, <i>Toxin Reviews</i> ,
318	2010, 29 , 3-26.
319	7 S. C. Duarte, A. Pena and C. M. Lino, <i>Food Microbiol.</i> , 2010, 27 , 187-198.
	 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

320 8 G. N. Kara, F. Ozbey and B. Kabak, Food Control, 2015, 54, 275-281.

Analytical Methods Accepted Manuscript

321	9	IARC, Lyon, France: International Agency for Research on Cancer (1993).
322	10	M. R. Bragulat, E. Martínez, G. Castella and F. J. Cabanes, Int. J. Food Microbiol., 2008, 126,
323		43-48.
324	11	D. Heperkan, G. S. Dazkir, D. Z. Kansu and F. K. Guler, Toxin Reviews, 2009, 28, 180-186.
325	12	D. Flajs and M. Peraica, Arhiv za Hijigenu Rada i Toksikologiju, 2009, 60, 457-464.
326	13	T. Vrabcheva, E. Usleber, R. Dietrich and E. Martlbauer, J. Agric. Food Chem., 2000, 48,
327		2483-2488.
328	14	R. Dietrich, A. Schmid and E. Martlbauer, Mycotoxin Research, 2001, 17, 156-159.
329	15	C. Zaied, N. Zouaoui, H. Bacha and S. Abid, Food Control, 2012, 28, 106-109.
330	16	C. D. Liao, Y. C. Chun, H. Y. Lin, L. C. Chiueh and D. Y. C. Shih, Food Control, 2014, 38,
331		178-183.
332	17	A. Molinie, V. Faucet, M. Castegnaro and A. Pfohl-Leszkowicz, Food Chem., 2005, 92,
333		391-400.
334	18	M. T. Nguyen, M. Tozlovanu, T. L. Tran and A. Pfohl-Leszkowicz, Food Chem., 2007, 105,
335		42-47.
336	19	P. Battilani, A. Logrieco, P. Giorni, G. Cozzi, T. Bertuzzi and Pietri, A. J. Sci. Food Agr.,
337		2004, 84 , 1736-1740.
338	20	A. Marino, A. Nostro and C. Fiorentino, Int. J. Food Microbiol., 2009, 132, 185-189.
339	21	P. D. Andrade, J. L. G da. Silva and E. D. Caldas, J. Chromatogr. A, 2013, 1304, 61-68.
340	22	M. H. Mashhadizadeh, M.Amoli-Diva and K. Pourghazi, J. Chromatogr. A, 2013, 1320,
341		17-26.
342	23	X. Zhang, E. Cudjoe, D. Vuckovic and J. Pawliszyn, J. Chromatogr. A, 2009, 1216,

Analytical Methods

343		7505-7509.
344	24	A. L. Capriotti, C. Cavaliere, P. Giansanti, R. Gubbiotti, R. Samperi and A. Lagana, J.
345		Chromatogr: A, 2010, 1217 , 2521-2532.
346	25	W. P. Wang, Q. Chen, X. F. Zhang, H. S. Zhang, Q. Huang and D. S. Li, Food Chem., 2014,
347		157 , 408-412.
348	26	A. Garrido-Frenich, R. Romero-González, M. L. Gómez-Pérez and J. L. Martínez-Vidal, J.
349		Chromatogr: A, 2011, 1218 , 4349-4356.
350	27	M. Rezaee, Y. Assadi, M. R. M. Hosseini, E. Aghaee, F. Ahmadi and S. Berijani, J.
351		Chromatogr. A, 2006, 1116 , 1-9.
352	28	H. Y. Yan and H. Wang, J. Chromatogr. A, 2013, 1295, 1-15.
353	29	L. Campone, A. L. Piccinelli, R. Celano and L. Rastrelli, J. Chromatogr. A, 2011, 1218,
354		7648-7654.
355	30	L. Campone, A. L. Piccinelli and L. Rastrelli, Anal. Bioanal. Chem., 2011, 399, 1279-1286.
356	31	D. Afzali, M. Ghanbarian, A. Mostafavi, T. Shamspur and S. Ghaseminezhad, J. Chromatogr.
357		<i>A</i> , 2012, 1247 , 35-41.
358	32	M. D. Victor-Ortega, F. J. Lara, A. M. Garcia-Campana and M. D. Olmo-Iruela, Food
359		<i>Control</i> , 2013, 31 , 353-358.
360	33	N. Arroyo-Manzanares, A. M. García-Campaña and L. Gamiz-Gracia, Food Chem., 2012,
361		135, 368-372.
362	34	N. Arroyo-Manzanares, A. M. García-Campaña and L. Gamiz-Gracia, J. Chromatogr. A, 2013,
363		1282 , 11-19.
364	35	N. B. Abu-Bakar, A. Makahleh and B. Saad, Talanta, 2014, 120, 47-54.

Analytical Methods Accepted Manuscript

365	36	X. W. Lai, C. Q. Ruan, R. C. Liu and C. L. Liu, Food Chem., 2014, 161, 317-322.
366	37	X.W. Lai, D. L. Sun, C. Q. Ruan, H. Zheng and C. L. Liu, J. Sep. Sci., 2014, 37, 92-98.
367	38	M. Amoli-Diva, Z. Taherimaslak, M. Allahyari, K. Pourghazi and M. H. Manafi, Talanta,
368		2015, 134 , 98-104.
369	39	A. V. Herrera-Herrera, M. Asensio-Ramos, J. Hernández-Borges and M. A.
370		Rodríguez-Delgado, TrAC-Trend Anal. Chem., 2015, 29, 728-751.
371	40	G. L. Li, S. M. Lu, H. L. Wu, G. Chen, S. C. Liu, X. J. Kong, W. H. Kong and J. M. You, J.
372		Sep. Sci., 2014, 38 , 187-196.
373	41	M. Pirsaheb, N. Fattahi and M. Shamsipur, Food Control, 2013, 34, 378-385.
374	42	B. Albero, C. Sánchez-Brunete, A. I. García-Valcarcel, R. A. Pérez and J. L. Tadeo, Anal.
375		<i>Chem.</i> , (2015) (In press)
376	43	H. L. Wu, G. L. Li, S. C. Liu, D. Liu, G. Chen, N. Hu, Y. R. Suo and J. M. You, J.
377		Pharmaceut. Biomed., 2015, 107, 98-107.
378	44	K. M. Hammi, A. Jdey, C. Abdelly, H. Majdoub and R. Ksouri, Food Chem., 2015, 184,
379		80-89.
380	45	H. C. S. Hackbart, L. Prietto, E. G. Primel, J. Garda-Buffon and E. Badiale-Furlong, J. Brazil.
381		<i>Chem. Soc.</i> , 2012, 23 , 103-109.
382	46	A. Melo, S. C. Cunha, C. Mansilha, A. Aguiar and O. Pinho, Food Chem., 2012, 135,
383		1071-1077.
384	47	O. Tokusoglu and F. Bozoglu, Ital. J. Food Sci., 2010, 22, 284-291
385	48	R. Vatinno, A. Aresta, C. G. Zambonin and F. Palmisano, J. Chromatogr. A, 2008, 1187,
386		145-150.

Figure captions:

Fig. 1 Effect of different types of extractant solvent (A) and percentages of acetic acid
(B) on the recoveries of OTA and CIT in the sonication stage. General extraction
conditions: 5 g of pear sample, sonication for 5 min. Other conditions: (A) 5 mL of
1.0 % acetic acid in every extraction solvent; (B) 5 mL of acetonitrile.

Fig. 2 Effect of variations in the DLLME procedure of (A) NaCl percentage, (B) aqueous phase pH, (C) volume of 1% acetic acid in ACN, (D) CHCl₃ volume on mean recoveries. General extraction conditions: 5 mL of deionized water (5.0 µg kg⁻¹ of OTA and CIT) and centrifugation at 3000 rpm for 5 min. Other conditions: (A) 250 µL of CHCl₃ and 1000 µL of 1% acetic acid in ACN. (B) 6% (w/v) NaCl, 250 µL of CHCl₃ and 1000 μ L of 1% acetic acid in ACN. (C) Aqueous phase pH 4, 6% (w/v) NaCl and 1000 µL of 1% acetic acid in ACN. (D) Aqueous phase pH 4, 6% (w/v) NaCl and 350 µL of CHCl₃.

Fig. 3 Response using the central composite design obtained by plotting: (A) pH vs.
NaCl percentage and (B) ACN volume vs. CHCl₃ volume

Fig. 4 The chromatogram obtained by UASE-DLLME-HPLC-FLD for pear (A),
grape (B) and apple (C) under optimum conditions. Blue line: Non-spiked; Red line:
spiked with 5.0 μg kg⁻¹ of OTA and CIT.

253x76mm (300 x 300 DPI)

254x152mm (300 x 300 DPI)

Analytical Methods Accepted Manuscript

25

25

25

min

30

30

min

min

Page 24 of 28

Analytical Methods Accepted Manuscript

Table 1 The experimental range and levels of the variables in the CCD

Variable	Parameter	Variable lev	els			
		$-\alpha$ (low)	-1	0	+1	$+\alpha$ (high)
А	Salt addition (%)	4.0	4.5	5.0	5.5	6.0
В	рН	3.5	4.0	4.5	5.0	5.5
С	Volume of ACN (µL)	650	700	750	800	850
D	Volume of $CHCl_3$ (μ L)	310	330	350	370	390

Analytical Methods

20	Table 2 Analysis of varia	ance (ANOVA) for	esponse surface	quadratic model	(OTA and CIT)
20			esponse surface	quadratic model	(0111 und 011)

Source	Sum of squares	d.f. ^a	Mean Square	F-Value ^b	p-value ^c	Prob> F
Model	829.2315	14	59.2308	21.19	0.0001	(significant)
A- NaCl	70.2126	1	70.2126	25.11	0.0002	
B- pH	17.5959	1	17.5959	6.29	0.0241	
C-Vf	109.4401	1	109.4401	39.14	0.0001	
D-Vc	102.7134	1	102.7134	36.74	0.0001	
AB	3.8514	1	3.8514	1.38	0.2588	
AC	1.3514	1	1.3514	0.48	0.4975	
AD	2.0664	1	2.0664	0.74	0.4035	
BC	5.5814	1	5.5814	2.00	0.1781	
BD	14.9189	1	14.9189	5.34	0.0355	
CD	0.2139	1	0.2139	0.08	0.7859	
A^2	284.0777	1	284.0777	101.61	0.0001	
B^2	221.7313	1	221.7313	79.31	0.0001	
C^2	121.6209	1	121.6209	43.50	0.0001	
D^2	52.2902	1	52.2902	18.70	0.0006	
Residual	41.936875	15	2.7957917			
Lack of Fit	41.416875	10	4.1416875	39.82391827	0.0004	(significant)
Pure Error	0.5200	5	0.1040			
Cor Total	871.1684	29				

^a Degrees of freedom.

^b Test for comparing model variance with residual (error) variance.

^c Probability of seeing the observed F-value if the null phyothesis is true.

Fruit	mycotoxin	Linearity (ng mL ⁻¹)	$S(Sa)^{a}$	$R^2(Ra^2)^{b}$	Ratio (%)	Matrix effect
Pear	OTA	1-40	8.41(11.14)	0.9994(0.9994)	32.4	Medium
	CIT	1-40	8.52(5.72)	0.9993(0.9996)	-32.9	Medium
Grape	OTA	1-40	13.18(19.54)	0.9999(0.9999)	48.3	Medium
	CIT	1-40	12.46(9.30)	0.9971(0.9995)	-25.4	Medium
Apple	OTA	1-40	13.18(17.14)	0.9999(0.9987)	30	Medium
	CIT	1-40	12.46(10.35)	0.9971(0.9999)	-16.9	Mild

^{*a*} S and R^2 , slope and determination coefficient of the calibration curves obtained from ACN solution;

^b S_a and R_a^2 , slope and determination coefficient of the calibration curves obtained from matrix matched standard solutions;

Analytical Methods

39	Table 4 Mean	recoveries,	RSD value	es, LODs	and	LOQs o	of OTA	and	CIT	in	pear,	grape	and	apple	samples	after
----	----------------	-------------	-----------	----------	-----	--------	--------	-----	-----	----	-------	-------	-----	-------	---------	-------

 Mycotoxin	Fruits	Spiked level	Mean	RSD	LOD ^a	LOQ ^b	Mycotoxin	Fruits	Spiked level	Mean	RSD	LOD	LOQ
		(µg/kg)	recovery	(%)	(µg/kg)	(µg/kg)			(µg/kg)	recovery	(%)	(µg/kg)	(µg/kg)
OTA	Pear	0.5	94.7	1.3	0.08	0.5	CIT	Pear	0.5	75.7	0.6	0.16	0.5
		2.0	96.4	1.2					2.0	75.0	1.8		
		5.0	98.8	0.5					5.0	77.0	2.5		
	Grape	0.5	98.5	2.8	0.06	0.5		Grape	0.5	75.5	3.3	0.16	0.5
		2.0	98.3	0.6					2.0	80.1	1.9		
		5.0	95.7	1.0					5.0	80.2	0.9		
	Apple	0.5	103.0	5.3	0.10	0.5		Apple	0.5	23.1	2.2		
		2.0	101.4	0.6					2.0	1.27	1.2		
		5.0	98.3	0.9					5.0	17.0	2.2		

^a LOD, limit of detection for S/N=3.

^b LOQ, limit of quantification for the lowest fortified level.

Table 5 Comparison of the proposed method with other methods for the determination of OTA and CIT in foods.

Methods	Mycotoxins	Matrix	Amount of	Solvents	LOD ^a	Recoveries	Ref.
			samples (g)		$(\mu g k g^{-1})$	(%)	
LLE-HPLC-FLD ^b	OTA	Rice	20	90 mL acetonitrile, 150 mL	0.08	84.1	18
	CIT			hexane, 25 mL CHCl_3	0.11	103.0	
IAC-HPLC-FLD ^c	OTA	Olive	25	180 mL acetonitrile, 55 mL	0.05	88.9-95.6	47
	CIT			hexane	0.05	92.7-96.8	
SPME-LC-FLD ^d	OTA	Green coffee bean	0.5	9 mL CHCl ₃	0.3	g	48
QuEChERS-HPLC-FLD ^e	OTA	Rice	10	20 mL acetonitrile	1.0	75.9-77.8	45
	CIT				0.7	76.8-105.3	
UASE-DLLME-HPLC-FLD ^f	OTA	Fruits	5	5 mL acetonitrile, 360 µL	0.06-0.10	94.7-103.0	Proposed method
	CIT			CHCl ₃	0.16	75.0-80.2	

^a Limit of detections.

55 ^b Liquid liquid extraction-high performance liquid chromatography-fluorescence detector.

^c Immunoaffinity column-high performance liquid chromatography-fluorescence detector.

^d Solid phase microextraction-high performance liquid chromatography-fluorescence detector.

^e The "Quick Easy Cheap Effective Rugged and Safe"-high performance liquid chromatography-fluorescence detector.

^f Ultrasound solvent extraction-dispersive liquid-liquid micrextraction-high performance liquid chromatography-fluorescence detector.

60 ^g Not specified.