Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

- 22
- 25
- 27

- 32
- 34

51

58

Analytical Methods Accepted Manuscript

UHPLC-MS/MS determination and pharmacokinetic study of three active compounds in male rats after oral administration of *Saxifraga stolonifera* (L.) Meerb extract Yanfang Yan^{a,b,c}, Xiaojian Gong^{a,b,c}, Xin Zhou^{a,b,c*}, Sushan Lyu^{a,b,c}, Zhengmeng Jiang^{a,b,c}, Chao Zhao

a,b,c

a. Key laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang, Guizhou, 550001, P. R. China

b. Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine,
 Guizhou Normal University, 116 Baoshan North Rd., Guiyang, Guizhou, 550001, P. R. China

c. The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116

Baoshan North Rd., Guiyang, Guizhou, 550001, P. R. China

^{*}Corresponding author. Tel.: +86 851 6700494; fax: +86 851 6700414.

E-mail address: alice9800@sina.com

1	Abstract Saxifraga stolonifera (S. stolonifera) has been used to cure various diseases effectively
2	while little is known about the pharmacokinetic properties of the bioactive components of S.
3	stolonifera. The aim of this study is to develop an UHPLC-ESI-MS/MS method for simultaneous
4	determination of gallic acid (GA), bergenin (BG) and quercetin-3-O-β-L-rhamnopyranoside (QR),
5	three bioactive compounds of S. stolonifera, and to apply the method for pharmacokinetic study to
6	learn how dosage variations of S. stolonifera alters the pharmacokinetics of GA, BG and QR in
7	treated rats. The decoctions at low dose, middle dose, and high dose of S. stolonifera extract were
8	administered orally to rats. The results showed that variations of S. stolonifera extract doses altered
9	the contents of GA, BG and QR in rat blood. GA, BG and QR could be rapidly absorbed into the
10	circulation. T _{max} of GA was 40-100 min. T _{max} of BG was 80-100 min. T _{max} of QR was 20 min. The
11	AUC_{0-t} of three compounds increased with the dose of S. stolonifera extract. These results provide a
12	meaningful basis for evaluation of the interactions between the components in a complex
13	prescription on their pharmacokinetics.
14	Keywords:
15	Benign Prostatic Hyperplasia,
16	Saxifraga stolonifera,
17	Pharmacokinetics,
18	Gallic acid,
19	Bergenin,
20	Quercetin-3-O- <i>β</i> -L-rhamnopyranoside
21	
22	

23 1. Introduction

24	Saxifraga stolonifera (L.) Meerb. (S. stolonifera), a traditional Miao herbal medicine in China, has
25	been used to treat otitis media, erysipelas, and hemoptysis with low toxicity or non-toxicity for
26	centuries ^{1, 2} . Clinical studies of Ju ³ indicated that <i>S. stolonifera</i> could be used to cure benign prostatic
27	hyperplasia (BPH). In addition, modern pharmacological investigations indicated that S. stolonifera
28	remained the abilities on anti-inflammation, anti-prostate cancer and anti-BPH ⁴⁻⁷ . Studies of Zhang ⁷
29	indicated that S. stolonifera extract could be used to treat BPH via inhibitions to fibroblasts. Evidences
30	from animal models suggested a potential role for anti-BPH after oral administration of aqueous extract
31	of S. stolonifera according to our previous work ⁸ . It's known that pharmacokinetic studies of bioactive
32	compounds are essential programs in preclinical and clinical processes and are indispensable for
33	learning the efficacies of the plant ^{9, 10} . Given its low toxicity or non-toxicity and important functions,
34	pharmacokinetics study of bioactive compounds in this extract is very essential for further
35	understanding of S. stolonifera. However, no papers about the pharmacokinetic study of S. stolonifera
36	were reported.
37	Natural products have been used in traditional cures and herbal remedies throughout the world ^{11, 12} .
38	Extracts of herbal medicine were usually administrated because the pharmacokinetic properties of the
39	bioactive components in their pure forms are significantly different from that in herbal medicines ^{13, 14} .
40	Considering the complexity of the compounds, several compounds are generally selected to
41	demonstrate the pharmacokinetic properties of the herbal extracts ^{15, 16} .
42	Polyphenols famous secondary metabolites with wide pharmacological activities 17,18 such as

42 Polyphenols, famous secondary metabolites with wide pharmacological activities ^{17,10}, such as 43 gallic acid (GA), bergenin (BG) and quercetin-3-O- β -L-rhamnopyranoside (QR) were thought to be the 44 bioactive compounds ^{19,20} of *S. stolonifera*. These compounds have been studied for properties against

45	various diseases, such as cardiovascular diseases ²¹ , inflammation ²² and cancer ²³ . Beyond that, the
46	activities on anti-cancer and antioxidant of GA ^{24,25} , anti-inflammatory, anti-HIV agent and antitumor of
47	BG 26,27 and the good resistance to PC-3 of QR 5 were reported. GA, BG and QR were also selected as
48	markers ² to evaluate the <i>S. stolonifera</i> plant.
49	The current study described an UHPLC-ESI-MS/MS method with a simple protein precipitation,
50	satisfying recovery and minimal matrix effect for simultaneous determination of GA, BG and QR in
51	male rats. Pharmacokinetic interactions among three compounds after oral administration of S.
52	stolonifera extract in three doses were characterized.
53	
54	2. Materials and methods
55	2.1 Chemicals and reagents
56	Gallic acid (GA) and Puerarin (internal standard) were purchased from the National Institute for
57	the Control of Biological and Pharmaceutical Products of China (Beijing, China). Bergenin, (BG) was
58	purchased from Guizhou Dida Technology Co. Ltd. Quertecin-3-O- β -L-rhamnoside (QR, purity > 98%)
59	was extracted from S. stolonifera. Their structures were showed in (Fig.1). HPLC-grade acetonitrile
60	and methanol were purchased from Tedia Co. Inc. (Fairfield, OH, USA). Formic acid was MS grade
61	(Roe Scientific Inc, USA). Super purified water was used for preparations. All other solvents in the
62	presents study were of analytical grades and commercially available.
63	
64	2.2 Method and validation
65	2.2.1 UHPLC-MS/MS system
66	UHPLC-MS/MS system contained an Accela 1250 UHPLC system coupled with a TSQ quantum

2
3
1
4
5
6
7
8
9
10
14
11
12
13
14
15
16
17
17
10
19
20
21
22
23
20
24
25
26
27
28
29
30
24
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
50
50
59
60

1

67	ultra-triple-quadrupole mass spectrometer (Thermo fisher Scientific Inc, Waltham, MA, USA).
68	Chromatographic separation was achieved using a Weltch ultimate UHPLC XB-C18 column (2.1
69	\times 150 mm, 1.7 $\mu m).$ The mobile phase consisted of acetonitrile containing 0.2% formic acid (A) and
70	water containing 0.2% formic acid (B). The gradient program was as follows: 0-3.0 min, 3% A; 3.0-6.0
71	min, 25% A; 6.0-12.0 min, 25% A; 12.0-13.0 min 3% A; 13.0-20.0 min 3% A. The column temperature
72	was maintained at 25 °C. The flow rate was 200 $\mu L/min$ and the injection volume was 5 $\mu L.$
73	Mass spectrometric analysis was performed on a TSQ quantum ultra-triple-quadrupole mass
74	spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped with an electro-spray
75	ionization (ESI) interface in negative mode. All analytes, including the IS, were monitored under
76	negative ionization conditions and quantified in multiple reactions monitoring (MRM) mode with
77	transitions of m/z 169.012 \rightarrow 125.063 for GA, m/z 326.942 \rightarrow 191.997 for BG, m/z 415.051 \rightarrow 266.999 for
78	IS, and m/z 447.014 \rightarrow 300.028 for QR. Other parameters of the mass spectrometer were as follows:
79	sheath gas flow rate at 40 (arbitrary units); auxiliary gas flow rate at 10 (arbitrary units); spray voltage
80	at 2500 V; vaporizer temperature at 350°C; capillary temperature at 350°C. Helium was used as the
81	collision gas for collision-induced dissociation (CID).
82	
83	2.2.2 Plasma sample preparation

A 100 μ L aliquot plasma sample was transferred into a 1.5 mL Eppendorf tube (EP tube), 10 μ L IS solution (44.24 ng/mL) and 400 μ L acetonitrile (0.1% formic acid) were individually added. The mixture was vortexed for 1 min and the centrifuged at 13000 rpm for 10 min at 4 °C. Subsequently, the supernatant was transferred into a clean 1.5 mL EP tube and evaporated to dryness under a nitrogen stream at 40 °C. The residue was dissolved in 100 μ L of 0.2% formic acid aqueous solution and

89	centrifuged at 13000 rpm for 10 min at 4 °C. A 5 µL aliquot was injected into UHPLC-MS/MS for
90	analysis.
91	
92	2.2.3 Standard and quality control samples preparation
93	A mixed stock solution containing 6.65 $\mu g/mL$ QR, 6.23 $\mu g/mL$ GA and 8.69 $\mu g/mL$ BG was
94	dissolved in methanol, and further successive diluted into 0.66-132.96 ng/mL of QR, 4.34-434.40
95	ng/mL of GA, and 3.31-331.40 ng/mL of BG as calibration carves and the IS was prepared to 44.24
96	ng/mL in methanol separately. All the solutions were stored at 4 °C.
97	Calibration standards were prepared by spiking working standard solutions and the IS (10 $\mu L,$
98	44.24 ng/mL) into 100 μ L of blank plasma to the yield concentrations of 0.66, 3.32, 6.65, 13.29, 33.24,
99	66.48, 132.96 ng/mL of QR, 3.31, 6.23, 12.46, 31.14, 62.28, 124.56, 311.40 ng/mL of BG and 4.34,
100	8.69, 17.38, 43.44, 86.88, 173.76, 434.40 ng/mL of GA.
101	Quality control samples (QCs) at three levels of 3.32, 33.24, 132.96 ng/mL for QR, 3.31, 31.14, 124.56
102	for BG and 4.34, 43.44, 173.76 ng/mL for GA samples.
103	
104	2.2.4 Method validation
105	The method was validated according to the accepted FDA Guidance for Industry, Bioanalytical
106	Method Validation (US-FDA, 2001) ²⁸ in this matter.
107	Matrix effects were assessed by analyzing the potential interference of endogenous compounds to
108	the analytes and the IS. Blank plasma samples from six rats were measured using the preparation
109	procedures and instrument conditions mentioned previously. The matrix effects of GA, BG and QR at
110	three QC levels and the IS were tested comparing peak areas of the analytes spiked in post-extraction

2
3
4
5
ĥ
7
1
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
30
21
20
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

1

blank plasma samples with those of the reference compounds diluted in methanol.

The plasma recoveries of GA, BG, QR, as well as IS were conducted as follows: A1 blank matrix
was extracted and then spiked with standards. A2 standards were spiked in and extracted from blank
plasma. Plasma recovery was calculated as the equation:

115	$Re\% = (A2/A1) \times 100 Eq. (1)$
TT	

116 Method linearity of GA, BG and QR were calculated by spiking standards into the blank plasma at 117 concentrations ranging from 0.66-132.96 ng/mL for QR, 3.31-331.40 ng/mL for BG, and 4.43-434.40118 ng/mL for GA with weighed $(1/x^2)$ least square linear regression method through measurement of the 119 peak area ratio of analyte to IS. The lower limit of quantification (LLOQ) was established based on 120 signal-to-noise (S/N) ratio approach. LLOQ was expressed as S/N=10 from the chromatograms of the 121 samples spiked at the lowest level validated and defined as the lowest concentration on the calibration 122 curve.

Precision was expressed as the relative standard deviation (RSD) and accuracy was calculated as the relative error (RE). Acceptance criteria for precision and accuracy were defined as ≤ 15 %. In this paper, the QC samples of three levels were run in six replicates at the same day to determine the intra-day precision, and three consecutive days to analyze the inter-day precision.

127 The accuracy was calculated from the nominal concentration (C_{nom}) and the mean value of the

- 128 measured concentration (C_{mes}) as follows:
- 129 $accuracy (Bias,\%) = [(Cnom-Cmes)/Cnom] \times 100$ (2)

130 The precision was calculated from the standard deviation and measured concentration as follows:

131 precidion(RSD,%) =
$$|standard-deviation(SD)/Cmes| \times 100$$
 (3)

132 Plasma stability was assessed in samples under different conditions. The short-term stability was

Analytical Methods

133	assessed by placing the analytes at room temperature for 6 hours and keeping at 4°C in the autosampler
134	for 12 hours. The freeze-thaw stability was evaluated over three freeze-thaw cycles (-20°C to room
135	temperature as one cycle). The long-term stability was assessed after the untreated QC samples had
136	been stored at -20 °C for 19 days.
137	
138	2.3 Pharmacokinetics study and statistical analysis
139	2.3.1 Preparation of aqueous extract from S. stolonifera
140	S. stolonifera, collected at Anshun (Guizhou, China), was identified by professor Deyuan Chen. S.
141	stolonifera extract was prepared as follows: 200 g of the dried powder was accurately weighed into a
142	3-L glass pocket flask and extracted with 2 L of water for 2 h at 80 °C, followed by two more
143	extractions. The extracts were combined, then the supernatant was evaporated to dryness. S. stolonifera
144	extract was determined according to the method reported with some minor modification ² : Briefly,
145	approximately 0.1 g of S. stolonifera extract was accurately weighed into a 100 mL conical flask with
146	50 mL of 50% methanol (v/v) added, which was then dissolved via ultra-sonication for 20 min (100W,
147	40 kHz). The supernatant was filtered through a 0.45 μm membrane for the HPLC analysis.
148	Chromatographic conditions were modified on the Dionex Ultimate 3000 (California, USA) system
149	with a Diamonsil C18 column (250 mm×4.6 mm, 5 $\mu m)$ to obtain a good response and a resolution.
150	400 mg/mL (equivalent of GA 0.88 mg/mL, BG 2.82 mg/mL, and QR 0.58 mg/mL) of S. stolonifera
151	extract was suspended in water for oral administration.
152	
153	2.3.2 Animals and statistical analysis

154 Pathogen-free adult male Wister rats, weighted 200-260 g, were purchased from Changsha Tianqin

155	Bio-technology. (Changsha, China, Certificate No. SCXK 2015-0011). All rats were acclimated for at
156	least a week in environmentally controlled quarters (24 ± 1 °C and $12/12$ h light/dark cycle) with free
157	access to standard chow and water. The rats were fasted overnight but supplied with water ad libitum
158	before the experiments. All experimental protocols were conducted in accordance with the Guide for
159	the Care and Use of Laboratory Animal (National Institutes of Health Publication 85-23, revised
160	edition 1985). This study was approved by the Animal Ethics Committee of Guizhou Normal
161	University.
162	18 male rats were divided into 3 groups randomly and were orally administrated 0.74 g/kg 1.48
163	g/kg, and 2.96 g/kg of S. stolonifera extract, respectively, in each group. 250 µL of blood samples were
164	collected into 1.5 mL heparinized tubes from the suborbital vein at pre-dose (0 min) and 10, 20, 30, 40,
165	60, 80, 100 min and 2, 3, 5, and 8 hour post dose. Plasma was separated immediately by centrifuging at
166	6000 rpm for 15 min, stored at -20 °C before analysis.
166 167	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK
166 167 168	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation.
166 167 168 169	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life (T _{1/2}) is the time required for
166 167 168 169 170	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life (T _{1/2}) is the time required for the concentration of the drug to reach half of its beginning value; (2) C _{max} is the maximum plasma
166 167 168 169 170 171	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life (T _{1/2}) is the time required for the concentration of the drug to reach half of its beginning value; (2) C _{max} is the maximum plasma concentration after oral administration; (3) time to reach the maximum concentrations (T _{max}); (4) the
166 167 168 169 170 171 172	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life (T _{1/2}) is the time required for the concentration of the drug to reach half of its beginning value; (2) C _{max} is the maximum plasma concentration after oral administration; (3) time to reach the maximum concentrations (T _{max}): (4) the area under the plasma level time curve (AUC), which is related to the extent of drug absorption in the
166 167 168 169 170 171 172 173	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life (T _{1/2}) is the time required for the concentration of the drug to reach half of its beginning value; (2) C _{max} is the maximum plasma concentration after oral administration; (3) time to reach the maximum concentrations (T _{max}): (4) the area under the plasma level time curve (AUC), which is related to the extent of drug absorption in the systemic circulation; (5) the clearance (CL), an indicator of drug elimination from the body; and (6)
166 167 168 169 170 171 172 173 174	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life ($T_{1/2}$) is the time required for the concentration of the drug to reach half of its beginning value; (2) C_{max} is the maximum plasma concentration after oral administration; (3) time to reach the maximum concentrations (T_{max}); (4) the area under the plasma level time curve (AUC), which is related to the extent of drug absorption in the systemic circulation; (5) the clearance (CL), an indicator of drug elimination from the body; and (6) apparent volume of distribution (Vd). Statistical analysis was performed using Microsoft Excel, Origin
166 167 168 169 170 171 172 173 174 175	6000 rpm for 15 min, stored at -20 °C before analysis. The pharmacokinetics parameters were calculated by non-compartmental analysis using PK Solver software. ²⁴ A non-compartmental model was applied to the data fitting and parameter estimation. Following parameters were achieved to evaluate the analytes: (1) half-life (T _{1/2}) is the time required for the concentration of the drug to reach half of its beginning value; (2) C _{max} is the maximum plasma concentration after oral administration; (3) time to reach the maximum concentrations (T _{max}): (4) the area under the plasma level time curve (AUC), which is related to the extent of drug absorption in the systemic circulation; (5) the clearance (CL), an indicator of drug elimination from the body; and (6) apparent volume of distribution (Vd). Statistical analysis was performed using Microsoft Excel, Origin 8.0, and SPSS 20.0 software (SPSS, Inc., Chicago, USA). Data were expressed as mean ± SD and a P

177	
178	3. Results
179	3.1 Optimization for mass and chromatographic conditions
180	To obtain optimal separation conditions, chromatographic conditions and mass analytical
181	parameters and were optimized. Chromatographic conditions were optimized by screening a few
182	columns and finally the Weltch ultimate UHPLC XB-C18 column (2.1 \times 150 mm, 1.7 μm) was selected.
183	In the gradient optimization, gradient time, shape, and the mobile phase were taken into consideration.
184	As a result, acetonitrile (0.2% formic acid)-water (0.2% formic acid) system consists the mobile phase.
185	Under these optimal conditions, satisfactory resolution values, sharp and symmetrical peaks were
186	obtained. Better ionization effects of the analytes were obtained in negative ion mode. In the precursor
187	ion full-scan spectra, the most abundant ions were deprotonated molecules $[M-H]^{-} m/z$ 169.012,
188	326.942, 415.05, and 447.014 for GA, BG, IS, and QR, respectively. The optimized values of helium
189	collision gas pressure, tube lens offset, and collision energy for each parent ion-product ion transition
190	were displayed in Table 1.
191	The precursor to product transition was assigned in the multi-reaction- monitoring (MRM) mode
192	as follows: m/z 169.012 \rightarrow 125.063 for GA, m/z 326.942 \rightarrow 191.997 for BG, m/z 415.051 \rightarrow 266.999 for
193	IS, and m/z 447.014 \rightarrow 300.028 for the QR. Under the optimized parameters, efficient ionizations, high
194	abundances and sensitive detections of the analytes and the IS were achieved.
195	
196	3.2 Plasma sample preparation
197	To exhaustively extract analytes and fully reduce the endogenous-related substances in plasma,
198	extraction approaches were conducted. Precipitation of protein was conducted by a single-step protein

precipitation with acetonitrile containing 0.01% formic acid.

- 3.3 Matrix effects and plasma recovery
- Under the optimized LC-MS/MS conditions, there were no interfering peaks at the elution times
- for markers. The typical MRM chromatograms of blank plasma (A), spiked plasma containing GA, BG,
- OR and IS (B), and plasma collected at 20 min after oral administration of S. stolonifera extract (C) are
- shown in (Fig.2). Plasma recoveries are in Table 2. Nominal concentrations of the analytes are 43.44
- ng/mL of GA, 31.14 ng/mL of BG, and 33.24 ng/mL of QR.

3.4 Linearity, precision, accuracy, and lower limit of quantification (LLOQ)

Methods in this study showed a very good linearity over 4.34-434 ng/mL range for GA, 3.11-311 ng/mL range for BG, and 0.66-132.96 ng/mL for QR. The best linear fit and least-square residual for the calibration curve was achieved with a $1/x^2$ weighting factor. The regression equations were Y=0.0608X - 0.0264 ($\gamma^2=0.992$, n=7), Y=0.0382X + 0.0281 ($\gamma^2=0.994$, n=7), and Y=0.134X - 0.0819 $(\gamma^2=0.990, n=7)$ for GA, BG and QR, respectively. Where Y refers to peak area ratios (anlayte/IS) and X is the concentration. The present UHPLC-MS/MS method offered an LLOO were 0.66 ng/mL, 3.11 ng/mL and 4.23ng/mL for QR, BG and GA, respectively.

According to the guidance mentioned above, the accuracy was required to be within \pm 15% (20% for LLOQ), and the intra- and inter-day precisions were not to exceed $\pm 15\%$ (20% for LLOQ). The results demonstrated that the values are within the acceptable range mentioned above and the method is accurate and precise. The results of the intra-day and inter-day precision and accuracy of the analytes in QC samples are displayed in Table 3.

All the analytes in this study were stable in all the conditions mentioned above and were listed in

2		
3	224	T.1.1. 4
4	221	Table 4.
5		
6	222	
7		
8		
9	223	3.5 Pharmacokinetic study
10		
11	224	The established method was applied to apply as pharmocal institution of GA. BG and OP in ret plasma
12	224	The established method was applied to analyses pharmacokmetic of GA, BO and QK in fat plasma
13		
14	225	after oral administration of the aqueous extract of S. stolonifera with three dosages at 0.74, 1.48 and
15		
16		
17	226	2.96 g/kg equivalent to 1.62, 3.24, 6.48 mg/kg of GA, 5.21, 10.42, 20.84 mg/kg of BG, and 1.08, 2.16,
10		
10	227	1.32 mg/kg of OR. The plasma concentrations of analytes were tested at each time point the
19	221	4.52 mg/kg of QK. The plasma concentrations of analytes were tested at each time point, the
20		
21	228	concentration-time curves of GA, BG and QR were displayed in (Fig.3), (Fig.4) and (Fig.5). The
22		
23		
24	229	pharmacokinetic parameters were calculated on non-compartment model and presented in Table 5,
25		
26	230	Table 6 and Table 7. The observed T _{max} and C _{max} were 40, 100, 100 min and 16, 38, 29, 68, 62, 91 ng/mL
27	250	Table 0, and Table 7. The observed T_{max} and C_{max} were 10, 100, 100 min and 10.50, 29.00, 02.91 mg/mls
28		
29	231	for GA, 80, 100,100 min and 10.24, 18.54, 28.74 ng/mL for BG and 20 min and 1.40, 2.73, 3.62 ng/mL
30		
31	222	for OD recording to AUC many 4572.00 0560.22 17044.47 ms/ml for CA 2077.44 0560.22
32	232	for QR, respectively. AUC_{0-t} were 45/2.80, 9560.22, 1/844.47 ng/mL for GA, 28/7.44, 9560.22,
33		
34	233	17844.47 ng/mL for BG and 454.55, 567.58, 619.94 ng/mL for OR.
35		
36		
27	234	
31 20		
30 20	225	1 Dissussion
39	235	4. Discussion
40		
41	236	A rapid and highly sensitive method for simultaneous determination of GA, BG and QR after
42		1 0 5
43		
44	237	administration of S. stolonifera extract was developed. The LLOQ of three analytes were 0.66 ng/mL,
45		
46	228	3.11 ng/mL and 1.23ng/mL for OR BG and GA respectively
47	230	5.11 lig/lill and 4.25lig/lill for QK, b0 and OA, respectively.
48		
49	239	As shown, GA, BG and QR exhibited relatively rapid absorption processes, of which the plasma
50		
51		
52	240	concentration achieved the peak from 20 to 100 min and showed a relatively sharp peak shape. The
53		
54	241	T _{max} of three compounds were within 100 min C _{max} and AUC ₀ , of three compounds increased with the
55	<u>-</u> 71	max or three compounds were written roo min. Cmax and root-or three compounds increased with the
55		
50	242	increase of dose, indicating that the pharmacokinetic parameters of GA, BG and QR extracted from S.
59		
50		
29		
60		

stolonifera showed a dose-dependent profile ²⁶. The Vd values of GA, BG and QR was greater than 40
L/kg which indicated that the three markers might be distributed to some specific tissues selectively
^{32,33}.

246	The pharmacokinetic profiles of the three bioactive compounds were closely related to their
247	chemical structures and metabolism mechanisms. Through comparing C_{max} and AUC, the quantity
248	detected of QR was lower than other two analytes. The molecular structure of QR contains glucose,
249	which might be easily hydrolyzed. Studies ^{34, 35} showed that transglucosylase might be inhibited by QR
250	which reduced the absorption of QR. Bimodal phenomenon of QR might be due to multiple-sites
251	absorption or enterohepatic circulation. The $T_{1/2}$ and T_{max} of GA were prolonged, to some extent, by
252	comparing with that of its pure form ^{31} . A proper reason might be that other compounds in the S.
253	stolonifera extract were metabolized to gallic acid in vivo, such as some of tannins might translate into
254	GA by taking off the gluside 31 . The T _{max} of BG was advanced compared with that of its pure form ²⁷
255	which indicated that BG could be influenced by other compounds in the S. stolonifera extract.
256	Nevertheless, additional studies should be carried out in order to confirm the pharmacokinetic
257	mechanism involved.

5. Conclusions

A rapid, sensitive and specific UHPLC-MS/MS method with a simple protein precipitation, satisfying recovery and minimal matrix effect for simultaneous quantification of GA, BG and QR in male rat plasma was developed and validated according to FDA Guidance. This method was applied to a pharmacokinetic study after oral administration of *S. stolonifera* extract successfully. Three compounds of *S. stolonifera* extract might display their in vivo pharmacological activities at different

2		
3	265	levels and different time periods after oral administration. Pharmacokinetic profiles of OP were
4	205	levers and uniferent time periods after oral administration. Pharmacokinetic profiles of QK were
5		
6	266	obtained for the first time.
7		
8	267	
9	267	
10		
11	268	Acknowledgement
12	200	A control of the cont
13		
14	269	The authors gratefully acknowledge the financial support of the present work by Guizhou province
15		
16	270	anianae and tashinala any plan projects (KV 2012 005 2012 2000 and 2015 4022)
17	270	science and technology plan projects (K Y -2012-005, 2013-2069 and 2015-4055).
18		
10	271	
20		
20		
21	272	Conflict of Interest
22		
23	272	The authors declare that there are no conflicts of interest regarding the publication of this article
24	275	The autions decide that there are no contracts of interest regarding the publication of this article.
25		
26	274	
27		
28		
29	275	
30		
31	276	
32	270	
33		
34	277	
35		
36		
37	278	
38		
39	279	
40		
41	280	
42		
42	281	
40		
44	282	
45		
40	283	
47		
48	284	
49	205	
50	285	
51	200	
52	200	
53	707	
54	201	
55	288	
56	200	
57	280	Reference
58	205	
59		
60		

Analytical Methods Accepted Manuscript

290		
291	1.	P.C. Zhu, W.J. Chen, X.S. Fan, Simultaneous determination of three stimlllant alkaloids in
292		Kesuting Syrupy by UPLC-MS/MS. Chinese Traditional Patent Medicine, 2014, 36(5), 970-973.
293	2.	M. Zhou, HG Chen, C. Xian, Z.J. Huang, X. Zhou HPLC fingerprint of ethyl acetate extraction of
294		Saxifraga stolonifera. China Junal of Chinese Materia medicals, 2013, 38, 1026-1029.
295	3.	L.T. Ju, Saxifraga stolonifera preparations to benign prostatic hyperplasia. Chinese Journal of
296		Basic Medicine in Traditional Chinese Medicine, 2007, 13, 79.
297	4.	X. Zhou, H.G. Chen, Z.J. Huang, C. Xian, S.L.Yang, Optimization of extracting technology for
298		active fraction of saxifraga stolonifera with anti-prostate cancer activity by response surface
299		method, Chinese Traditional and Herbal Drug, 2013, 44 (13), 1768-1773.
300	5.	X. Zhou, H.G. Chen , Z.J. Huang, S.L. Yang, Z.N. Yang, Screening of anti-prostate-tumor parts
301		from Saxifraga stolonifera. Chinese Pharmacological Bulletin, 2013, 29, 867-870.
302	6.	H.D. Li, Y.L. Li, Q.J. Fan, W. Dou, T. An, Sereening Active Sectionofs of saxifraga in
303		Baoxin, Sichuan province, Chinese Traditional and Herbal Drugs, 2009, 40, 187-189.
304	7.	L.S. Zhang, J.X Ding, L. Zhang, H.Q. Zhang, Y.M. Li, H Liu, Inhibitory effect of the extract of
305		saxifraga stolonifera against fibroblasts in rat, Chinese Journal of Basic Medicine in Traditional
306		Chinese Medicine, 2005, 11, 12-14.
307	8.	X.D. Wu, H.G. Chen, X. Zhou*, Y. Huang, E.M. Hu, Z.M. Jiang, C. Zhao, X.J. Gong, Q.F Deng,
308		Studies on Chromatographic Fingerprint and Fingerprinting Profile-Efficacy Relationship of
309		Saxifraga stolonifera Meerb, molecules, 2015, 20(12), 22781-22798.
310	9.	J.H. Lee, J.M. Kim, C. Kim, Pharmacokinetic analysis of rhein in Rheum undulatum, Journal of
311		Ethnopharmacology, 2003, 84, 5-9.
312	10.	L.J. Brum, M.Leal, F. T.Uchoa, M. Kaiser, S. Guterres, T. D. Costa, Determination of quinine and
313		doxycycline in rat plasma by LC-MS-MS: application to a pharmacokinetic study,
314		Chromatographia, 2011, 73, 1081-1088.
315	11.	C. He, J. Li, N. Xu, R. Wang, Z. Li, L. Yang, Z. Wang, Pharmacokinetics, bioavailability, and
316		metabolism of Notoginsenoside Fc in rats by liquid chromatography/electrospray ionization
317		tandem mass spectrometry. J Pharm Biomed Anal, 2015, 109, 150-157.

318	12.	F.W. Ma, X.G. Gong, X. Zhou, Y. Zhao, M.L. Li, An UHPLC-MS/MS method for simultaneous
319		quantification of gallicacid and protocatechuic acid in rat plasma after oral administration of
320		Polygonum capitatum extract and its application to pharmacokinetics, Journal of
321		<i>Ethnopharmacology</i> , 2015, 162, 377-383.
322	13.	B.Y. Wen, R. He, P.Y. Li, Q.H. Xu, Y.L. Lu, B. Peng, J.R. Li, Pharmacokinetics of
323		8-O-acetylharpagide and harpagide after oral administration of Ajuga decum bens Thunb extract
324		in rats. Journal of Ethnopharmacology. 2013, 147, 503-508.
325	14.	Y. Zhao, X.J. Gong, X. Zhou, Z.J. Kang, Relative bioavailability of gastrodin and parishin from
326		extract and powder of Gastrodiae rhizoma in rat, Journal of Pharmaceutical and Biomedical
327		Analysis, 2014, 100, 309-315.
328	15.	J.C. Callaway, D.J. McKenna, C.S. Grob, G.S. Brito, L.P. Raymon, R.E. Poland, E.N. Andrade,
329		E.O. Andrade, D.C. Mash, Pharmacokinetics of hoasca alkaloids in healthy humans, Journal of
330		Ethnopharmacology, 1999, 65, 243-256.
331	16.	Q.F. Xu, X.L. Fang, D.F. Chen, Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1
332		from Panax notoginseng in rats, Journal of Ethnopharmacology, 2003,84,187-192.
333	17.	A.Ghasemzadeh, , N.Ghasemzadeh , Flavonoids and phenolic acids: role and biochemical activity
334		in plants and human. Journal of Medicinal Plant Research, 2011, 5, 6697-6703.
335	18.	M. Saxena, D.J. Saxena, D.A. Pradhan, Flavonoids and phenolic acids asantioxidants in plants
336		and human health, International Journal of Pharmaceutical Sciences and Research, 2012, 16,
337		130-134.
338	19.	Z. Chen, Y.M. Liu, S. Yang, B.A. Song, G.F. Xu, P. S. Bhadury, L.H. Jin, D.Y. Hu, F. Liu, W. Xue,
339		X. Zhou, Studies on the chemical constituents and anticancer activity of Saxifraga stolonifera (L)
340		Meerb, Bioorganic & medicinal chemistry, 2008, 16, 1337-1344.
341	20.	C. Xian, X.J. Gong, C. Zhao, X. Zhou, Z.N. Yang, L. Wang, Chemical Constituents of Saxifraga
342		stolonifera, Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18, 124-126.
343	21.	W.S. Feng, Z. Li, X.K. Zheng, Y.J. Li, F.Y. Su, Y.L. Zhang, Chemical constituents of Saxifraga
344		stolonifera (L.) Meerb. Acta Pharmaceutica Sinica, 2010, 45, 742-746.
345	22.	A.S.S.Verma, A. Mishra, Gallic acid: Molecular rival of cancer, environmental toxicology and
346		pharmacology, 2013, 35, 473-485.
347	23.	F.B.F.M. C.Locatelli, T. B. Creczynski-Pasa, Alkyl esters of gallic acid as anticancer agents: A

Analytical Methods

- review, European Journal of Medicinal Chemistry ,2013, 60, 233-239. 24. D.H. Priscilla, P.S.M Prince, 2009. Cardioprotective effect of gallic acid on cardiactroponin-T. cardiac marker enzymes, lipid peroxidation products and antiox-idants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions. 179, 118-124. 25. S.H. Kim, C.D. Jun, K. Suk, B.J. Choi, H. Lim, S. Park, S.H. Lee, H.Y. Shin, D.K. Kim, T.Y. Shin, Gallic acid inhibits histamine release and pro-inflammatorycytokine production in mast cells. Toxicological Sciences, 2006, 91, 123-131. 26. C.L. Liao, K..C Lai, A.C. Huang, J.S. Yang, J.J. Lin, S.H. Wu, W. G.Wood, J.G. Lin, J.G. Chung, Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food and Chemical Toxicology. 2012, 50, 1734-1740. 27. W.S. Yu, Y.W. Wang, Y.H. Zhang, D. Zhang, J. Lan, Z.Y. Liu, J.K. Gu, J.P. Fawcett, Quantitation of bergenin in human plasma by liquid chromatography/tandem mass spectrometry. Journal of Chromatography B, 2009, 877, 33-36. 28. B.H. Li, J.D. Wu, X.L. Li, LC-MS/MS determination and pharmacokinetic study of bergenin, the main bioactive component of Bergenia purpurascens after oral administration in rats, Journal of Pharmaceutical Analysis, 2013, 3, 229-234.13. 29. V. Shah, The history of bioanalytical method validation and regulation: evolution of a guidance document on bioanalytical methods validation, AAPS Journal, 2007, 9, 43-47. 30. Y. Zhang, M. Huo, J. Zhou, S. Xie, PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Computer methods and programs in biomedicine, 2010, 99, 306. 31. W.J.D. Whiteley, J.G Hardman, Pharmacokinetic analysis, Anaesthesia & Intensive Care Medicine 2014, 15, 385-387. 32. H.T. Wan, Y Guo, Pharmacokinetics of Traditional Chinese Medicine, Chemical industry press, Beijing, 2009. 33. C.X. Liu, Practice Pharmacokinetics, *China medical science press*, Beijing, 2003. 34. G.H. Zhang, C Ma, Advances in studies on pharmacokinetics of flavonoids, Chinese Traditional and Herbal Drugs, 2004, 35, 582-585.

1 2		
- 3 4	377 35	. L. Zhou, X.L Zhao, L.Q Di, X.L Bi, J.J Shan, A Kang, Oral absorption of flavonoids and analysis
5	378	of their metabolism characteristics and law, Chinese Traditional and Herbal Drugs, 2013, 44,
7	379	2313-2320.
o 9	380	
10		
12 13		
14 15		
16 17		
18 19		
20		
22		
23		
25 26		
27 28		
29 30		
31 32		
33 34		
35		
37		
30 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
55 56		
57 58		
59 60		

Analytical Methods Accepted Manuscript

42 Fig.3 Plasma concentration-time curves of GA in rats (n=6) after oral administration of S.

stolonifera extract for different dose levels.

45 Fig.4 Plasma concentration-time curves of BG in rats (n=6) after oral administration of S.

stolonifera extract for different dose levels.

48 Fig. 5 Plasma concentration-time curves of QR in rats (n=6) after oral administration of S.

stolonifera extract for different dose levels

Analytical Methods

51 Table 1 Values of tube lens offset (V), collision pressure (mTorr) and collision energy (eV) for the

52 parent ions-product ions transitions.

		Tube Lens Offset	Transition	Collision Energy
Analytes	Transition	(V)	(m Torr)	(eV)
GA	$m/z \ 169.012 \rightarrow 125.06$	68	1.5	17
BG	$m/z \ 326.942 \rightarrow 191.997$	94	1.5	27
IS	$m/z \ 415.051 \rightarrow 266.999$	97	1.5	36
QR	$m/z \; 447.014 \rightarrow 300.028$	107	1.5	29

55 Table 2 Plasma recovery of GA, BG, QR, and IS (n=3).

	A1	A2	Plasma recovery
Aanalyte	Mean±SD	Mean±SD	Re%
GA	5.65E4	4.41E4	78.06
BG	5.13E4	4.39E4	85.56
QR	1.50E5	1.18E5	78.19
IS	4.58E4	3.81E4	83.21

 $56 \qquad \text{Re\%} = (A2/A1) \times 100$

58 Table 3 Precision of intra-day and inter-day, accuracy, and recovery of the analytes in QC samples

Analytical Methods Accepted Manuscript

59 (n=6)

	Norminal		Intra-day			Inter-day	
Analyte	Concentration	Measured	Precision	Accuracy	Measured	Precision	Accuracy
	(ng/mL)	concentration	%R.S.D	% Bias	concentration	%R.S.D	% Bias
		(ng/mL)			(ng/mL)		
	4.34	3.74	7.01	13.82	4.15	14.16	3.02
GA	43.44	41.54	8.46	4.38	41.31	4.72	4.90
	173.76	163.48	2.46	5.92	164.77	4.03	5.17
	3.11	2.90	6.84	6.75	2.76	10.41	11.36
BG	31.14	30.59	5.58	1.77	29.49	6.87	5.29
	124.56	122.06	4.23	2.05	118.05	5.70	5.23
	3.32	2.88	4.57	13.27	3.04	4.57	8.45
QR	33.24	30.75	3.79	7.49	118.88	4.49	9.05
	132.96	118.88	5.40	10.59	118.33	4.08	11.00

Table 4 Stability of the analytes under different conditions (n=3)

	5	5	× /		
		Norminal	Measured concentration		
Condition	Analyte	concentration	(mean SD)	Precision	Accuracy
		(ng/mL)	(ng/mL)	(%)R.S.D	%Bias
	GA	173.76	161.53±11.69	7.24	7.04
Room	BG	124.56	122.15±1.46	1.19	1.93
temperature	QR	132.96	122.64±2.62	2.14	7.76
	GA	173.76	172.00±2.30	1.34	1.01
4 °C in the	BG	124.56	122.65±7.78	6.35	1.53
autosampler	QR	132.96	114.18±0.06	0.06	14.12
	GA	173.76	164.87±5.09	3.09	5.12
Three freeze-thaw	BG	124.56	120.86±6.75	5.58	2.97
cycles	QR	132.96	120.37±5.84	4.85	9.47
	GA	173.76	179.59±9.74	5.42	3.35
Long-term	BG	124.56	121.19±15.51	12.80	2.71
stability (19d)	QR	132.96	124.69±6.25	5.01	6.22

66 Table 5 Pharmacokinetic parameters of GA in rats after oral administrations of S. stolonfera aqueous

6	7	extract
υ	/	extract

	T _{1/2}	Tmax	Cmax	AUC _{0-t}	Vz_F_obs	Cl_F_obs
Dose	(min)	(min)	(ng/mL)	(ng/mL)	(L/kg)	(L/kg/min)
Low	513.07	40	16.38±5.76	4572.80	130	0.18
Middle	251.35	100	29.28±11.78	9560.22	85.67	0.24
High	197.32	100	62.91±34.55	17844.47	6921558.08	0.92

69 Table 6 Pharmacokinetic parameters of BG in rats after oral administrations of S. stolonfera aqueous

70 extract

	T _{1/2}	Tmax	Cmax	AUC _{0-t}	Vz_F_obs	Cl_F_obs
Dose	(min)	(min)	(ng/mL)	(ng/mL)	(L/kg)	(L/kg/min)
Low	301.77	80	10.24±2.68	2877.44	130	0.18
Middle	251.35	100	18.54±2.59	9560.22	85.67	0.24
High	197.32	100	28.74±14.13	17844.47	6921558.08	0.92

76 Table 7 Pharmacokinetic parameters of QR in rats after oral administrations of S. stolonfera aqueous

77 extract

	T _{1/2}	Tmax	Cmax	AUC _{0-t}	Vz_F_obs	Cl_F_obs
Dose	(min)	(min)	(ng/mL)	(ng/mL)	(L/kg)	(L/kg/min)
Low	1835.95	20	$1.40{\pm}0.74$	454.55	97.72	0.37
Middle	717.49	20	2.73±1.58	567.58	158.76	1.53
High	1187.15	20	3.62±1.75	619.94	334.66	1.95

