Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Highly sensitive and selective colorimetric detection of Hg²⁺ based on separation of Hg2+ and formation of catalytic DNA-gold nanoparticles

4 Chi-Fang Peng^{*}, Na Pan, Zheng-Jun Xie and Liang-Liang Wu

State Key Lab of Food Science and Technology, School of Food Science and

Technology, Jiangnan University

Abstract: Hg^{2+} ions can be absorbed onto DNA-AuNPs complex and separated from water samples while the catalytic activity of DNA-AuNPs can be promoted. Based on the above principle, a highly sensitive and selective colorimetric assay for the 10 detection of Hg²⁺ was developed. The proposed method for Hg²⁺ has a detection limit of 1.5 nM with a linear range from 5.0 nM to 500 nM. Moreover, this detection 12 method for Hg^{2+} demonstrated more than 1000-fold selectivity toward most of the possible interfering ions and can be used for tap water detection. The results indicate the high potential of AuNPs as enzyme mimic for sensing heavy metal ions by metallophilic interactions.

Introduction

17 Mercuric ions (Hg^{2+}) are widely distributed in the environment and have 18 deleterious effects on the environment and human health. Monitoring Hg^{2+} level in water is a very important task in terms of water safety and water quality. The U.S. Environmental Protection Agency (EPA) has set the maximum allowable level of Hg 21 in drinking water at 10 nM (2.0 ppb) .¹ At present, there are various classical methods 22 for detecting Hg^{2+} , including atomic fluorescence spectrometry,² atomic absorption

Analytical Methods Accepted Manuscript Analytical Methods Accepted Manuscript

23 spectrometry, inductively coupled plasma mass spectrometry, 4 These methods are selective and sensitive, but require expensive instruments and complicated sample pretreatments.⁵

In order to overcome these problems, many metallic nanoparticle-based sensors 27 have been developed.⁶⁻¹⁵ In these nanosensors, various specific ligands of Hg^{2+} were 28 carefully selected to achieve selective respond to Hg^{2+} . For example, DNA-gold 29 nanoparticle (AuNP) assays have demonstrated excellent selectivity for Hg^{2+} that can 30 interact with T-T mismatches to form $T-Hg^{2+}-T$ complexes.^{8-10, 15} Many small ligands, 31 including $(11$ -mercapto-undecyl)-trimethyl-ammonium, mercaptopropionic acid,¹³ 32 homocystine, $lysine,^{14}$ diethyldithiocarbamate, 5-methyl-2-thiouracil, 12 33 dithiocarbamate derivative of calixarene,⁷ and 1-dodecanethiol,¹¹ modified on the 34 surface of AuNPs also have demonstrated specific interaction with Hg^{2+} . This ligand-mediated interaction can be measured by fluorescent, colorimetric, 36 chemiluminescent, electrochemical and electrochemiluminescent methods, etc. $6, 11, 14$, $16-18$ Interestingly, Hg^{2+} also can interact strongly and selectively with gold 38 nanoparticles, ¹⁹ gold nanorods⁵ and silver nanoparticles, ²⁰ which results in forming 39 Au/Hg and Ag/Hg alloys (amalgam). This specific metallophilic interaction²¹ has 40 been used to develop fluorescent and colorimetric sensors of $Hg^{2+5, 19, 20, 22, 23}$ Although most of these methods have demonstrated high sensitivity to Hg^{2+} and good selectivity to other common metal ions, it is still difficult to eliminate the interference from the high concentration of various metal ions in real samples without proper sample purification. In order to solve this problem, some specific materials, such as 45 YPA4 resin microcolumn and Hg^{2+} -imprinted polymers,^{24, 25} were prepared to 46 separate or preconcentrate Hg^{2+} from real samples.

Page 3 of 16 Analytical Methods Analytical Methods

A Recently, some methods for Hg^{2+} detection were developed based on the formation of Hg-Au alloy NPs which possess higher peroxidase-like activity than 49 naked AuNPs. For example, Long *et al.*²³ utilized the above Hg-Au alloy NPs to 50 catalyze TMB-H₂O₂ redox reaction and developed a colorimetric assay for Hg²⁺ 51 detection. Yan *et al.*²² and Wang *et al.*²⁶ developed fluorescent detections of Hg²⁺ on the basis of the oxidation of o-phenylenediamine and Amplex UltraRed, catalyzed by the above Au-Hg peroxidase-mimic. Although these methods have demonstrated 54 excellent analytical performance for Hg^{2+} detection, the high concentration of other metal ions in samples may produce serious matrix interference. Improving the 56 selectivity and sensitivity of Hg^{2+} detection is an effective strategy to avoid matrix effects.

58 In this work, we improved Long's method for Hg^{2+} detection by using a 59 DNA-AuNPs complex. In our strategy, Hg^{2+} ions were deposited onto DNA-AuNPs complex and separated from water samples, and then quantified by measuring the catalytic activity of the formed Au/Hg amalgam. This new method has several 62 advantages: (i) The selectivity of this detection for Hg^{2+} was outstanding due to the combination of the metallophilic interaction of Au-Hg and further separation of Au-Hg amalgam through centrifugation. (ii) This proposed method was highly sensitive with a detection limit of 1.5 nM and a linear range from 5.0 nM to 500 nM. The sensitivity of this method is satisfactory for environmental water samples. (iii) The preparation of DNA- AuNPs complex is simple and the detection is low-cost.

Analytical Methods Accepted Manuscript Analytical Methods Accepted Manuscript

Experimental Section

Reagents and chemicals

Analytical Methods Page 4 of 16

Analytical Methods Accepted Manuscript Analytical Methods Accepted Manuscript

Hydrogen tetrachloroaurate (III) tetrahydrate (HAuCl4·4H2O) were purchased from 71 Aldrich (Milwaukee, WI). Trisodium citrate $(Na_3C_6H_3O_7.2H_2O)$ and citric acid 72 monohydrate $(C_6H_8O_7 \cdot H_2O)$ were obtained from Sigma (St. Louis, MO). The 73 thiolated single strand oligonucleotides, 5° -SH-TTTTTTTTTT-3' (T₁₀) and 5'-SH-GCGACATGGTAATGG-3' (a random sequence, rDNA), were purchased 75 from Sangon Biotech (Shanghai) Co., Ltd. $Hg(NO₃)₂$ and all the other metal salts were purchased from the national institute of metrology P. R. China standard. 3, 3, 5, 5-tetramethylbenzidine (TMB) was supplied by Sinopharm Group Chemical Regent Co., Ltd (Shanghai, China). All of the reagents used were of analytical grade. Ultra-pure water prepared with a Milli-Q Pure system was used throughout the experiments.

Synthesis of AuNPs

82 AuNPs were prepared through citrate-mediated reduction of $HAuCl₄.²⁷$ Firstly, 0.01% chloroauric acid solution (100 mL) was added to a flask which had been soaked with aqua regia solution and cleaned with ultra-pure water. Then the flask was stirred and heated until boiling for 10 min. 1.0% sodium citrate (2.0 mL) was subsequently added quickly to the boiling solution. An obvious color change of the reaction mixture was observed from transparent to dark blue and finally wine red. The mixture was further boiled for another 5 min and cooled to room temperature.

Preparation of DNA-AuNP complex

The DNA-functionalized Au nanoparticles were prepared by directly incubating the thiolated DNA strands with AuNP solution. Firstly, the prepared AuNP solution (3 nM) was concentrated to 6 nM by centrifugation. Then the concentrated AuNPs (6 93 nM, 990 µL) were mixed with thiolated DNA (100 µM, 10 µL). After incubated at 25° C for 24 h, the mixtures were centrifuged for 15 min at 10000 rpm and the excess

Page 5 of 16 Analytical Methods Analytical Methods

DNA was removed. After repeating the centrifugation for twice the obtained DNA-AuNP complex was resuspended in ultra-pure water and stored at 4°C.

Analytical procedure for the colorimetric detection of Hg2+

98 Different concentrations of Hg²⁺ (500 μ L) were mixed with DNA-AuNPs solution $(0.6 \text{ nM}, 25 \mu\text{L})$ and trisodium citrate $(8 \text{ mM}, 175 \mu\text{L})$, and then incubated for 30 min at room temperature. Then the mixtures were centrifuged at 10000 rpm for 15 min 101 and the supernatants were removed, by which 50 µL of concentrated solution was obtained. Afterward, 90 µL of citrate buffer (100 mM, pH 4.5), 100 µL of TMB (1.5 103 mM) and 60 μ L of H₂O₂ (1.5 M) were pipetted into the above concentrated solution. The absorbance value of the mixture was then measured at 650 nm by a microplate reader (PowerWave XS2, Bio-Teck, USA).

Results and discussion

Characterization of AuNPs and DNA-AuNPs complex

The dimension of the AuNPs was measured with a transmission electron microscope (TEM, H7100, Hitachi High-Technologies Corporation, Tokyo, Japan). The AuNPs were monodisperse with an average size of 16 nm (Figure S1). The 111 concentration of AuNPs was estimated to be 3.0 nM. Hg^{2+} can be absorbed by AuNPs through strong Au-Hg metallophilic interaction, but the formed Au/Hg alloy is 113 unstable.¹⁹ In order to separate Hg^{2+} from solution, AuNPs should be protected and 114 stabilized by some molecules.¹⁹ Considering that AuNPs can be modified controllably 115 with thiolated DNA, a DNA-AuNP complex was prepared and used to separate Hg^{2+} ions.

Figure 1 shows the UV-vis absorption spectra of the AuNPs with a maximum 118 absorption peak (λ max) at 519 nm. After AuNPs modified with T₁₀, the λ max

Analytical Methods Page 6 of 16

Analytical Methods Accepted Manuscript Analytical Methods Accepted Manuscript

red-shifted from 519 nm to 522 nm. These results confirmed the successful 120 conjugation of AuNPs and DNA strands. After T_{10} -AuNPs were incubated with a high 121 concentration of Hg²⁺(500 nM), the λ max blue-shifted from 522 nm to 520 nm, which 122 should attribute to that Hg^{2+} ions were reduced to Hg^{0} and then adsorbed onto the 123 surface of the DNA-AuNPs.²⁸ It should be noted that the spectrum of DNA-AuNPs kept almost unchanged in terms of intensity and shape after incubated with high 125 concentration of Hg²⁺. The TEM images of AuNPs , T_{10} -AuNPs and T_{10} -AuNPs 126 treated with Hg^{2+} (500 nM) also showed that all three kinds of Au NPs are mono-dispersed (Figure S1).

128 The above result confirmed the high stability of DNA-AuNPs/ Hg^{2+} complex that 129 will be beneficial to the separation of Hg^{2+} from water samples.

132 Figure 1. UV-Vis spectra of (a) AuNPs, (b) T_{10} -AuNPs and (c) T_{10} -AuNPs treated with Hg²⁺ (500 nM).

Effects of DNA on the detection of Hg2+

135 Long *et al.*²³ found that the forming of Hg-Au alloy NPs stimulated the catalytic 136 ability of Au NPs to TMB-H₂O₂ redox reaction by accelerating the decomposition of

Page 7 of 16 Analytical Methods Analytical Methods

137 H_2O_2 . Here this mechanism can be used to detect Hg^{2+} further after Hg^{2+} was separated from water sample by DNA-AuNPs.

139 To confirm that the redox reaction between TMB and H_2O_2 was accelerated by the formed Hg–Au alloys, the UV-Vis spectra were recorded separately in the presence of 141 AuNPs, T_{10} -AuNPs, AuNPs/Hg²⁺ and T_{10} -AuNPs/Hg²⁺. As shown in Figure 2, the 142 absorbance value at 650 nm (A_{650}) in the presence of AuNPs or T₁₀-AuNPs is very 143 low, indicating their very weak catalysis toward the redox reaction of TMB-H₂O₂ (curve a and curve b in Figure 2). However, this redox reaction can be catalyzed by 145 AuNPs/Hg²⁺ system obviously (curve c in Figure 2), indicating the catalytic capacity 146 promotion of AuNPs by Hg^{2+} . Moreover, the catalytic capacity of the T₁₀-AuNPs can be promoted almost the same as that of the AuNPs (curve d in Figure 2).

Figure 2. UV−vis spectra of TMB and H2O2 after incubation with different catalytic system: (a)

151 AuNPs; (b) T_{10} -AuNPs; (c) AuNPs + Hg²⁺ (500 nM); (d) T_{10} -AuNPs + Hg²⁺ (500 nM).

153 The AuNPs modified with T_{10} (T_{10} -AuNPs) or a random ssDNA (rDNA-AuNPs) 154 were utilized to separate and detect Hg^{2+} ions. As expected, the absorbance values at 155 650 nm (A₆₅₀) increased rapidly as the increasing of Hg^{2+} concentrations in the range

Analytical Methods Page 8 of 16

156 of 50-500 nM when the T₁₀-AuNPs complex was utilized to separate and detect Hg²⁺ 157 (Figure 3). In contrast, the A_{650} increased slowly when AuNPs without modification 158 of DNA were used. In the case of the rDNA-AuNPs complex, the A₆₅₀ increased more 159 rapidly over the range 10-250 nM than that of T_{10} -AuNPs. However, the A₆₅₀ started 160 to decline as the Hg^{2+} concentration increased above 250 nM.

161 It was known that T_{10} and Hg^{2+} can interact and form T-H g^{2+} -T complex, which 162 probably reduced the absorption of Hg^{2+} on the surface of AuNPs. Meanwhile, it was 163 reported that T_n sequences possess more extended and upright conformations on the 164 surface of AuNPs than rDNA.²⁹ The different performance between rDNA-AuNPs 165 and T_{10} -AuNPs in the sensing of Hg^{2+} should be due to the different interaction of 166 DNA srands and Hg^{2+} as well as the different conformations of T₁₀ and rDNA sequences on the surface of AuNPs. Considering the sensitivity and a wide linear 168 respond to Hg^{2+} concentration, T_{10} -AuNPs complex was selected for the next experiment.

1.4

172 Figure 3. Effect of DNA on the colorimetric detection for Hg^{2+} . The TMB-H₂O₂ redox reaction 173 catalyzed by citrate-capped AuNPs (1) , T_{10} -AuNPs (2) and rDNA-AuNPs (3) after the addition of 174 various concentrations of Hg^{2+} ions (0, 10, 20, 70, 100, 150, 250 and 500 nM). The concentration

Page 9 of 16 Analytical Methods Analytical Methods

175 of AuNPs, T_{10} -AuNPs and rDNA-AuNPs, 0.6 nM; TMB, 1 mM; H_2O_2 , 1.5 M; pH, 4.5; reaction time, 25 min.

Since macromolecules on the metallic nanoparticles can affect their catalytic 178 activity,³⁰ the concentrations of T_{10} used to modify the AuNPs were investigated. It 179 was found that the T₁₀-AuNPs showed highest catalytic activity when 1.0 μ M of T₁₀ was utilized (Figure S2).

181 Effect of Hg²⁺ volume

182 Overall, the catalytic activity of T_{10} -AuNPs increased with increasing the Hg²⁺ 183 volume from 100 μ L to 1000 μ L. As a result, sharper respond to Hg²⁺ concentration 184 occurred when bigger volume of Hg^{2+} solution was utilized to detect Hg^{2+} (Figure 4). 185 However, a shoulder peak appeared when using 1000 μ L of Hg²⁺ solution for Hg²⁺ 186 detection. This phenomenon should be due to the excessive deposition of Hg^{2+} onto 187 the surface of the T_{10} -AuNPs complex, which led to destabilization of the T_{10} -AuNPs complex. A wide linear range of 10-500 nM can be obtained whether 100 µL or 500 189 µL of Hg²⁺ was mixed with the T₁₀-AuNPs complex, but much higher sensitive 190 respond was found with 500 μ L of Hg²⁺ used than 100 μ L of Hg²⁺.

Analytical Methods Page 10 of 16

Analytical Methods Accepted Manuscript Analytical Methods Accepted Manuscript

193 Figure 4. The colorimetric detection for Hg^{2+} by T₁₀-AuNPs after incubated with different 194 volume of Hg²⁺ (From 1 to 3, the volumes of Hg²⁺ were: 100 µL, 500 µL and 1000 µL, 195 respectively. The concentrations of Hg^{2+} were 0, 10, 20, 70, 100, 150, 250 and 500 nM, 196 respectivey). T₁₀-AuNPs, 0.6 nM; TMB, 1.0 mM; H₂O₂, 1.5 M; pH, 4.5; reaction time, 25 min.

Sensitivity and selectivity of the detection of Hg2+

198 Several parameters including the concentrations of TMB and H_2O_2 and reaction time were investigated to optimize the conditions for the colorimetric detection of 200 Hg^{2+} ions. As shown in Figure S3, the A₆₅₀ increased as reaction time increasing and 201 reached a plateau after 20 min. In Figure S4, it can be seen that the highest A_{650} was 202 found at 1.5 M over the range of 0.9-1.5 M H_2O_2 . The maximal difference of 203 absorbance values in the presence and absence of Hg^{2+} was achieved at 1.5 M of 204 H_2O_2 .

205 In the presence of 200 nM Hg^{2+} , the A₆₅₀ increased sharply with increasing the concentration of TMB in the range of 0.1-1.0 mM and then reached a plateau at 1.5 207 mM TMB (Figure S5). The highest A_{650} was found at 0.6 nM of T₁₀-AuNPs over the range 0.2-3.0 nM (Figure S6). In addition, the background signal increased with the 209 increasing concentration of T_{10} -AuNPs.

210 Under the optimal conditions, Hg^{2+} level as low as 20 nM can be clearly detected 211 by the naked eye and a calibration curve for Hg^{2+} detection was obtained with a linear 212 range from 5 nM to 500 nM ($R^2 = 0.993$) (Figure 5). The limit of detection was estimated to be 1.5 nM at a signal-to-noise ratio of 3, which was more sensitive than most of previously reported colorimetric and some of the fluorescent methods (some 215 representative methods were listed in Table S1).^{5-9, 13, 14, 17, 22, 26, 31, 33, 34}

216 To investigate the selectivity of the T₁₀-AuNPs probe (0.6 nM) toward Hg²⁺, 10 μ M 217 Mg^{2+} , Ca^{2+} , Sr^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Mn^{2+} , Cr^{3+} , Cd^{2+} , Al^{3+} , Co^{2+} , Bi^{3+} , Ba^{2+} , Pb^{2+} or

Page 11 of 16 Analytical Methods Analytical Methods

218 Fe³⁺ was added into the T₁₀-AuNPs, separately. As a control, we added 20.0 nM and 219 200 nM $Hg²⁺$ ions into the probe solutions. Figure 6 reveals that only mercury can stimulate the peroxidase-like activity of the AuNPs. As expected, the tolerance of the 221 T_{10} -AuNPs probe for Hg²⁺ ions toward most of the possible interfering ions was more 222 than 1000-fold except that it was more than 500-fold toward Ca^{2+} . The selectivity of 223 our method for Hg^{2+} detection was higher than most of the reported colorimetric 224 methods.^{5, 7, 19, 23, 31, 32} This high selectivity should be due to the selective separation of 225 Hg^{2+} from water as well as the consequent Hg^{2+} -stimulated the peroxidase-like activity of AuNPs.

Figure 5. Photographic images of the colors and calibration curve for the detection of Hg^{2+} after 230 the addition of various concentrations of Hg^{2+} ions (0, 5, 10, 20, 70, 100, 150, 250 and 500 nM).

231 T₁₀-AuNPs, 0.6 nM; TMB, 1.5 mM; H₂O₂, 1.5 M; pH, 4.5; reaction time, 20 min.

234 Figure 6. Catalytic activity of T_{10} -AuNPs stimulated by various metal ions. All metal ions are 10 235 μ M except for Hg²⁺ (1) (20 nM) and Hg²⁺ (2) (200 nM). T₁₀-AuNPs, 0.6 nM; TMB, 1.5 mM; 236 H_2O_2 , 1.5 M; pH, 4.5; reaction time, 20 min.

237 **Detection of Hg²⁺ ions in tap water samples**

238 To test the practicality of the proposed method, the T_{10} -AuNPs were used to detect Hg^{2+} ions in tap water. The tap water samples collected from our laboratory were 240 detected by atomic fluorescence spectrometry and the concentration of Hg^{2+} was lower than 2.5 nM. After aliquots of tap water were spiked with 10, 50 and 200 nM Hg^{2+} ions, respectively, the samples were filtered through microfiltration membranes and measured by our method. The recoveries of 90.9-112.0% with relative standard deviation (RSD) of 2.0-8.9% were shown in Table 1. The results demonstrated that 245 the proposed colorimetric method can accurately and reliably determine Hg^{2+} in real samples.

247 Table 1. Determination of H g^{2+} in tap water samples (n = 3)

Added Hg^{2+} (nM)	Found Hg^{2+} (nM)	Recovery $(\%)$	RSD(%)
	11.2	112.0	8.9
50	53.1	106.2	2.0

Conclusions

249 A highly sensitive and selective colorimetric assay for the detection of Hg^{2+} ions 250 was developed based on the simple separation of Hg^{2+} by DNA-AuNPs and the Hg^{2+} -stimulated the peroxidase-like activity of AuNPs. The DNA strands modified on the surface of AuNPs can stabilize the Au-Hg alloy NPs and keep their 253 peroxidase-like activity. The proposed method has a detection limit of 1.5 nM Hg^{2+} 254 with a linear range from 5.0 nM to 500 nM. Moreover, the above method of Hg^{2+} detection showed ultra-high selectivity toward other common metal ions. The developed colorimetric method opens up a new possibility for monitoring trace level of heavy metal ions in water samples.

Acknowledgements

The work was supported by the National S&T support program of China (2015BAD17B02), the National Natural Science Foundation of China (31371767),

and the Natural Science Foundation of Jiangsu Province (BK20141108).

- **Notes and references**
- 263 1 EPA 816-F-09-0004, U.S. EPA, 2009

264 2 Z. Zhu, L. Xu, X. Zhou, J. Qin and C. L. Yang, Chem. Commun., 2011, **47**, 265 8010-8012.

- 266 3 C. K. Chiang, C. C. Huang, C.-W. Liu and H. T. Chang, Anal. Chem., 2008, **80**, 267 3716-3721.
- 268 4 D. M. Kong, N. Wang, X. X. Guo and H. X. Shen, Analyst, 2010, **135**, 545-549.

Analytical Methods Page 14 of 16

Analytical Methods Accepted Manuscript Analytical Methods Accepted Manuscript

Page 15 of 16 Analytical Methods

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

citrate

 Hg^{2+}

 $\overline{\text{TMB}} + \text{H}_2\text{O}_2$

 \blacksquare Hg⁰

ssDNA

 \sim

Z \lesssim

AuNPs

754x570mm (96 x 96 DPI)

