Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

5
Q
S
D
Ť
0
Q
0
40
U)
ŏ
\geq
σ
0
÷
σ

1		
2 3 4	1	Determination of trace Bi by ICP-OES after magnetic solid phase extraction with fullerene
5 6	2	C60 modified γ-Fe ₂ O ₃ superparamagnetic iron oxide nanoparticles
7 8 9	3	
10	4	
11 12 12	5	
14	6	Ersin Kılınç*
15	7	
16 17 18	8	Health Services, Vocational High School, Medical Marketing and Promotion Program,
19 20	9	Mardin Artuklu University, 47200 Mardin, Turkey
21 22 23	10	
23 24 25	11	
26 27	12	*Corresponding Author:
28 29 30	13	
31 32	14	Address : Health Services, Vocational High School, Medical Marketing and
33 34 35	15	Promotion Program, Mardin Artuklu University, 47200 Mardin, Turkey
36 37	16	e-mail : kilincersin@gmail.com
38 39	17	Phone : 00 90 (482) 212 69 49-7284
40 41	18	
42 43	19	
44 45	20	
46	21	
47 48	22	
49 50	23	
51 52	24	
53	25	
54 55	26	
56 57 58 59 60	27	

ABSTRACT

8 9

29	
30	In this research, a procedure for the preconcentration of Bi at trace levels in milk samples
31	by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. It is based
32	on the batch magnetic solid phase extraction of Bi ions by fullerene C60 modified maghemite (γ -
33	Fe ₂ O ₃ superparamagnetic iron oxide nanoparticles-SPION) nanoparticles.Various factors
34	influencing the preconcentration of Bi such as pH, amount of magnetic nanoparticle, initial Bi
35	concentration, sample volume and effects of possible interferic ions were investigated. The
36	analytical curve was achieved as linear in the concentrations range of 0.25-10 ng mL ^{-1} with a
37	limit of detection of 0.06 ng mL ⁻¹ . The precision as RSD was 7.5% for concentration of 0.25 ng
38	mL ⁻¹ . The method was validated by the analysis of a standard reference material (NIST SRM
39	1643e). In addition, 96.6-98.7% recoveries were achieved for the spiked samples. Bi
40	concentrations in ten milk samples were successfully determined after developed method was
41	applied. Bi contents ranged in milk samples from 6.5 to 14.3 ng mL ⁻¹ .
42	
43	
44	Keywords :Bi, preconcentration, magnetic solid phase extraction, ICP-OES, SPION,
45	fullerene
46	
47	
48	
49	
50	
51	
52	
53	
54	

INTRODUCTION

Analytical Methods

Bismuth (Bi) and its compounds are relatively rare in earth that used in different area of life such as cosmetic industry (e.g. pigments in eye shadow, lipsticks and hair dyes), medicines (such as for treatment of syphilis, peptic ulcers and dermatological disorders), alloys, by-product of copper and tin refining, metallurgical additives, and preparation and recycling of uranium in nuclear fuels, fabrication of catalyst.^{1,2} Bi is not accepted as essential element for plants and animals.³ Extensive usages of Bi and its compounds are main reasons of exposure of this element to organism. Reported toxic effects of Bi and its compounds such as nephrotoxicity, neurophthology, kidney damage symptoms, osteoarthropathy, and hepatitis are required to routine determination of Bi in environmental and biological samples. By considering the trace level of Bi, a preliminary preconcentration and separation methods are inevitable prior to its determination.^{3,4} These include liquid-liquid extraction (LLE), solid phase extraction (SPE), coprecipitation, cloud point extraction.⁴⁻⁶However, only few of them have sufficient sensitivity for Bi. LLE is required the use of toxic organic solvents. The uses of peristaltic pump or manual passing to solution through the column area reason of long analysis time in column SPE method. A complexation ligand should be generally used to provide selectivity.⁷ Recently, preconcentration by magnetic solid phase extraction has been attained interest.⁸⁻¹² Because problems such as column packing and phase separation in traditional SPE are overcome by the use of magnetic materials.¹⁰ Additionally the use of them in small amount is one of the main advantages. In a recent review, application of magnetic nanoparticles for the preconcentration of metal ions prior to their determination by FAAS, ETAAS, ICP-OES, ICP-MS, CV-AAS, LC-MS/MS, HPLC-ICP-MS, UV-visible were reported in details. By considering the literature

Analytical Methods Accepted Manuscript

survey, it is possible to say that there is no report in literature for preconcentration of Bi bymagnetic solid phase extraction method.

- Direct determination of elements at trace levels is easy when ICP-MS is used. It is not required a preconcentration step whereas ICP-OES, FAAS. However, ICP-MS could not found in any of laboratory. Because, price of ICP-MS is nearly three times expensive than ICP-OES. So, many of researchers must to use the instruments that already present in their laboratories. From this point of view, preconcentration methods should be applied before measurement by ICP-OES, FAAS and even ICP-MS. Additionally, some regulations and standards for routine analysis are required to use the preconcentration methods for organic and inorganic pollutants and following determination by ICP-OES, UV-VIS or FAAS.
- In this study, fullerene C60 modified maghemite (γ -Fe2O3 superparamagnetic iron oxide nanoparticles-SPION) nanoparticles synthesized and characterized in our previous work was used for the preoncentration of Bi prior to its determination by ICP-OES. Important experimental parameters such as pH of the solution, amount of magnetic nanoparticle, initial volume of sample solution, type and volume of the eluent acid were investigated. The developed method was validated through the analysis of standard reference material. Finally, this method was applied for the analysis of Bi in water, drinking and food samples.

97 EXPERIMENTAL

98 Instrumentation

100 Optima 2100 DV inductively coupled plasma-optical emission spectrometry (ICP-OES) 101 (Perkin Elmer, Massachusetts, USA) was used for the determination of Bi at the wavelength of 102 223.061 nm. The operating conditions of the ICP-OES for determination of Bi were given in our

Analytical Methods

previous study.¹³Mettler Toledo MPC 227 (Polaris Parkway, Columbus) model digital pH meter
was used for measurement of acidity of solutions.

Reagents and solutions

All chemicals used in this study were of analytical grade. Ultrapure water was obtained
from a maximum ultrapure water system (18.2 M0X ELGA, England). C60 was supplied from
Sigma-Aldrich (St Louis, MO, USA). A super magnet (Nd-Fe-B, 1.2 T, 50 × 40 × 20 mm) was
used for phase separation.

Stock solution of Bi was prepared from their individual stock solution at the concentration of 1000 μ g mL⁻¹(High Purity Standards-Charleston, SC.) with ultra pure water. It was diluted for the standards at lower concentrations. All glass materials were washed with 1.0mol L⁻¹ of HNO₃and then ultra pure water before using. HNO₃(65%) and H₂O₂ (35%) were supplied from Merck and they were used in digestion procedures. Standard reference water sample - NIST 1643e(Gaithersburg, MD) was used to check the accuracy of the method.

General preconcentration procedure

Fullerene C_{60} functionalized γ -Fe₂O₃ magnetic nanoparticles were synthesized and characterized inour previous work.¹⁴ Briefly 100 mL of Bi ion solution (1.0 ng mL⁻¹) was prepared and the pH value was adjusted to 7.0 using phosphoric acid buffer solution, and then, added to 50 mg of magnetic nanoparticles. Under continuous mechanical stirring of the mixture for 10 min, the magnetic adsorbent was isolated easily and quickly with the help of a strong magnet (Nd-Fe-B, 1.2 T, 100 mm 100 mm 20 mm) and the aqueous solution was poured away.

Analytical Methods Accepted Manuscript

Then the Bi ions retained on the sorbent were elutaed by two times with 1.0 ml of 1 mol L^{-1} HNO₃. The Bi ions in the eluate solution were determined by ICP-OES.

Preparation of samples to magnetic SPE procedure

Milk samples were purchased from a local market in Divarbakir, Turkey and digested in a microwave oven (Berghof MWS 3, Eningen, Germany). Five bottles from each milk sample from a 200 and/or 500 mL box were mixed, and the homogenized samples were used for the analysis of Bi content. The digestion procedure was reported in our recent manuscript in details.¹³

After digestion in analytical microwave oven, clear digests were transferred to a beaker and acids were evaporated until drvness and then residue was dissolved in 2.0 mL of 1.0 mol L^{-1} HNO₃. After dissolving of the 5.0 mL portion of each of samples, the final volume was 10.0 mL. All of the procedures during the dissolving process were applied to the blank solution. Possible lost of analyte was checked from preliminary experiments and it was observed that there was no loss of analyte from this procedure. For this purpose, one of the samples was spiked with a known amount of Bi (results are given in the following sections).

RESULTS AND DISCUSSION

Effects of pH

Solution pH plays a key role in the magnetic solid phase extraction method. The effect of pH on the preconcentration of Bi by C60- γ -Fe₂O₃ magnetic nanoparticle is presented in Fig. 1. As shown in Fig. 1, the effect of pH of the solution on the extraction of 1.0 ng mL⁻¹ ofBi were

Page 7 of 24

1

Analytical Methods

- 3 4	151	studied between the pH range of 2.0-9.0. Bi was quantitatively recovered at the pH range of 6.0.
5 6	152	When the solution pH increased from 2.0 to 5.0, Bi recovery increased from 28.6% to 76.5%
7 8 0	153	respectively. Subsequent studies were carried out at an initial pH of 6.0.
9 10	154	Fig. 1.
12	155	
13 14	156	Effect of amount of magnetic nanoparticle
16 17	157	The effect of amounts of magnetic nanoparticle on the magnetic solid phase extraction of
18 19	158	Bi ions was investigated in the range of 10-100 mg. The results presented in Fig. 2 showed that
20 21	159	Bi ions were quantitatively extracted on 30 mg of the magnetic nanoparticle. Decreasing in the
22 23 24	160	extraction recovery was observed for amount higher than this value. So, 30 mg of C60- γ -Fe ₂ O ₃
25 26	161	magnetic nanoparticle was selected as the optimum amount of magnetic nanoparticle necessary
27 28	162	for all subsequent experiments.
29 30 31	163	Fig. 2.
32 33 34 35 36	164 165	The effect of contact time
	167	It is well known that sufficient time is required for quantitative interaction between metal
37 38 39	168	ion in aqueous sample and adsorbent in solid phase. Quantitative extraction could not achieve in
40 41	169	short extraction time. In the other hand, long time interaction is far of being of practical
42 43	170	usefulness. Therefore, the extraction of Bi ions on the magnetic nanoparticle versus time
44 45 46	171	dependence has been investigated with contacttimes of 1-10 min. Results showed that extraction
47 48	172	of Bi was quite high on 1.0-5.0 min (Fig. 3). Extraction of Bi ions from the solution reached more
49 50 51	173	than 98% at about 5 min.
52 53	174	Fig. 3.
55 56	175	Effect of sample volume
57 58 59 60	176	In preconcentration methods, higher enrichment factor is desired and it depends on the

Analytical Methods Accepted Manuscript

initial sample volume and final volume. Initial sample volume should be higher whereas final volume should be lower. For that reason, the volumes of initial sample solution containing 1.0 ng mL⁻¹ of Bi were varied from 10 to 500 mL (Fig. 4.). The results indicated that Bi ions were quantitatively recovered when the sample volume was less than 200 mL and after elution with 2.0 mL of the eluent, an enrichment factor of 100 was achieved. The extraction efficiency decreased on using a larger volume, due to the dilution of the analyte in the initial sample solution. Fig. 4. Effect of type and concentration of eluent It was observed that the type and concentration of the eluent were one of the key factors that influence the magnetic solid phase extraction procedure for the preconcentration of Bi. To choose the most effective eluent acid for quantitative stripping of the Bijons on the magnetic nanoparticle, various stripping solutions were tested and results are summarized in Table 1. Acidic eluent was found as suitable to obtain efficient extraction. It was observed that among different cases, the HNO₃ solution admits quantitative stripping of Bi ions. By raising eluting volume from 0.5 to 1.0 mol L^{-1} , the recovery was increased and the recovery of 99.1% was achieved with 2.0 mL eluent. Therefore, 2.0 mL HNO₃(two times elution with 1.0mol L⁻¹) was chosen for elution of Bi ions from magnetic nanoparticle. Table1

The effect of other ions

It is well known that matrix constituents have an important effect on the preconcentration

Analytical Methods

of trace metals. The effects of possible interferic coexisting ions in water and milk samples were investigated on the extraction recovery of Bi ions. In order to demonstrate the selectivity of the developed method, various metal ions were individually added to 100 mL aqueous solutions containing 1.0 ng mL⁻¹ of Bi solution. The tolerance limit was considered if it resulted in a ± 5 % variation in the extraction efficiency of Bi. Results presented in Table 2 that the examined cations and their co-anions (chloride, nitrate, sulphate) had no significant effects on the extraction and determination of Bi. So the used sorbent showed high tolerance limit for coexisting ions and the extraction recovery of Bi was almost quantitative in the presence of foreign ions and therefore useful for the analysis of Bi in real samples. Table 2 Analytical figures of merit In solid phase extraction studies, the potential regeneration and stability of the column are very important parameters to evaluate the adsorbent that can guarantee its widespread application in industry. The stability of the adsorbent for magnetic solid phase extraction result is shown in Fig.5. The uptake of Bi ion was stable up to at least after 15 extraction cycles (total 45 independent experiment by considering the three replicate for each of sample). It was determined that the recoveries of Biions were lower than 95.0%, respectively after use of 15 times. Fig. 5. Analytical characteristics of the developed method are presented in Table 3 with details. A limit of detection (LOD) of the proposed method for the determination of lead was studied under the optimal experimental conditions. The LOD obtained from the equation: $C_{\text{LOD}} = 3Sd /m$. where Sd is the standard deviation of ten consecutive measurements of the blank and m is a slope

Analytical Methods Accepted Manuscript

Analytical Methods

of the calibration curve, was 0.06 ng mL⁻¹. Limit of quantification (LOQ) values were calculated from $C_{\text{LOQ}} = 10$ Sd /m. The precision was also determined and expressed as a relative standard deviation (RSD).RSD value was found as 7.5%. All the statistical calculations are based on the average of triplicate readings for each standard solution in the given range.

By applying the developed preconcentration method sensitivity of ICP-OES for determination of Bi was improved as 93.3 times. It was calculated from the slope ratio of linear calibration plot of magnetic SPE-ICP-OES method to ICP-OES without SPE method. LOD value was found as 0.06 ng mL⁻¹ that was comparable with values reported in literatures. Analytical characteristics of the methods published in literature were presented in comparison with our method (Table 4).

Table 3

Linear range, LOD, RSD and enrichment factor of the developed method with those of other related preconcentration methods for the extraction and determination of Bi are comparatively presented in Table 4. The RSD was 7.5% for 0.25 ng mL⁻¹ Bi level, indicating favorable precision of the presented method. From the results it could be concluded that developed magnetic solid phase extraction method for Bi provided excellent precision, selectivity and sensitivity, and has other advantages such as simplicity and environment-friendly.

As seen from these data, the proposed method had a high adsorption capacity, and short extraction procedure (about 5 min) with a sample volume of 200 mL compared to other reported methods. The LOD and preconcentration factor of this method are comparable with other methods. In addition, common interfering ions had no evident interference. The reusability of the C60-γ-Fe₂O₃superparamagnetic iron oxide nanoparticles is the another strong advantages of the

Analytical Methods

2 3 4	247	method presented here. Finally, Bi at trace level could be successfully determined in real samples
- 5 6	248	before ICP-OES measurement.
7 8 9	249	Table 4
10 11	250	
12 13	251	Method validation and analysis of real samples
14 15 16	252	To verify the accuracy of the developed method, it was applied to the determination of Bi
16 17 18	253	in a standard reference material (NIST SRM 1643e, trace elements in water). The certified
19 20	254	amount of Bi in the SRM is 14.09±0.15ng mL ⁻¹ . The determined value for Bi by using the
21 22 23	255	presented magnetic solid phase extraction method was 13.96±0.16ng mL ⁻¹ , (mean of six
24 25	256	determinations±standard deviation), which is in good agreement with the certified value.
26 27 28	257	Additionally, the method was applied to milk and water samples to determination of Bi. The
29 30	258	analytical results are shown in Table 5. As seen, the recoveries for the Bi were in the range of
31 32	259	96.6-98.7%. Bi concentrations in four milk samples were determined as loer than LOD by a
33 34 35	260	method based on combining Fe ₃ O ₄ nanoparticles accelerated UV Fenton-like digestion and solid
36 37	261	phase extraction [23]. Room temperature acid sonication was employed for multielement analysis
38 39	262	in milk before ICP-MS. Concentrations of Bi in 28 milk samples were determined in the ranges
40 41 42	263	of 3.6-22.2 ng g ⁻¹ [24]. Higher concentration of Bi was determined in riverwater versus some
43 44	264	literature values whereas itwas not found in tap water [21].
45 46 47	265	
47 48 49	266	
50 51	267	CONCLUSION
52 52	268	

Compared with the reported methods, the developed magnetic solid phase extraction method provided environmentally friend procedure, consuming less amount of re-usable sorbent,

Analytical Methods Accepted Manuscript

high enrichment factor, low LOQ, wide linear range, high throughput. Additionally, it has high tolerance to possible interfering ions and quantification of Bi at trace levels in milk samples is satisfactory. Desorption experiments revealed that the C60-y-Fe₂O₃superparamagnetic iron oxide nanoparticles can be regenerated and reused for 15 consecutive adsorption cycles without loss of its removal efficiency. The accuracy of this method was verified by analyzing the standard reference water sample (NIST 1643e) with satisfactory results. ACKNOWLEDGEMENT The present work was carried out under the financial support of MardinArtuklu University (MAÜ-BAP-14-SHMYO-09). REFERENCES 1. S. Şahan, Ş. Saçmacı, U. Şahin, A. Ülgen and Ş. Kartal, *Talanta*, 2010, 80, 2127–2131. 2. Z. Xing, J. Wang, S. Zhang and X. Zhang, Talanta, 2009, 80, 139-142. 3. H. Wu, B. Du and C. Fang, Anal.Lett., 2007, 40, 2772-2782.

Analytical Methods

2
3
4
5
5
6
7
8
0
9
10
11
12
10
13
14
15
16
17
10
18
19
20
21
<u>~</u> 1
22
23
24
25
20
26
27
28
20
29
30
31
32
33
00
34
35
36
37
57
38
39
40
41
40
42
43
44
45
16
40
47
48
49
50
50
51
52
53
50
04
55
56
57
59
50
59

295	4. A. Afkhami, T. Madrakian and H. Siampour, J. Braz. Chem. Soc., 2006, 17, 797-802.
296	5. M.H. Pournaghi-Azar and S. Rahar, Iran. J. Chem. Chem. Eng., 2001, 20 59-65.
297 298	6. A.K. Das, R. Chakraborty, M.L. Cerveraand, M. Guardia, Trac Tend. Anal. Chem., 2006, 25, 599-608.
299	7. S. Özdemir, V. Okumuş, A. Dündar and E. Kılınç, Microchim. Acta, 2013, 180, 719-739.
300	8. M. Wierucka and M. Biziuk, Trac Tend. Anal. Chem., 2014, 59, 50-58.
301	9. K. Pyrzynska, Trac Tend. Anal. Chem., 2010, 29, 718-727.
302	10. G. Giakisikli and A.N. Anthemidis, A review, Anal. Chim. Acta, 2013, 789, 1-16.
303 304	11. M.H. Mashhadizadeh, M. Amoli-Diva, M.R. Shapouri and H. Afruzi, <i>Food Chem.</i> ,2014, 151, 300-305.
305	12. B. Hu, M. He and B. Chen, Anal. Bioanal. Chem., 2015, 407, 2685-2710.
306	13. E.Kılınç and F. Aydın, <i>Anal.Lett.</i> , 2012, 45, 2623-2636.
307	14. E. Kılınç, Artif Cells Nanomed Biotechnol., doi:10.3109/21691401.2014.948182
308	15. B. Parodi, A. Londonio, G. Polla, P. Smichowski, Microchem. J., 2015, 122, 70-75.
309	16. S. Vakilzadeh, M. Eftekhari, M. Chamsaz and F. Javedani-Asleh, Anal. Methods, 2015, 7,
310	7653-7658.
311	17. Y. Yamini, M. Chaloosi and H. Ebrahimzadeh, Talanta, 2002, 56, 797-803.

Analytical Methods Accepted Manuscript

1

Analytical Methods Accepted Manuscript

2 3 4 5	312	18. H. Ashkenani and M.A. Taher, Intern. J. Environ. Anal. Chem., 2013, 93, 1132-1145.
6 7 8	313	19. S. Rastegarzadeh, N. Pourreza and A. Larki, Anal. Methods, 2014, 6, 3500-3505.
9 10 11	314	20. F.S. Depoi, T.C. Oliveira, D.P. Moraes and D. Pozebon, Anal. Methods, 2012, 4, 89-95.
12 13 14	315	21. E. Kılınç, S. Bakırdere, F. Aydın and O.Y. Ataman, Spectrochim. ActaPart B, 2012, 73, 84-
15 16 17	316	88.
18 19 20	317	22. E. Kılınç, S. Bakırdere, F. Aydın and O.Y. Ataman, Spectrochim. ActaPart B, 2013, 89, 14-
21 22 23	318	19.
24 25 26	319	[23] X. Ai, L. Wu, M. Zhang, X. Hou, L. Yang and C. Zheng, J. Agric. Food Chem. 2014, 62,
$\begin{array}{c} 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 35\\ 37\\ 39\\ 41\\ 42\\ 44\\ 45\\ 46\\ 47\\ 49\\ 51\\ 52\\ 54\\ 55\\ 55\\ 57\\ 89\\ 60\\ \end{array}$	320	8586-8593.
	321	
	322	[24] P. Cava-Montesinos, M.L. Cervera, A. Pastor and M. Guardia, Anal. Chim. Acta, 2005, 531,
	323	111-123.
	324	

1		
2 3	1	FIGURE CAPTIONS
4	2	
5 6 7	3	Fig. 1. Effect of pH on the magnetic solid phase extraction of Bi
8 9	4	Fig. 2. Effect of amount of magnetic nanoparticle on the magnetic solid phase extraction of Bi
10 11	5	Fig. 3. Effect of contact time on the magnetic solid phase extraction of Bi
12 13 14	6	Fig. 4. Effect of sample volume on the magnetic solid phase extraction of Bi
15 16	7	Fig. 5. Reusability of $C60-\gamma$ -Fe ₂ O ₃ superparamagnetic iron oxide nanoparticles for
17 18	8	preconcentration of Bi
19 20 21	9	
21 22 23	10	
24 25	11	
26 27	12	
28 29 30	13	
31 32	14	
33 34	15	
35 36 27	16	
38 39	17	
40 41	18	
42 43	19	
44	20	
46 47	21	
48 49	22	
50 51 52	23	
53 54	24	
55 56 57 58 59 60	25	

45 Fig. 4. Effect of sample volume on the magnetic solid phase extraction of Bi

47 Fig. 5. Reusability of C60-γ-Fe2O3 superparamagnetic iron oxide nanoparticles for
48 preconcentration of Bi

Analytical Methods

Table 1.Effect of type and concentration of eluent on the magnetic solid phase extraction of

Bi

	Concentration	Recovery
Eluent	(mol L ⁻¹)	(%)
	0.5	94.5±1.4
HCL	1.0	94.8±2.0
IDIO	0.5	96.7±1.0
HNO ₃	1.0	99.1±1.2

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

Table 2. Influences of some foreign ions on the magnetic solid phase extraction of 1.0 ng mL⁻

¹ of Bi

	Interference/Bi	Recovery40
Ion	(Weight ratio)	(%) 41
Na ⁺	1000	98.9±0.9
K^+	1000	99.1±1.3
Ca ²⁺	1000	98.9±1.6
Fe ²⁺	750	99.0±2.3
Fe ³⁺	500	99.4±0.9
Zn^{2+}	750	99.4±3.1
Cu^{2+}	500	98.7±2.7
Cd^{2^+}	500	98.8±2.6
Ni ²⁺	500	98.9±3.0
Co^{2^+}	500	98.0±2.1
Al^{3+}	500	98.4±2.3
Cr ³⁺	5000	98.9±1.9

Analytical Methods

57	
58	
59	
60	Table 3. Analytical characteristics of the developed method

Parameter	Analytical feature		
Linear range, ng mL ⁻¹	0.25-10		
r ²	0.9964		
LOD, ng mL ⁻¹	0.06		
LOQ, ng mL ⁻¹	0.19		
RSD, % (for 0.25 ng mL ⁻¹)	7.5		
Enrichment factor	93.3		

90 Table 4. Comparison of methods for preconcentration of Bi

Method	EF	Linear range	RSD, %	LOD	Instrument	Reference
SPE with MWCNT functionalized with L- proline	160	0.7-75 ng L ⁻¹	1.5	0.7 ng L ⁻¹	FI-HG-AAS	15
Ion pair based dispersive liquid-liquid microextraction method	125	0.3-8.0 ng mL ⁻¹	4.8	0.07 ng mL ⁻¹	ET-AAS	16
SPE with octadecyl bonded silica cartridge modified with cyanex 301	20	$0.5-10 \text{ ng L}^{-1}$	-	0.01 ng L ⁻¹	ET-AAS	17
SPE with ion-imprinted polymer	300	0.035-0.35 ng mL ⁻¹	4.1	8.6 ng L ⁻¹	ET-AAS	18
Dispersive liquid-liquid microextraction	62.5	5-400 ng L ⁻¹	1.14-2.66	1.6 ng L ⁻¹	UV-VIS	19
CPE with Diethyldithiophosphate as ligand and	18	0.5-10 ng mL ⁻¹	<5	0.063 ng mL ⁻¹	ICP-OES	20
Continuous flow hydride generation	12.2	1-50 ng mL ⁻¹	3.9	0.16 ng mL ⁻¹	ICP-OES	13
SQT-AT	256	7.5-100 ng mL ⁻¹	4.0	1.6 ng mL ⁻¹	FAAS	21
W coated SQT-AT	613	2.5-25 ng mL ⁻¹	7.0	0.51 ng mL ⁻¹	FAAS	22
Magnetic solid phase extraction	93.3	$0.25-10 \text{ ng mL}^{-1}$	7.5	0.06 ng mL ⁻¹	ICP-OES	This study

1	
2	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
ΔΛ	
 /	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
50	
59	
60	

Table 5. Bi concentrations in real samples

S	Spiked,	Detected,	Recovery,
Sample	ng mL ⁻¹	ng mL ⁻¹	%
Tan water	-	-	-
Tap water	5.0	4.86±0.25	97.2
Dicle River water	-	10.6±0.6	
	5.0	15.4±0.6	98.7
Mineral water	-	-	-
Energy dring	-	3.5±0.05	-
Milk 1	-	9.8±0.7	-
	5.0	14.3±0.9	96.6
Milk 2	-	10.2±0.8	-
Milk 3	-	11.5±0.6	-
Milk 4	-	10.8±0.6	-
Milk 5	-	10.0±0.8	-
Milk 6	-	6.5±0.4	-

