Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1		
2		
3 4	1	Simultaneous determination of fluorescent whitening agents
5	-	
6 7	2	(FWAs) and photoinitiators (PIs) in food packaging coated
8 9	3	paper products by UPLC-MS/MS method using ESI positive
10		
11 12	4	and negative switching mode
13		
14	5	
15		
16	6	
17		
19	7	
20		
21	8	Zhijiang Wu ¹ , Yansheng Xu ¹ , Mianchang Li ¹ , Xindong Guo ² , Yanping Xian ² , Hao
22		D 2.*
23	9	Dong
24 25	10	
26		
27	11	⁴ College of Mechanical and Electrical Engineering, Shunde Polytechnic, Foshan, Gua
28	12	ngdong 528333 China
29	12	nguong 520555, enniu
30	13	² Guangzhou Quality Supervision and Testing Institute, National Centre for Quality
32		Summinian and Trating of Draward Fred (Course here) Course here 510000 China
33	14	Supervision and Testing of Processed Food (Guangznou), Guangznou 510000, China
34	15	
35		
36	16	Corresponding author: Hao Dong (<u>516410953@163.com</u>)
37 38	17	
39	17	
40	18	Current address: No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District,
41	10	Cuanashau Cuanadana China
42	19	Guangzhou Guanguong, China
43	20	Tel: +86-20-82022322; Fax: +86-20-82022322
44		
46	21	
47		
48	22	
49 50		
50 51		
52		
53		
54		
55		
วง 57		
58		
59		1
60		

23 ABSTRACT

A sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous determination of fluorescent whitening agents (FWAs) and photoinitiators (PIs) in food packaging coated paper products. Samples were firstly soaked by water and then ultrasonic extracted by methanol-trichloromethane. The extracting solution were subsequently separated by a Phenomenex Luna C18 (2) chromatographic column (50 mm $\times 2.00$ mm, 3 μ m) using methanol-5 mmol/L ammonium acetate as the mobile phase. The target analytes were ionized by the ESI positive and negative switching mode and detected using multiple-reaction monitoring (MRM) mode. The method was validated for linearity and range, accuracy, precision and sensitivity. Under the optimized condition, the calibration curves were linear over the selected concentration ranges of 10-1000 µg/L and 0.5-50 µg/L for four FWAs (FWA28, FWA85, FWA71 and FWA351) and the rest ten compounds, respectively, with calculated coefficients of determination (R^2) of greater than 0.99. The instrument limit of quantitation (ILOO), and the corresponding method limit of quantitation (MLOQ) of fourteen target analytes were in the range of 0.5-10 μ g/L and 6-125 μ g/kg, respectively. Recoveries were calculated at three levels of concentration spiked in negative samples and the values were found between 79.2% and 115% with relative standard deviation (RSD) values of 3.2%-12.3% for intra-day precision (n = 6) and 4.5%-11.5% for inter-day precision (n = 5) 2.5-7.2%. The method was successfully applied to analyse twenty-five food packaging coated paper products samples and FWA184 and 4-MBP

Analytical Methods

1		
2		
3	45	were detected in only two samples with the concentrations of 151 $\mu\sigma/k\sigma$ and 32 $\mu\sigma/k\sigma$
4 5	15	
5		
7	46	respectively.
8		
9	47	
10		
11	48	<i>Keywords</i> : Fluorescent whitening agent (FWA): Photoinitiator (PI): Food packaging
12		
13	40	anotad naman muchasta. Ultra high nonformance liquid shromata manhar tan dam maga
14	49	coaled paper products, Ultra-nigh performance liquid chromatography landem mass
15		
10	50	spectrometry (UPLC-MS/MS)
18		
19	51	
20		
21		
22		
23		
24		
25		
26		
28		
20		
30		
31		
32		
33		
34		
35		
30 27		
37 38		
39		
40		
41		
42		
43		
44		
40 46		
40 47		
48		
49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		3

	T	1		
Г Э	Intra	MI	etio	n
52	IIIII	յսս	ιuu	, , ,

Fluorescent whitening agents (FWAs), colorless or weakly colored organic compounds, which can absorb light in the UV range (290-400 nm) and emit visible blue light (400-480 nm), thus enhancing the optical impression of "brightness" and "whiteness", are widely used in household detergents to eliminate the vellowish cast of white fabrics and increase the whiteness and brightness of products. In recent years, with the rapid development of industries, FWAs are also extensively applied in textiles, coatings, plastics and even paper manufacturing.¹⁻⁴ Although thousands of FWAs are available, only approximately 400 of them are used widely and most of FWAs used in paper and board manufacturing are based upon stilbene derivatives.⁵ Toxic effects of FWAs have not yet been observed, indicating that the contact with FWAs or even FWAs that migrate into food from food contact products does not represent a risk to human health. However, the chemical stability of FWAs make them hard to degrade, in addition, the over-use of them can also lead to environmental pollution, which has the potential to transfer to human beings through the food chain and accumulate in the bodies and threaten our health.^{3, 5} In China⁶ and the western countries,⁷⁻⁸ FWAs are authorized to be used in materials in contact with food as food additives, for example, FWA184, FWA393 and FWA236 can be used in the EU and China according to the regulations of 2002/72/EC and GB 9685-2008.9 But not all of them are authorized for use by the US Food and Drug Administration and their inclusion in paper and board (P&B) intended for food packaging in the European Union (EU) is under consideration due to their potential migration to the packaged

products.⁵ Moreover, the usage limitation, even the specific migration limits (SPL) are clearly described in relevant food regulations. For example, according to GB 9685-2008,⁹ the SPL of FWA184 is 0.6 mg/kg and the maximum usages in polystyrene (PS) and polyvinyl chloride (PVC) materials are 0.02% and 0.015%, respectively. In these circumstances, appropriate methods which a simultaneously determine the concentrations of FWAs in food contact products are required.

Photoinitiators (PIs), which are low molecular weight compounds and can be used to utilize activity substance produced by photosensitive groups to initiate polymerization during the process of optical absorption, have been widely used in packaging materials as a main component of UV inks.¹⁰ The withdrawal from the market of more than 30 million liters of milk by Italian authorities hit the headlines for food contamination in 2005. It was mainly because that a kind of photoinitiator (2-isopropylthioxanthone (2-ITX)) migrated into infant milk was detected by Italian Food Control Authority with the concentrations of 120 µg/L to 300 µg/L. Recent studies have found that after the curing completion of the printing ink, the remaining PIs can migrate through chemical or physical contact under certain conditions, resulting in contamination of the food inside the packaging, and so as have the potential harm to human body health.¹¹⁻¹³ On account of this circumstance, the foreign countries successively promulgated the regulations and licensing list to restrict the use of PIs, for example, the SPLs of benzophenone (BP), 4-methyl benzophenone (4-MBP) and 4, 4'-Bis(dimethylamino)-benzophenone (MK) were regulated by EU as 0.6, 0.6 and 0.01 mg/kg, respectively. Therefore, appropriate methods to determine

Analytical Methods Accepted Manuscript

	96	PIs in fo	od contact	products	are also	extremely	required.
--	----	-----------	------------	----------	----------	-----------	-----------

It has been reported that FWAs and PIs can be determined by ultraviolet light observation method, gas chromatography-mass spectrometry, high-performance liquid chromatography, and ion-pair high-performance liquid chromatography/tandem mass spectrometry.¹⁻⁵ Chen, et al. adopted solid-phase extraction and ion pair liquid chromatography-tandem mass spectrometry to determine FWAs in environmental waters and favorable limits of quantitation (LOQs, 4 to 18 ng/L) were obtained, but mean recoveries were between 68 and 97%. In another study, a novel, single step method for the determination of seven ink photoinitiators in carton packed milk samples was developed. The LOQs of the optimized method were between 0.2 and 1 μ g/L and a good linearity in the range between 1 and 250 μ g/L was obtained.¹⁴ However, these methods mentioned above are available only in the matrix of water, laundry detergents, and infant clothes for FWAs determination and beverages, milk, and other packaged food for PIs determination, to our best knowledge, few reports have been focused on the determination of FWAs and PIs in food packaging coated paper products. In the present work, fourteen FWAs and PIs in food packaging coated paper products were simultaneously determined by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) using the ESI positive and negative switching mode. More satisfactory validation parameters were obtained, including linearity, accuracy, precision, and ILOQs and MLOQs, comparing with the method mentioned in the above references. The developed method can provide reference for the detection and specific migration study of related compounds in food

1

packaging coated paper products.

2	
3	
1	
-	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
202	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
-10 17	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
00	
57	
58	
59	
60	
00	

119	Materials and methods
120	Chemicals and reagents
121	Methanol (HPLC grade) was provided by Merck Chemicals Co., Ltd (Darmstadt,
122	Germany). Ammonium acetate (HPLC grade) was supplied by CNW Technologies
123	GmbH (Düsseldorf, Germany). Chloroform (Analytical Reagent grade) was
124	purchased from Guangzhou Chemical Reagent Factory (Guangzhou, China).
125	Disodium 4,4'-bis (2-sulfonatostyryl)biphenyl (FWA351),
126	4-(2-Benzoxazolyl)-4'-(5-methyl-2-benzoxazolyl) stilbene (FWA368),
127	1,4-Bis(2-benzoxazolyl) napthalene (FWA367), 2,5-Bis(5'-tert-butyl-2-benzoxazolyl)
128	thiophene (FWA184), 7-Diethylamino-4-methylcoumarin (FWA52),
129	4,4'-Bis(2-benzoxazolyl) stilbene (FWA393) and benzophenone (BP) (Purity \geq 95.0%)
130	were supplied from TCI (Shanghai, China). Disodium 4,4'-bis[(4-anilino-6
131	-hydroxyethylamino-1,3,5-triazin-2-yl)amino] stilbene-2,2' -disulphonate (FWA85),
132	disodium 4,4'-bis[(4-anilino-6
133	-morpholino-1,3,5-triazin-2-yl)amino]stilbene-2,2'-disulphonate (FWA71),
134	2,5-Bis(2-benzoxazolyl) thiophene (FWA185) and
135	1,2-Bis(5-methyl-2-benzoxazole)ethylene (FWA135) (Purity \geq 98.0%) were
136	purchased from Internatioanal Laboratory USA and disodium 4,4'-bis[6-anilino-[4-
137	[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]stilbene-2,2'-disulphonate
138	(FWA28), 4-Methyl benzophenone (4-MBP) and
139	4,4'-Bis(dimethylamino)-benzophenone (MK) were obtained from Sigma Co. (St.

140 Louis, USA). Their chemical structures of the three FWAs are shown in **Fig. 1**.

141 Instrumentation

The ACOUITYTM ultra high performance liquid chromatography and Waters XevoTM TQ tandem triple quadrupole mass spectrometer (UPLC-MS/MS, Waters Co., USA) were used for sample analysis. The samples were vortex mixed with a MS3 basic vortex mixer (IKA GmbH, Germany), ultrasonicated by the KQ-250DV numerically-controlled ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd, China) and centrifuged by a LD5-2A centrifuge (Beijing Jingli Centrifuge Co., Ltd. China). The Milli-Q A10 (Millipore Co., USA) was used to offer Milli-Q water (18.2 $M\Omega \cdot cm$).

150 Standard solutions

Appropriate amounts of FWA28, FWA85, FWA71, FWA351, FWA52, FWA184, BP, 4-MBP and MK were dissolved in methanol respectively to obtain the individual standard stocking solutions (100 mg/L). Individual standard stocking solutions of the rest five analytes were prepared at the concentration of 100 mg/L in trichloromethane. The mixed standard stocking solution with the concentrations of FWA28, FWA85, FWA71 and FWA351 of 10 mg/L and the concentrations of the rest analytes of 5 mg/L was prepared by diluting the each individual standard stocking solution with methanol, which was then stored in refrigerator at -20°C.

Before use, the mixed standard working solutions were obtained by further stepwise diluted the mixed standard stocking solution to the required concentrations (Concentrations of FWA28, FWA85, FWA71 and FWA351 were 10, 25, 50, 250 and 1000 μ g/L, and the rest ten analytes were 0.5, 1.0, 5.0, 20 and 50 μ g/L, respectively) with 60% methanol-water solution (ν/ν). All of the standard working solutions were

Analytical Methods

164	preserved in refrigerator at 4°C.
165	Moreover, the matrix calibration working solutions of required concentrations were
166	prepared using the negative sample extracting solution which was obtained according
167	to the next section.
168	Sample and sample preparation
169	Two kinds of food packaging coated paper products were provided by National centre
170	for quality supervision and testing of packaging products (Guangzhou), one of which
171	(A) was confirmed to have FWA351 and FWA184, the other (B) was confirmed to
172	contain 4-MBP. Additionally, twenty-five coated paper products samples, including
173	paper cup, paper bowl, paper bag, and so on, were purchased from local market.
174	All paper products were cut into 5 mm \times 5 mm in size and mixed evenly. Then, 0.5
175	g of as-prepared sample, 3 mL of water were orderly added into a 25 mL of stoppered
176	colorimetric tube and the mixture was ultrasonicated for 20 min. 20 mL
177	methanol-trichloromethane (7 : 3, v/v) was added into the colorimetric tube and
178	subsequently ultrasonicated for 30 min. After that, the extracting solution was diluted
179	to 25 ml with methanol, then 10 mL of which was withdrawn into glass centrifuge
180	tube and centrifuged at 3000 rpm for 5 min. Subsequently, 5 mL of supernatant was
181	withdrawn into nitrogen blowpipe and concentrated to dry in water bath at 40°C under
182	nitrogen blowing. Finally, the dried analyte was dissolved with 1.0 mL 60%
183	methanol-water solution (v/v) and the solution was transferred into a sample tube for
184	UPLC-MS/MS analysis.

185 UPLC-MS/MS conditions

186 Chromatographic separation was performed on the AcquityTM UPLC system with a

2
2
3
4
5
5
6
7
8
0
9
10
11
10
12
13
14
15
15
16
17
10
10
19
20
21
21
22
23
24
27
25
26
27
20
28
29
30
24
31
32
33
24
34
35
36
37
57
38
39
10
-10
41
42
43
11
44
45
46
Δ7
40
48
49
50
51
01
52
53
51
54
55
56
57
57
58
59
60
00

1

187	Phenomenex Luna C18 (2) chromatographic column (50 mm $\times 2.00$ mm, 3 μ m).
188	Separation of target analytes was achieved by a gradient elution program with the
189	mobile phase of a mixture of 5 mmol/L ammonium acetate (A) and methanol (B). The
190	gradient elution program was optimized as follows: started from 60% A and a linear
191	gradient to 40% A in 2 min, then decreased to 5% A in 3 min and maintained for 1.5
192	min, subsequently, 60% A was obtained from 5% A in 1.5 min and maintained for 2
193	min, the total run time was 9.0 min. The flow-rate was set as 0.4 mL/min and the
194	column temperature was kept in constant of 40°C. An injection volume of 5 μ L was
195	performed using an auto-sampler.
196	MS/MS detection was performed on a triple quadrupole mass spectrometer detector
197	equipped with a jet stream electro spray ionization (ESI) source. ESI positive and
198	negative subsection acquisition mode (0-3.2 min was in ESI ⁻ mode and 3-9 min was in
199	ESI^+ mode) was used for quantification with the capillary voltage of 1.5 kV. The
200	switching time from negative ESI mode to positive ESI mode was 20 ms. The ion
201	source temperature and desolvation temperature were optimized at 150 and 400°C.
202	The flow rates of the desolvation gas (N_2) , cone gas (N_2) and collision gas (Ar) were
203	set at 800 L/h, 50 L/h and 0.20 mL/min, respectively. The MS detector was operated
204	in multiple reaction monitoring (MRM) mode for all analytes and the cone voltage,
205	collision energy and the other MS parameters of fourteen target analytes are shown in
206	Table 1.

- 207 **Results and discussion**
- 208 **Optimization of extraction solvent**

209	According to the principle that the similar substance is more likely to be dissolved by
210	each other, the extraction solvent should sufficiently extract target compounds and
211	decrease the extraction of the other interfering components as far as possible. Among
212	the fourteen target compounds, the solubility of FWA367, FWA135, FWA185,
213	FWA368 and FWA393 in trichloromethane is bigger than that in methanol and
214	acetonitrile, while FWA28, FWA85, FWA71, FWA351, FWA52, FWA184, BP,
215	4-MBP and MK are soluble in methanol. Therefore, methanol-trichloromethane
216	extraction solvent was selected and the effects of different ratios of methanol versus
217	trichloromethane $(9:1, 8:2, 7:3, 6:4, 5:5, 4:6)$ on the recoveries of target
218	analytes were investigated. In the present work, 20 μL of mixed standard stocking
219	solution was added into a negative sample and the sample was subsequently stored in
220	dark for 4 h to absorb the standard solution sufficiently. Then the sample was
221	extracted using the methanol-trichloromethane extracting solvent of different ratios.
222	Relying on obtained results (Table 2), it can be assumed that as trichloromethane was
223	increased, there were increases in the recoveries of FWA367, FWA135, FWA185,
224	FWA368 and FWA393. It was worth mentioning that the recovery of FWA393 was
225	observably increased with the increase of trichloromethane. However, the recoveries
226	of these five analytes reached stationary values when the ratio of trichloromethane
227	was 40%. On the contrary, the recoveries of FWA28, FWA85, FWA71 and FWA351
228	decreased along with the increase of trichloromethane. As for FWA52, FWA184, BP,
229	4-MBP and MK, there were no obvious changes in recoveries with increasing
230	trichloromethane. It was noticeable that the recoveries of all analytes were relatively

Analytical Methods Accepted Manuscript

2
3
4
5
6
7
8
à
10
10
11
12
13
14
15
16
17
18
10
20
∠∪ 04
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
- -0 /0
49 50
50
51
52
53
54
55
56
57
50
50
59

60

1

231	favorable when the ratio of methanol versus trichloromethane was 7 : 3 (v/v). In
232	addition, in consideration of the circumstance that FWA28, FWA85, FWA71 and
233	FWA351 are always added in the form of sodium salt in the industrial production, and
234	with regard to dried samples, soaking with water can accelerate the dispersion of
235	sample matrix and enhance the extracting recoveries. Thus, the effects of different
236	extracting ways, methanol-trichloromethane (7 : 3, v/v) extraction with and without
237	water soaking, on the recoveries of samples A and B were also studied. One obvious
238	feature presented in Fig. 2 was that favorable contents of target analytes were
239	obtained using methanol-trichloromethane (7 : 3, v/v) extraction with water soaking
240	pretreatment. For example, the content of FWA351 increased by 12.2% with water
241	soaking pretreatment. Hence, all sample were firstly soaked with water and then
242	extracted by methanol-trichloromethane $(7:3, v/v)$.

243 Optimization of chromatography and mass spectrometry conditions

FWA28, FWA85, FWA71 and FWA351 are stilbene FWAs whose structures contain 244 sulfonic acid group $(-SO_3)$, which have the highest responses of precursor ions 245 ([M-2H]²⁻) under the ESI negative mode. The remaining seven FWAs, which contain 246 tertiary nitrogen atoms, can generate [M+H]⁺ under the ESI positive mode, likewise, 247 BP, 4-MBP and MK can also generate $[M+H]^+$ under the ESI positive mode. 248 Therefore, the present work adopted the ESI positive and negative switching mode to 249 250 analyze fourteen target analytes. The collision energy, cone voltage and the other parameters were optimized to obtain the best response of the analytes. The optimized 251 252 parameters were presented in Table 1.

253	The effects of three kinds of mobile phase system, including acetonitrile-water
254	system, acetonitrile-10 mmol/L ammonium acetate system and methanol-10 mmol/L
255	ammonium acetate system, on the chromatographic separation were investigated. The
256	results found that four kinds of toluylene FWAs had unfavorable peak shape in the
257	acetonitrile-water system. By adding ammonium acetate solution, which provides a
258	certain number of ionic strength, can effectively improve the peak shape and achieve
259	well separation for these FWAs. When methanol was used as the organic phase, it
260	could provide proton for the compounds ionized under ESI+ mode, that is why the
261	response is apparently higher that that with acetonitrile as the organic phase.
262	Moreover, the concentration of ammonium acetate could suppress the ionization of
263	analytes, thereby influence the response of target analytes. So, in the present work,
264	effects of ammonium acetate with the concentrations of 2 mmol/L, 5 mmol/L and 10
265	mmol/L on the chromatographic behavior of fourteen target analytes were also studied.
266	The results indicated that as the concentration of ammonium acetate was increased,
267	there was a decrease in peak area of fourteen target analytes and longer retention time.
268	The peak shape of FWA28 was bifurcate under the concentration of 2 mmol/L, while
269	in the concentrations of 5 mmol/L, the peak shape of all compounds were favorable
270	and the stability of retention time and peak area were good. Therefore, methanol-5
271	mmol/L ammonium acetate system was chosen as the mobile phase for the following
272	experiment. The selected ion chromatograms of fourteen target analytes under the
273	optimized instrumental conditions were shown in Fig. 4.

Analytical Methods Accepted Manuscript

274 Method validation

The developed method was applied to determine target analytes in twenty negative samples. In the meantime, sample solutions added with the fourteen target analytes were also determined by this method. The results found that impurity compositions in the samples had no interference effects on the determination of all the fourteen target analytes because of the preferable chromatographic separation of fourteen compounds and high selectivity of the triple quadrupole mass spectrometry, indicating that the specificity of the developed method was favorable.

Linearity range, ILOQs, MLOQs and matrix effects

The method developed to determine fourteen FWAs and PIs in food packaging coated paper products samples was validated by studying the linear ranges, instrument limit of quantitation (ILOQ), method limit of quantitation (MLOQ) and the repeatability (expressed as relative standard deviation (RSD)) for all the compounds, under optimized instrumental conditions. The results obtained are summarized in Table 3. The standard curves were obtained by plotting the ratios of each target analyte quantitative ion peak area (on the ordinate (y)) versus the corresponding mass concentrations (on the abscissa (x, $\mu g/L$)) using five concentration levels in duplicate. In the mean time, a series of matrix calibration solutions were prepared by using negative matrix extracting solutions, and the corresponding matrix calibration curves were obtained likewise. The matrix effects (ME) were investigated according to the slopes' ratio of calibration curve of the matrix versus standard working curve of pure solvent (ME > 1 and ME < 1 represent matrix enhancement and matrix suppression,

Analytical Methods

297 respective	ly).
----------------	------

298	The instrument limit of detection (ILOD), ILOQ, which refers the triple
299	signal-to-noise ratio (S/N = 3) and tenfold signal-to-noise ratio (S/N = 10), were
300	measured by gradually diluting the standard solution with pure solvent. The results
301	found that the ILOQs of fourteen target analytes were in the range of 0.5-10 μ g/L. By
302	taking the pretreatment processes and the recoveries of various samples into
303	consideration, the corresponding MLOQ were between 6 $\mu g/kg$ and 125 $\mu g/kg$ (Table
304	3), indicating the high sensitivity of the developed method. Additionally, in the
305	concentration ranges of 10-1000 $\mu g/L$ and 0.5-50 $\mu g/L$ for four FWAs (FWA28,
306	FWA85, FWA71 and FWA351) and the remaining ten compounds, respectively, all of
307	the correlation coefficients were more than 0.99, indicating the good linear
308	relationship between the quantitative ion peak areas and analyte concentrations. For
309	these compounds, the slope ratios between matrix calibration curves and pure
310	standard solution curves were in range of 0.82-1.33, manifesting that the matrix
311	effects were very small and thus could be ignored.

Analytical Methods Accepted Manuscript

Accuracy, precision and stability

Negative samples at three spiked levels of analytes with $1 \times MLOQ$, $5 \times MLOQ$, $50 \times$ MLOQ of mixed standard substances were used to test the recoveries and inter-day precision of analytes according to the proposed method, with six identical samples (*n* = 6) tested at each concentration, in addition, the intro-day precision was also investigated by analyzing five spiked replicates (*n* = 5) for $5 \times MLOQ$ level. The results indicated that the recoveries of the fourteen target analytes were satisfactory

3
1
4 5
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
21 22
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
40
41
48
49
50
51
52
53
54
55
00
30
57
58
59

60

1 2

> with values in the range of 79.2%-115% (**Table 4**). Moreover, relative standard deviations (RSDs) of 3.2%-12.3% for intra-day precision (n = 6) and 4.5%-11.5% for inter-day precision (n = 5) were observed, meaning that the accuracy, precision and stability can meet the requirements for such an analysis.

323 Analysis of practical samples

The method established in this work was adopted to determine a total of twenty-five food packaging coated paper products samples collected from local markets. Among these samples, two samples were found to contain FWA184 and 4-MBP, and the contents were determined to be 151 μ g/kg and 32 μ g/kg, respectively. No FWAs and PIs were detected in the remaining samples.

329 **Conclusions**

330 A simple and sensitive analytical method, using UPLC-MS/MS technique, was developed for the simultaneous determination of eleven FWAs and three PIs in food 331 332 packaging coated paper products samples. The ESI positive and negative switching mode and MRM way were adopted to detect the target analytes. Satisfactory 333 334 validation parameters were obtained, including linearity, accuracy, precision, and ILOQs and MLOQs. In addition, the method is simple in pretreatment and low in 335 336 reagent consumption. The results obtained confirm the suitability of the method 337 proposed for FWAs and PIs determination in food packaging coated paper products 338 samples.

339 Acknowledgements

340 The authors would like to thank all the workers for sampling, sample preparation and

342

measurement.

Analytical Methods

1	
2	
2	
1	
т 5	
6	
7	
0	
0	
9 10	
10	
11	
12	
13	
14	
10	
17	
1/ 19	
10	
19 20	
∠∪ 21	
21	
22	
23	
24	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5U	
51	
ວ∠ 52	
53	
04 55	
56	
57	
57 58	
50	
60	
00	

References

- Shu, W., & Ding, W. (2005). Determination of fluorescent whitening agents in
 laundry detergents and surface waters by solid-phase extraction and ion-pair
 high-performance liquid chromatography. Journal of Chromatography A, 1088,
 218–223.
- Chen, H., Wang S., & Ding, W. (2006). Determination of fluorescent whitening
 agents in environmental waters by solid-phase extraction and ion pair liquid
 chromatography-tandem mass spectrometry. Journal of Chromatography A, 1102,
 135–142.
- Guo, X., Xian, Y., Luo, H., Wu, Y., Luo, D., Chen, Y., Lu, Y., & Xu, D. (2013). Quantitative determinations of seven fluorescent whitening agents in polystyrene and polyvinyl chloride plastics by ultrahigh performance liquid chromatography-tandem mass spectrometry. Analytical Methods, 5, 6086-6093.
- Chen, H, & Ding, W. (2006). Hot-water and solid-phase extraction of fluorescent
 whitening agents in paper materials and infant clothes followed by unequivocal
 determination with ion-pair chromatography-tandem mass spectrometry. Journal
 of Chromatography A, 1108, 202–207.
- Mario de los Santos, Ramón Batlle, Jesús Salafranca, & Cristina Nerín. (2005).
 Subcritical water and dynamic sonication-assisted solvent extraction of
 fluorescent whitening agents and azo dyes in paper samples. Journal of
 Chromatography A, 1064, 135–142.
- GB/T 23296.1-2009, Guide to test methods for the specific migration of
 substances from plastics to foods and food simulants and the determination of
 substances in plastics and the selection of conditions of exposure to food
 simulants.
- 368 7 Ministry of Agriculture Fisheries and Food (UK), Food Surveillance Information
 369 Sheet No. 47, Fluorescent whitening agents, 1994.
- 8 EN 13130-1:2004, Materials and articles in contact with foodstruffs-Plastics

Analytical Methods

371		substances subject to limitation-Part 1: Guide to test methods for the specific
372		migration of substances from plastics to foods and food simulants and the
373		determination of substances in plastics and the selection of conditions of exposure
374		to food simulants. The Standards Policy and Strategy Committee.
375	9	GB Method 9685-2008, National Institute of Standards of the People's Republic
376		of China, 2008.
377	10	Shen, D., Lian, H., Ding, T., Xu, J., & Shen, C. (2009). Determination of
378		low-level ink photoinitiator residues in packaged milk by solid-phase extraction
379		and LC-ESI/MS/MS using triple-quadrupole mass analyzer. Analytical and
380		Bioanalytical Chemistry, 395, 2359–2370.
381	11	Chronology of Withdrawal of Nestlè and Other Liquid Milks, 2005, Available:
382		www.ibfan.org/art/416-1.doc.
383	12	Héctor Gallart-Ayala, Oscar Núñez, Encarnación Moyano, & Maria Teresa
384		Galceran. (2011). Analysis of UV ink photoinitiators in packaged food by fast
385		liquid chromatography at sub-ambient temperature coupled to tandem mass
386		spectrometry. Journal of Chromatography A, 1218, 459-466.
387	13	Sagratini, G., Caprioli, G., Cristalli, G., et al. (2008). Determination of ink
388		photoinitiators in packaged beverages by gas chromatography-mass spectrometry
389		and liquid chromatography-mass spectrometry. Journal of Chromatography A,
390		1194, 213–220.
391	14	Negreira, N., Rodríguez, I., Rubí, E., & Cela, R. (2010). Solid-phase
392		microextraction followed by gas chromatography-mass spectrometry for the
393		determination of ink photo-initiators in packed milk. Talanta, 82, 296-303.
394		

Table 1

396 MS parameters for the analyse of the fourteen target analytes.

Compounds	Abbrevia tions	Cas No.	Precursor ion (m/z)	Daughter ion (m/z)	Cone voltage/V	Collision energy/eV	RT (min) / Polarity of ionization
disodium 4,4'-bis[(4-anilino-6 -hydroxyethylamino-1,3,5-triazin -2-yl)amino] stilbene-2,2'	FWA85	17958-73-5	413.1	311 ^a	40	25	1.35
-disulphonate disodium 4,4'-bis[6-anilino-[4- [bis(2-hydroxyethyl)amino]-1,3, 5-triazin-2-yl]amino]stilbene-2.2'	FWA28	4404-43-7	457.3	271.1 293.1 ^a	40 45	25 25	ESI 1.75
-disulphonate				333.2	45	30	ESI
disodium 4,4'-bis (2-sulfonatostyryl)biphenyl	FWA351	27344-41-8	258	79.9 ^a	35	25 20	2.77
disodium 4,4'-bis[(4-anilino-6	FWA71	16090-02-1	439.1	284 ^a	40	20 30	2.82
-morpholino-1,3,5-triazin-2-yl)a mino]stilbene-2,2'-disulphonate				324.1	40	25	ESI
7-Diethylamino-4-methylcoumar	FWA52	91-44-1	232	188 ^a	30 20	25	3.42
1,2-Bis(5-methyl-2-benzoxazole)	FWA135	1041-00-5	291.2	203 106.9 ^a	50 50	35	4.88
2,5-Bis(2-benzoxazolyl)	FWA185	2866-43-5	319.1	200 ^a	55	30	4.89
4,4'-Bis(2-benzoxazolyl) stilbene	FWA393	1533-45-5	415.3	226 207.2 ^a	55 60	30 40	5.50
1,4-Bis(2-benzoxazolyl) napthalene	FWA367	5089-22-5	363.2	321.2 270.1 ^a	60 60	40 35 27	ESI 5.56
4-(2-Benzoxazolyl)-4'-(5-methyl -2-benzoxazolyl) stilbene	FWA368	5242-49-9	429.2	244.1 321.2 ^a 221	60 60	40 40	5.67
2,5-Bis(5'-tert-butyl-2-benzoxaz olyl) thiophene	FWA184	7128-64-5	431	399 ^a	60 60	45 40	6.16 ESI ⁺
Benzophenone	BP	119-61-9	183	105.1 ^a	20 20	15 25	3.27 ESI ⁺
4-Methyl Benzophenone	4-MBP	134-84-9	197.1	105.1 ^a	20 20 20	15 12	4.35 FSI ⁺
4,4'-Bis(dimethylamino) -benzophenone	МК	90-94-8	269.2	148 ^a 254.2	30 30	22 20	3.74 ESI ⁺

397 ^a Transitions for quantification

3 6

400 Effects of ratios of methanol to trichloromethane on the recoveries of the target

401 analytes (n = 6).

T			Recoveri	$es \pm SD$		
Target analytes	9:1	8:2	7:3	6:4	5:5	4:6
FWA28	85.2 ± 5.0	84.3 ± 6.2	84.0 ± 4.3	80.0 ± 5.2	73.0 ± 7.8	65.0 ± 8.9
FWA85	86.3 ± 3.5	86.0 ± 5.1	84.0 ± 5.7	81.0 ± 7.3	77.0 ± 6.4	70.0 ± 8.1
FWA71	84.5 ± 4.1	84.0 ± 5.1	80.0 ± 6.6	76.0 ± 8.1	70.0 ± 7.7	68.0 ± 7.2
FWA351	87.6 ± 5.3	86.0 ± 7.1	82.0 ± 7.5	77.0 ± 8.6	72.0 ± 7.4	63.0 ± 6.6
FWA52	91.4 ± 6.2	93.7 ± 5.5	92.6 ± 4.3	93.1 ± 5.3	92.1 ± 3.7	93.5 ± 6.5
FWA135	65.3 ± 11.5	87.5 ± 7.5	89.2 ± 5.5	90.1 ± 6.7	90.5 ± 4.9	90.2 ± 6.1
FWA185	72.6 ± 10.7	89.1 ± 7.9	91.3 ± 4.7	91.1 ± 5.6	92.2 ± 4.4	91.5 ± 5.9
FWA393	53.7 ± 12.4	67.8 ± 9.2	80.1 ± 6.3	83.2 ± 5.5	84.1 ± 7.1	84.9 ± 4.6
FWA367	67.2 ± 9.8	87.3 ± 8.1	92.2 ± 5.2	92.5 ± 4.4	91.7 ± 5.6	92.3 ± 6.5
FWA368	57.2 ± 11.9	70.5 ± 8.3	82.9 ± 5.6	85.7 ± 6.1	87.1 ± 7.4	87.6 ± 4.9
FWA184	93.4 ± 8.1	92.5 ± 6.6	93.1 ± 4.5	93.7 ± 5.9	92.9 ± 6.3	92.1 ± 5.1
BP	91.7 ± 7.5	93.1 ± 4.9	92.6 ± 3.3	92.2 ± 6.5	92.8 ± 5.9	91.2 ± 4.2
4-MBP	96.8 ± 4.5	94.9 ± 5.2	96.3 ± 3.7	95.5 ± 4.8	95.1 ± 5.7	96.5 ± 5.9
MK	94.1 ± 4.3	94.4 ± 5.7	95.2 ± 3.9	95.7 ± 4.4	94.8 ± 6.2	95.1 ± 4.9

Analytical Methods Accepted Manuscript

Table 3

404 Linear equations of calibration curve and standard working curve, correlation

405 coefficients, matrix effects, MLODs and MLOQs of the fourteen target analytes.

Analytas	Linear equation r (solvent)	Linear equation r (matrix)	Matrix	ILOQ	MLOQ
Anarytes	Emear equation, r (sorvent)	Linear equation, I (matrix)	effect	$(\mu g/L)$	(µg/kg)
FWA28	y=205.28x-58.262, 0.9989	y=168.33x-103.07, 0.9964	0.82 ± 0.03	10	125
FWA85	y=218.14x-38.477, 0.9966	y=189.78x-76.966, 0.9983	0.87 ± 0.05	10	125
FWA71	y=241.68x+49.508, 0.9991	y=205.43x+89.231, 0.9987	0.85 ± 0.05	10	125
FWA351	y=249.06x-41.615, 0.9990	y=224.15x-85.433, 0.9991	0.90 ± 0.07	10	125
FWA52	y=354.41x-110.89, 0.9987	y=365.04x-117.35, 0.9975	1.03 ± 0.04	0.5	6
FWA135	y=2963.9x+17.434, 0.9994	y=3704.9x-56.806, 0.9990	1.25 ± 0.09	0.5	6
FWA185	y=646.98x+23.551, 0.9991	y=763.44x+62.829, 0.9955	1.18 ± 0.10	0.5	6
FWA393	y=5610.9x+577.29, 0.9982	y=5442.6x+330.19, 0.9977	0.97 ± 0.07	0.5	6
FWA367	y=3028.2x+828.56, 0.9980	y=2816.2x+600.49, 0.9962	0.93 ± 0.05	0.5	6
FWA368	y=3199.1x-213.54, 0.9985	y=3902.9x-167.23, 0.9959	1.22±0.10	0.5	6
FWA184	y=8928.6x+791.14, 0.9974	y=11875x+1469.4, 0.9981	1.33±0.13	0.5	6
BP	y=370.93x-211.89, 0.9995	y=378.35x-247.14, 0.9990	1.02 ± 0.06	0.5	6
4-MBP	y=907.24x-397.66, 0.9993	y=1052.4x-434.48, 0.9993	1.16±0.08	0.5	6
MK	y=680.55x-189.03, 0.9990	y=660.13x-169.14, 0.9988	0.97 ± 0.05	0.5	6

408	Table 4
108	Table 4

409 The recoveries and precision for the fourteen target analytes.

Compounds	Added (µg/kg)	Recovery	Intra-day precision	Inter-day precision
Compounds		(%, n = 6)	(%, n = 6)	$(\%, n = 5)^{a}$
FWA28	125, 625, 6250	108, 87.2, 82.3	7.5, 7.8, 8.6	8.5
FWA85	125, 625, 6250	94.7, 85.5, 81.9	6.3, 5.2, 5.7	7.7
FWA71	125, 625, 6250	112, 83.9, 79.2	10.4, 6.7, 10.1	7.0
FWA351	125, 625, 6250	107, 85.9, 80.7	8.9, 4.6, 5.2	5.9
FWA52	6, 30, 300	97.8, 95.4, 95.6	5.9, 6.3, 4.2	5.4
FWA135	6, 30, 300	90.4, 92.1, 89.7	6.8, 4.2, 7.1	6.2
FWA185	6, 30, 300	104, 96.1, 95.0	10.6, 5.7, 4.5	6.3
FWA393	6, 30, 300	90.0, 88.7, 85.6	5.4, 6.9, 5.5	7.5
FWA367	6, 30, 300	93.8, 91.4, 84.1	7.2, 8.6, 5.9	6.9
FWA368	6, 30, 300	97.2, 89.7, 92.1	8.1, 9.3, 4.9	9.2
FWA184	6, 30, 300	115, 98.1, 93.3	12.3, 8.3, 6.5	11.5
BP	6, 30, 300	98.4, 107, 94.3	11.8, 8.4, 6.5	8.1
4-MBP	6, 30, 300	92.8, 94.5, 89.2	8.5, 5.6, 4.7	6.0
MK	6, 30, 300	88.7, 93.4, 93.8	4.2, 3.9, 3.2	4.5

410 ^a spiked level was $5 \times MLOQ$.

Analytical Methods Accepted Manuscript

412 Fig. 1

414 photoinitiators (PIs).

Fig. 2

Analytical Methods

423 Fig. 3

the selected compounds.

424 Effects of extraction time and different extraction methods on the extraction results of

59

60

428 Fig. 4

429 Selected ion chromatograms of the fourteen target analytes under the optimized

430 conditions.

