This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe)

Junyu Lu, Yuehao Xiong, Chunjin Liao and Fanggui Ye

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

A porous metal-organic framework MIL-53(Fe) was prepared by a simple solvothermal method using FeCl₃·6H₂O and 1,4-benzenedicarboxylic acid as the precursor and characterized by X-ray diffractometer, Fourier transform infrared spectroscopy and scanning electron microscopy. The MIL-53(Fe) demonstrated to possess intrinsic peroxidase-like activity, and it could catalyze the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine into a blue colored product in the presence of H₂O₂. Based on this phenomenon, MIL-53(Fe) was developed as a colorimetric sensor for the detection of uric acid (UA) in human urine and serum. This method provided a simple and effective for UA detection using uricase and MIL-53(Fe) with a linear range from 4.5 to 60 µM and a detection limit of 1.3 µM (S/N=3). Moreover, the proposed method can be successfully applied to the determination of UA in human urine and serum samples with the recoveries and relative standard deviations between 1.2~4.8% and 89.50~101.44%, respectively.

1. Introduction

Uric acid (UA), as one of the important biomolecule in humans, is the primary enzymatic degradation product in purine metabolism. In general, its normal physiological level in body fluids is in balance between UA production and excretion. UA has been proposed as a marker for metabolic disorders such as gout, hyperuricaemia, renal failure and Lesch-Nyhan syndrome. Thus, it is essential to establish simple and effective analytical methods for the sensitive and selective determination of UA in biofluids for health assessment and disease diagnosis.

To date, various analytical methods for the determination of UA in biological samples have been proposed, such as high performance liquid chromatography (HPLC), capillary electrophoresis (CE), chemiluminescence (CL) and electrochemistry, etc. Generally, chromatographic techniques such as HPLC and CE make great contributions to UA detection, but required complicated sample pretreatment and expensive instrument. CL and electrochemistry are powerful analytical methods for the determination of UA in real samples and with the advantages of low detection limit and high accuracy. Nevertheless, a simple and effective method for accurate determination of UA is still required. Currently, colorimetric chemosensor based on nanozymes have attracted considerable attention because of its simplicity, feasibility, and low cost as well as the fact that there is no requirement for any sophisticated instrumentation. For example, Zhao et al. have developed a colorimetric method for UA determination based on the intrinsic peroxidase-like activity of BSA-stabilized Au nanoclusters. This method show relatively high sensitivity and good results. However, biomolecules such as biothiols in complex biological fluids are the most likely interference for UA detection due to their strong affinity toward noble metal nanoparticles (including Au, Ag) and affecting their catalytic activity.

Metal-organic frameworks (MOFs), as a novel class of porous organic-inorganic hybrid materials, have attracted great attention for sensing application due to their high surface areas, versatile structures, tunable pore size, exposed metal sites and high stability. In recent years, PCN-222 with porphyrin(Fe(III)) centers, Fe(III)-based MOFs, copper(II)-based MOFs and Ce-MOFs have been reported to show excellent catalytic activity. Up to now, several small molecules such as H₂O₂, glucose and ascorbic acid have been successfully detected based on the Fe(III)-based MOFs colorimetric sensors. Although MOFs-based colorimetric sensors have achieved some success, the development of MOFs as enzyme mimic for bioanalysis applications is still required. Among them, MIL-53(Fe) show easy synthesis and excellent lattice stability in aqueous solution.

Significantly, a small pore structure on the MIL-53(Fe) surface generates a high density of active catalytic centers, which make it suitable for catalytic applications and avoid other molecules interference in biological samples. However, the bioanalysis application of MIL-53(Fe) is far from fully developed and still in its infancy.

In this study, we described that a MIL-53(Fe) with highly peroxidase-like catalytic activity was prepared through a facile solvothermal reaction, and applied to catalyze the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H₂O₂, which offered a simple and effective method
for colorimetric detection of UA. The principle of UA detection is shown in Scheme 1. The morphology of MIL-53(Fe) and the parameters affect of UA measurement were all investigated. In addition, the developed method was successfully applied for the detection of UA in human urine and serum samples. Thus, we believed such simple and inexpensive UA sensor will become a potential clinical application in the future.

![Scheme.1](image)

Scheme.1 Schematic illustration of colorimetric sensor for UA using MIL-53(Fe) as a peroxidase mimetic.

2. Experimental

2.1 Reagents and materials

Uricase (UOx, >2 U/mg) was purchased from Worthington (USA) and stored in a refrigerator at -20 °C. 3,3',5,5'-tetramethylbenzidine (TMB), 1,4-benzenedicarboxylic acid (1,4-BDC) and uric acid (UA) were purchased from Alfa Aesar (Ward Hill, MA, USA). L-cysteine, N,N-dimethylformamide (DMF), glucose, acetic acid, absolute alcohol, sodium acetate were purchased from Shanghai Chemical Reagents Co. (Shanghai, China). All the phosphoric acid, iron (III) chloride hexahydrate (FeCl₃·6H₂O), hydrogen peroxide (H₂O₂), sodium chloride, disodium phosphate dodecahydrate, sodium dihydrogen phosphate, ethanol, urea etc., were in analytical grade. Ultrapure water used for the preparation of solutions was produced by a Milli-Q water system (Millipore, Bedford, MA, USA). Human urine and serum samples were obtained from the Affiliated Hospital of Guilin Medical University (Guilin, China).

2.2 Instrumentation

The morphology of MIL-53(Fe) was characterized by scan electron microscope (SEM, FEI Quanta 200 FEG). The characterization of the crystalline phase was performed on a Rigaku D/max 2500/PC (Japan) X-ray diffractometer (XRD) with Cu Kα source. Fourier transform infrared (FT-IR) spectroscopy was conducted on a PE Spectrum One FT-IR spectrometer (PE, USA) over the range of 4000-500 cm⁻¹. UV-vis absorption spectra were recorded with a Cary 60 UV-vis spectrophotometer (Agilent, USA). The pH of solution was measured with a DHSJ-4A pH-meter (Shanghai, China).

2.3 Preparation of MIL-53(Fe)

The MIL-53(Fe) was synthesized by a solvothermal reaction in a Teflon-lined bomb according to the reported approaches with modifications35. Typically, 0.334 g of 1,4-BDC and 0.545 g of FeCl₃·6H₂O were dissolved in 10 mL of DMF, and the mixture was stirred for 10 min under room temperature. The resulting solution was transfer into a Teflon-lined bomb, then sealed and placed in an oven at 150 °C for 17 h. After cooling to room temperature, the yellow precipitate was collected by centrifugation at 6000 rpm for 3 min and rinsed thoroughly with ultrapure water to remove the excessive reactants. The product was vacuum-dried at 60 °C for 24 h. Finally, the MIL-53(Fe) was characterized by FT-IR, XRD and SEM.

2.4 Catalytic activity of MIL-53(Fe)

In order to evaluated the peroxidase-like activity of the synthesized MIL-53(Fe), the catalytic oxidation of TMB in the presence of H₂O₂ with and without MIL-53(Fe) as the catalyst was tested. Experiment was carried out as follows: 920 µL of acetate buffer solution (0.1 M, pH 4.0), 20 µL of TMB (10 mM, ethanol solution), 40 µL of H₂O₂ (0.1mM) and 20 µL of MIL-53(Fe) dispersion (1 mg·mL⁻¹) were added into 1.5 mL EP vial. The mixed solution was incubated at 40 °C for 40 min. After cooling to room temperature, the UV-vis spectra were measured using a Cary 60 spectrophotometer.

2.5 Preparation of human urine and serum samples

For UA detection in human urine and serum, the samples were collected from several volunteers and immediately prepared according to the procedures as described in our previous work36. Before subsequent use, the urine and serum sample was diluted 25 and 30 times, respectively. After that, the subsequent procedure for UA analysis was the same with UA standard solutions.

2.6 Colorimetric detection of UA

A stock solution of UA (1 mM) was prepared in 0.1 M phosphate buffer solution (PBS, pH 9.0) and different concentrations of UA (100, 80, 60, 50, 40, 30, 10, and 5 µM) were obtained by serial dilution of the stock solution. The principle of UA detection is shown in Scheme 1. (1) 50 µL of 2 U/mL UOx was added to 100 µL of UA solution with different concentrations (or pre-diluted urine and serum samples) and the mixture was incubated at 37 °C for 15 min. (2) Subsequently, 40 µL of TMB, 790 µL of PBS, 20 µL of MIL-53(Fe) dispersion were added into the above reaction solution (pH 4.0, adjusted with PBS) and incubated at 55 °C for 40 min. (3) The resultant solution was used for the UV-vis spectra measurement. To investigate interference experiments, the concentrations of urea, L-cysteine, ascorbic acid, tryptophan, glutathione, glucose and sodium chloride were all 100 µM, 50 µM for UA and their mixture were used as anti-interference experiments.

3. Results and discussion

3.1 Characterization of MIL-53(Fe)

The as-synthesized MIL-53(Fe) was characterized by FT-IR, XRD and SEM (Fig. 2). Fig. 2A describes the FT-IR spectra of MIL-53(Fe). As can be seen that the band at 546 cm⁻¹ is assigned to the Fe-O vibrations. The bands at 746 and 1288 cm⁻¹ can be ascribed to aromatic C-H and C=C stretching vibration. Two bands at 1393 and 1547 cm⁻¹ are attributed to C-O asymmetric and symmetric vibration, this result indicate that the presence of a dicarboxylate linker within the sample. Besides, the bands located
phenomena observed for the commonly used horseradish BDC that trapped in the cavities of MIL-53(Fe). The crystalline structure of MIL-53(Fe) was investigated by XRD and the result shown in Fig. 2B. Most of the reflection peaks of the synthesized MIL-53(Fe) crystals were in good agreement with the simulated one, indicating the successful synthesis of MIL-53(Fe). The crystal morphology of the as-synthesized MIL-53(Fe) was further characterized by SEM (Fig. 2C). The as-synthesized MIL-53(Fe) crystals displayed a cubic shape with a proper size distribution, which are consent with the previous report.

![Characterisation data for MIL-53(Fe): (A) FT-IR spectrum; (B) XRD pattern; (C) SEM image.](image)

3.2 Catalytic activity

To evaluate the peroxidase-like activity of the as-synthesized MIL-53(Fe), the catalytic oxidation of peroxidase substrate TMB to generate a blue color reaction was tested in the presence of H$_2$O$_2$. As shown in Fig. 3A, the UV-vis spectra of reaction systems of TMB, TMB-MIL-53(Fe), TMB-H$_2$O$_2$, and TMB-MIL-53(Fe)-H$_2$O$_2$ in acetate buffer solution (0.1M, pH 4.0). Clearly, TMB alone showed no absorbance at 652 nm (curve a), even in the presence of MIL-53(Fe) (curve b) or H$_2$O$_2$ (curve c), which reveal that no oxidation reaction occurred. Conversely, a strong absorbance was found for TMB-H$_2$O$_2$ in the presence of MIL-53(Fe) (curve d). These results demonstrate that MIL-53(Fe) exhibits peroxidase-like catalytic activity. This is similar to the phenomena observed for the commonly used horseradish peroxidase (HRP).

![Effects of the MIL-53(Fe) catalytic activity on (a) reaction temperature and (b) pH. Error bars show the standard deviation from three parallel measurements.](image)

3.3 Optimization of experimental conditions

Since MIL-53(Fe) is similar to other nanomaterials peroxidase mimetics and HRP, the catalytic activity of MIL-53(Fe) was dependent on the reaction temperature and pH. The peroxidase-like activity of the MIL-53(Fe) was investigated by vary reaction temperatures from 15 to 65°C. As can be seen from Fig. 4(a), the catalytic activity of MIL-53(Fe) gradually increased with increasing the reaction temperature up to 55°C. This is probably due to the increase in reaction temperature, the H$_2$O$_2$ molecules increased kinetic energy and fast diffusion, which induce an increase in the collisions between H$_2$O$_2$ and the catalytic centers of MIL-53(Fe). Nevertheless, when the reaction temperature passed 55°C, the catalytic efficiency has a significant decrease. This is probably due to the fact that H$_2$O$_2$ molecules are not very steady and converted to other products before it collide with catalytic centers of MIL-53(Fe). Meanwhile, the pH is another important parameter that affects the catalytic efficiency. Fig. 4(b) displays the effect of pH on the catalytic activity of the MIL-53(Fe). From Fig. 4(b), experiments were carried out at a pH range from 1.0 to 5.5. The catalytic activity of the MIL-53(Fe) increases with increasing pH from 1.0 to 4.0 and then decreases with a further increase pH to 5.5. This phenomenon likely attributed to the MIL-53(Fe) framework construction exhibits higher effective catalytic sites at pH 4.0 and achieves significantly activity. Therefore, the optimal reaction temperature and pH obtained in the catalytic activity tests was 55°C and 4.0, respectively. This result is similar to previously reported for nanostructure-based peroxidase mimetics.

3.4 Quantitative determination of UA

Under the optimal experimental conditions, a colorimetric method was used for the detection of UA due to the absorbance of oxidized TMB, which is linearly dependent on H$_2$O$_2$.

![Fig. 4. A) The UV/Visible absorption spectra of (a) the TMB solution, (b) TMB and MIL-53(Fe), (c) TMB and H$_2$O$_2$, (d) TMB, MIL-53(Fe) and H$_2$O$_2$. B) Scheme of TMB oxidation by H$_2$O$_2$.](image)
concentration. As we known, H$_2$O$_2$ is the main product of UA oxidation by uricase, which means that the proposed colorimetric method could be used to quantitatively determine UA content combining with uricase. As showed in Fig. 5a, the color variation for the sensing system from light-blue to deep-blue can be directly observed by the naked eye. The limit of detection (LOD) observed by the naked eye is as low as 4.5 µM. As can be seen from Fig. 5b, the absorbance increased gradually while the UA concentration increased from 0 to 300 µM. Fig. 5c describes the absorbance of the colored oxidized product of TMB (652 nm) at different UA concentrations. The linear regression equations for UA was expressed as $A=0.00239C+0.03867$ with a correlation coefficient of 0.9958 (Fig. 5c inset), where C is the UA concentration, A is the absorbance. The relative standard deviations (RSD, $n=3$) are all less than 4.8%.

To evaluate the selectivity of detection of UA by using MIL-53(Fe) as peroxidase mimic, the absorbance responses of the sensing system showed great potential for the determination of UA in human urine and serum samples. In order to check further the accuracy of the method and the reliability of the reaction system, measuring UA in two human serum samples have been validated through comparison between the proposed method and routine clinical methods. The results showed that the UA concentrations in serum 1 and serum 2 were 644.31 µM and 631.76 µM, which were consistent with the values measured by the routine clinical methods in the local hospital (serum 1: 641.00 µM, serum 2: 623.00 µM). Good recovery and precision of UA determination confirmed that the developed colorimetric method here is suitable for UA detection in real clinical samples.

3.5 Interference experiments

To evaluate the selectivity of detection of UA by using MIL-53(Fe) as peroxidase mimic, the absorbance responses of the sensing system were measured for other coexisting substances such as urea, L-cysteine, ascorbic acid, tryptophan, glutathione, glucose, sodium chloride, UA and their mixture. The results were shown in Fig. 6, it can be found that the absorbance obtained for urea, L-cysteine, ascorbic acid, tryptophan, glutathione, glucose and sodium chloride were still weak. However, only the addition of UA can result in a high absorbance, and no obvious absorbance changes were found upon the addition of coexisting substances. The results indicated that the coexistence of these interfering substances do not affect the detection of UA and further demonstrated the high selectivity for UA detection. Thus, the proposed sensing system showed great potential for the determination of UA in human urine and serum samples.

3.6 Analysis of human urine and serum samples

In addition, human urine and serum samples were selected as the real sample to examine the practicability of the proposed method. The results were shown in Table 2, the recoveries of UA in human urine ranged from 89.50 to 99.38%, while the recoveries ranged from 93.70 to 101.44% were obtained for serum samples. The relative standard deviations (RSD, $n=3$) are all less than 4.8%.

![Figure 5](image)

![Figure 6](image)
peroxidase-like activity and can catalyze the oxidation of TMB

Table 1. Comparison of linear ranges and detection limits for MIL-53(Fe) with other analytical method.

<table>
<thead>
<tr>
<th>Analytical method</th>
<th>Linear range(µM)</th>
<th>Detection limit(µM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminol-K2[Fe(CN)6]</td>
<td>4.8-179</td>
<td>3</td>
<td>[14]</td>
</tr>
<tr>
<td>uricase/AuNP/MWCNT Au electrode</td>
<td>10-800</td>
<td>10</td>
<td>[18]</td>
</tr>
<tr>
<td>uricase/BSA-stabilized Au nanoclusters</td>
<td>2.0-200</td>
<td>0.36</td>
<td>[21]</td>
</tr>
<tr>
<td>uricase-HRP-Cds quantum dots</td>
<td>125-1000</td>
<td>125</td>
<td>[40]</td>
</tr>
<tr>
<td>uricase/MIL-53(Fe)</td>
<td>4.5-60</td>
<td>1.3</td>
<td>This work</td>
</tr>
</tbody>
</table>

Table 2. Determination of UA in human urine and serum samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Founded (µM)</th>
<th>Value of this method</th>
<th>Value of clinical method</th>
<th>Added (µM)</th>
<th>Detected (µM)</th>
<th>Recovery (%)</th>
<th>RSD (n=3, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine 1</td>
<td>22.22</td>
<td>555.5</td>
<td>--</td>
<td>8.0</td>
<td>29.75</td>
<td>94.13</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.8</td>
<td>34.36</td>
<td>94.84</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.0</td>
<td>36.54</td>
<td>90.50</td>
<td>2.8</td>
</tr>
<tr>
<td>Urine 2</td>
<td>19.38</td>
<td>484.5</td>
<td>--</td>
<td>8.0</td>
<td>31.94</td>
<td>93.18</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.8</td>
<td>35.28</td>
<td>93.98</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.0</td>
<td>37.75</td>
<td>94.98</td>
<td>1.5</td>
</tr>
<tr>
<td>Urine 3</td>
<td>16.87</td>
<td>421.75</td>
<td>--</td>
<td>8.0</td>
<td>24.69</td>
<td>97.75</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.8</td>
<td>28.59</td>
<td>95.16</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.0</td>
<td>31.52</td>
<td>91.56</td>
<td>3.5</td>
</tr>
<tr>
<td>Serum 1</td>
<td>21.48</td>
<td>644.31</td>
<td>641.00</td>
<td>10.0</td>
<td>30.85</td>
<td>93.70</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>35.93</td>
<td>96.33</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
<td>46.16</td>
<td>98.72</td>
<td>2.0</td>
</tr>
<tr>
<td>Serum 1</td>
<td>21.06</td>
<td>631.76</td>
<td>623.00</td>
<td>10.0</td>
<td>30.85</td>
<td>97.90</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>35.70</td>
<td>97.60</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
<td>46.42</td>
<td>101.44</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Data supported by the Affiliated Hospital of Guilin Medical University

by \(\text{H}_2\text{O}_2 \) with high efficiency. Experimental results indicated that
the catalytic activity of MIL-53(Fe) was dependent on the
reaction temperature and \(\text{pH} \), similar to HRP. As a mimic
peroxidase, the MIL-53(Fe) showed several advantages, such as
inexpensive, stability, easy preparation and high catalytic efficiency.
Based on the intrinsic peroxidase-like activity of MIL-53(Fe), a simple and effective method for colorimetric detection
of UA in human urine and serum samples was explored by using
UOx and MIL-53(Fe). Therefore, we believe that the use of
MOFs nanomaterial as peroxidase mimics for UA determination
is a promising candidate for bioassays and medical diagnostics.

Acknowledgements

This work was financially supported by the National Natural
Science Foundation of China (21065002), Guangxi Natural
Science Foundation of China (2010GXNSFF103001 and
2014GXNSFBA118045).

Notes and references

Graphical Abstract