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Laser induced breakdown spectroscopy(LIBS) technique coupled with random forest based on variable
importance(VIRF) was proposed to perform classification analysis of slag samples. Three types of slag
samples(open-hearth furnace slag, converter slag and high titanium slag) were identified and classified by
random forest(RF) method with different pre-processing methods(normalized with maximum integrated10
intensity, first-order derivative and second-order derivative) and different input variables(200-300, 200-
400, 200-500, 200-600, 200-700 and 200-800nm), the importance of input variable was employed to
improve the classification performance of RF model for slag samples. Averaged OOB(out-of-bag) error,
sensitivity, specificity and accuracy were calculated to evaluate the classification performance of RF
model for slags. Normalized by maximum integrated intensity LIBS spectra(200-500nm) of slag samples15
as input variable was constructed the PLS-DA, SVM, RF and VIRF model for the classification analysis
of slags. VIRF model shows a better classification performance than other three model. LIBS technique
coupled with RF perhaps is a promising approach to achieve the online analysis and process control of
slag and even industrial waste recycling.

1. Introduction20

In steel-making industry, a large amounts of solid co-products is
generated in the form of slag and sludge. The world’s annual
output of slag from iron and steel industries reaches almost 50
million tons.1 Slag as an significant byproduct in steel industry
plays a decisive role in ensuring smelting operation smoothly,25
steel quality, metal recovery and so on. There are different types
of steel industry slags such as blast furnace slag (BF) also called
iron slag, basic oxygen furnace slag (BOF), electric arc furnace
acid slag (EAF), ladle furnace basic slag (LF) also called refining
slag and so on. Slag can be divided into smelting slag, refining30
slag and synthetic slag according to the difference of
metallurgical process; it can be also divided into acid slag,
neutral slag and alkaline slag. The major component of slag
include CaO, SiO2, Al2O3, MgO, Fe2O3, TiO2 and so on. Each
type of slag has its typical chemical, mineralogical, and physical35
properties. Classification and identification of slag contributes to
recycling and reuse of metallurgical waste. There are many
significant applications on slag such as blast furnace slag can be
used as a cement raw material, high phosphorus slag can be used
as a fertilizer, vanadium slag can be used as raw materials for the40
refining of vanadium, and so on. V. Gupta2 focused on the reuse
of slag material as low cost adsorbents for water treatment.
Slag analysis was performed by different techniques3,4 such as

chemical analysis, X-ray fluorescence(XRF), inductively
coupled plasma optical emission spectroscopy(ICP-OES), mass45
spectroscopy(MS) and so on. However, these approaches require

complicated sample preparation and much analysis time, which
fails to timely obtain the information of steel product, and even
hinders their application for real time and fast analysis. Laser
induced breakdown spectroscopy(LIBS) is a promising and50
prospect analytical technique based on laser plasma spectroscopy
with the advantages of multiple elements simultaneous analysis
for all types of the samples(solid, liquid, gas or aerosol).5-7 At
present, the LIBS technique has become the subject of
metallurgical analysis.8-10 The application of LIBS technique to55
metallurgical industry includes iron ore selection,11,12 process
control,13,14 iron slag analysis15-18 and so on.
Classification and identification of slag has been the subject of

most government environmental agencies in the world.19,20 The
classification of slags by LIBS can be fulfilled depends on60
difference of its major component and corresponding
concentration. In other words, it was completed by the difference
comes from spectra integrated intensity and wavelength of LIBS
spectra. The LIBS technique combined with chemometrics
methods is an effective approach to improve the classification65
performance of slags. Zhang et al20 employed LIBS coupled with
partial least squares discriminant analysis(PLS-DA) to classify
open-hearth furnace slag and high titanium slag. However, PLS-
DA has some disadvantages such as low classification accuracy
and overfitting. Random Forest(RF), a new classification70
algorithm based on multiple classifier, was proposed by Leo
Breiman21. It is an ensemble of unpruned classification tree
created by using bootstrap samples of the training data and
random feature selection in tree introduction. Prediction was
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completed by the majority vote of multiple classifiers to
determine the final category for the test samples. The train
dataset was used to construct the multiple classifier, and the final
category of the predictive sample are determined by the major
vote of the classification results for each classifier. It has proved5
that RF classifier has a good tolerance for noise, as well as avoid
over-fitting phenomenon.22 In addition, LIBS combined with RF
was applied for identification and classification of rocks, pen ink
and iron ore samples.23,24 LIBS combined with RF also could be
used for the quantitative analysis of multiple elements in10
fourteen steel samples.25
The present work explores the combination of LIBS technique

and RF based on variable importance(VIRF) for classification
analysis of slags. A series of 60 slag samples were compressed
into pellets and prepared for LIBS measurement. Three types of15
slag samples(open-hearth furnace slag, converter slag and high
titanium slag) were identified and classified by RF method with
different pre-processing methods (normalized with maximum
integrated intensity, first-order derivative and second-order
derivative) and different input variables(200-300, 200-400, 200-20
500, 200-600, 200-700 and 200-800nm), the variable importance
was employed to improve classification performance of RF
model for slag samples. Averaged OOB(out-of-bag) error,
sensitivity, specificity and accuracy were calculated to evaluate
the classification performance of RF model for slags.25

2. Methodology
2.1. LIBS setup and acquisition conditions
The detailed description of LIBS setup was shown in the

previous works.29 A Q-switched Nd: YAG laser( λ=1064nm, 10
ns pulse FWHM, 80 mJ/pulse, repetition rate of 5 Hz) was used30
to generate the plasma in air at atmosphere pressure on the
pellets. The pulse laser beam was focused onto the slag sample
surface vertically by a 50mm focal-distance lens, which was
generated a spot of about 0.2 mm diameter. The emission from
the plasma created was collected with a 4-mm aperture, with a35
7mm focus fused silica collimator placed at 45° angel with
respect to the laser pules and a distance of 3 cm from the sample,
and then focused into an optical fiber, which was coupled to the
entrance of the Echelle spectrometer Aryelle 400(LTB, German).
The spectrometer provides a constant spectral resolution (CSR)40
of 6000 over a wavelength range 200-800nm displayable in a
single spectrum. An electron-multiplying CCD(EMCCD) camera
(QImaging, UV enhanced, 1004 ×1002 Pixels, USA) coupled to
the spectrometer was used for detection of the dispersed light.
The overall linear dispersion of the spectrometer camera system45
ranges from 37 pm/pixel(at 220nm) to 133 pm/pixel (at 800nm).
To prevent the EMCCD from detecting the early plasma
continuum, a mechanical chopper is used in front of the entrance
slit. The experiments were carried out under atmosphere
condition, and the gate width of spectrometer was set to 2 ms.50
The detector was set to 1.5 μs delay time between the laser pulse
in order to prevent the detection of bremsstrahlung radiation.
2.2. Slag samples and LIBS measurements
A total of 60 slag samples for three types of slag(open-hearth

furnace slag(OHFS), converter slag(CS) and high titanium55
slag(HTS)) were provided by Pangang group Chengdu ore &
steel Co., Ltd(China) in the form of slag powder. Each slag

Table 1 The concentration(wt%) of the major components in
slag samples
slags Fe2O3 SiO2 TiO2 CaO MgO MnO2 Al2O3

open-hearth

furnace slag

16.15-

19.66

16.41-

20.22

0.40-

1.06

20.56-

27.81

15.68-

21.27

12.35-

15.85

6.18-

7.80

converter

slag

13.96-

14.88

12.05-

12.66

-- 47.95-

48.38

8.01-

8.38

-- 0.69-

0.95

high titanium

slag

2.90-

5.98

2.12-

4.20

81.57-

85.57

0.43-

0.77

2.52-

3.05

1.07-

1.45

3.29-

3.97

sample was homogenized to produce a very fine powder until all60
of the powder passed through a 200-mesh stainless steel sieve
using a ball grinding mill. Table 1 lists the concentration(wt. %)
of major component of three types of slag samples. There are 20
slag samples for each type of slags. The slag pellet was made
with a tablet press at 400 Mpa for 5 min. LIBS spectra of 2065
different position of each sample surface are gathered. In order to
decrease the effects of shot to shot fluctuations, each measure
spectrum was obtained by accumulation of 50 laser pulses. The
total of the spectra for 60 slag sample was 1200(20 LIBS spectra
for each slag sample). The training set and test set were selected70
by Kennard-Stone algorithm26 with the ratio of the number of
train samples to the whole data is 0.7. The number of training
samples is 42, and the number of test samples is 18. The data
processing and classification analysis of slag samples were
performed on Matlab2007a(Mathworks).75
2.3 Random forest(RF)
RF is an advanced classification and regression method based

on statistical learning theory. A resampling technique based on
bootstrap method was used to continuously generates training
and test samples; the training sample generates multiple80
classification tree form with random forest, the final predictions
results based on the combination are received by a simple
majority voting of the single classification tree. The process of
RF training model described in previous work.27 There are two
significant parameters in RF: (1) the number of ensemble trees in85
the forest (ntree) and (2) the number of peaks randomly selected
as the candidates for splitting at each node (mtry). The ideal
random forest model not only has higher classification accuracy
and stability, but also has higher efficiency. Theoretically, the
generalization error of the classifier tends to a finite upper bound90
when ntree reaches a certain value. In other words, if ntree is
increased above the optimum, there is a general increase in the
computational expense, but the results do not improve
significantly. In this work, ntree was set as 500. mtry is one of
the most major characteristic through each division that95
introduces random nodes for randomly selected attributes. It was
assumed that there were M attributes(wavelengths) in the
training sample, and mtry attributes were extracted randomly as
candidate attribute between each of the internal nodes in the
decision tree (mtry << M). ntree and mtry for the RF model can100
be optimized by the OOB error estimation. Moreover, mtry =
M was found to be the best choice based on the OOB error

rate.21
A significant characteristic of RF is able to calculate and rank

the importance of each variable(the LIBS spectral peaks). For105
each tree grown in RF, OOB was put down and the number of
votes cast for the correct class was counted. The value of
variable m in OOB was randomly permuted and these samples
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Fig. 1 Representative LIBS spectra of slag samples, black line
for HTS; red line for OHFS; green line for CS.
were put down the tree. The numbers of votes were counted for
the correct class in the variable-m-ranked OOB data; and then,5
we again count the number of votes for the correct class in the
untouched OOB data. Subtracting the two counts, and averaging
this number over all the trees in the forest is the raw importance
score for the variable. Finally, the important scores were
computed depending on the correlations between the trees, in10
other words, it was obtained depend on the contribution of input
variable to classification result. The process of random forest
based on variable importance(VIRF) model as follows: (1)
Suppose there is original spectra A, and original spectra is used
to construct random forest classification model. (2) Calculate15
variable importance of each variable for classification analysis
based on OOB error. (3) Remove the variable of variable
importance is zero, and generate a new input variable B. (4)
Input variable B is used to construct VIRF classification model.
The averaged OOB error, sensitivity, specificity and accuracy20

are the statistical parameters to evaluate the performance of RF
model for slag samples. Averaged OOB error are calculated by
an estimate of the error rate (ER) for classification analysis of
RF.26 The sensitivity is the percentage of the samples of a
category accepted by the class model. The specificity is the25
percentage of the samples of the categories which are different
from the modeled one, rejected by the class model. The accuracy
of classification procedure is expressed as fraction of correctly
classified samples to the total samples.28

3. Results and discussion30

3.1. LIBS spectra of three types of slag samples
Fig 1 shows the averaged spectrum of three types of slags in

the range of 200-800nm, which includes the emission lines of the
major component in slag. Slag is complex sample containing
many chemical elements and thus related to LIBS spectra35
characterized by hundreds of atomic lines. There is obvious
difference between the averaged LIBS spectrum with the range
of 200-500nm and 580-650nm on three types of slags, which
contributes to classification and identification of three types of
slags. The differences among three types of slags come from the40
concentration of TiO2, CaO, MnO2 and Al2O3. Spectral lines of
major element(Ca, Si, Al, Mg, Fe, Mn and Ti) in slag sample
were detected and identified based on NIST atomic database.29
For high titanium slag, the concentration of its major component-

Table 2 The RF training model for the classification of slags45
with different pre-processing method

Pre-processing method
Averaged

OOB error
Sensitivity Specificity Accuracy

without pre-processing 0.0050 0.9952 0.9976 0.9968

Normalization 0.0001 1.0000 1.0000 1.0000

first-order derivative 0.0011 1.0000 1.0000 1.0000

second-order derivative 0.0016 1.0000 1.0000 1.0000

Table 3 The RF training model for the classification of slags
with different input variables

Input variable
Averaged

OOB error
Sensitivity Specificity Accuracy

200-300nm 0.0097 0.9905 0.9952 0.9937

200-400nm 0.0012 1.0000 1.0000 1.0000

200-500nm 0.0002 1.0000 1.0000 1.0000

200-600nm 0.0046 0.9952 0.9972 0.9968

200-700nm 0.0052 0.9952 0.9976 0.9968

200-800nm 0.0050 0.9952 0.9976 0.9968

TiO2 is over than 80%; the convert slag is given priority to CaO,
and there are no TiO2 and MnO2 in convert slag; the proportion50
of MgO and MnO2 of open-hearth slag is larger than high
titanium slag and convert slag. Therefore, classification analysis
of slags could be brought out by the differences of specific
components for each type slag.
3.2. RF model with different pre-processing methods and55
input variables

An excellent training model with appropriate pre-processing
methods and input variables is essential for the classification
analysis of slag using LIBS and RF. In order to improve the
classification performance of RF model, the input variables60
addressed by pre-processing method(i.e. normalization) was used
to decrease the differences comes from laser pulse energy
fluctuations and increase the comparability among the different
types of slags. Normalization is an effective method for
eliminating the differences comes from laser pulse energy65
fluctuations, and derivation can be used to increase the
comparability among the different types of slags. In this work,
the RF training model for the classification of slags with the
whole spectra(200-800nm) as input variable by different pre-
processing methods was shown in Table 2. As seen from Table 2,70
sensitivity, specificity and accuracy of RF training model with
three pre-processing methods(Normalized by maximum
integrated intensity, First-order derivative and Second-order
derivative) were higher than the RF model without pre-
processing, meanwhile, the averaged OOB error of RF training75
model with three pre-processing methods is lower than the RF
model without pre-processing. For three pre-processing method,
all of three RF models show well classification performance,
sensitivity, specificity and accuracy were 1.0000, 1.0000 and
1.0000, respectively; however, the averaged OOB error of RF80
model with normalized by maximum integrated intensity is lower
than with first-order derivative and second-order derivative.
Therefore, the LIBS spectra with normalized by maximum
integrated intensity as input variable were employed to construct
RF training model for the classification analysis of three types of85
slags.
Input variables are also significant for the training model of

slags. In this work, the RF training model for the classification of
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Fig. 2 The relationship between the variable importance of RF
model and LIBS spectra(200-500nm) of slags
Table 4 Classification result of PLS-DA, SVM, RF and VIRF
model for slags5

RF model OOB error Sensitivity Specificity Accuracy

PLS-DA 0.0733 0.9253 0.9189 0.9227

SVM 0.0511 0.9364 0.9344 0.9353

RF 0.0333 0.9667 0.9833 0.9778

VIRF 0.0111 0.9889 0.9944 0.9926

slags with different input variables(200-300, 200-400, 200-500,
200-600, 200-700 and 200-800nm) was investigated by averaged
OOB error, sensitivity, specificity and accuracy. Table 3 shows
the averaged OOB error, sensitivity, specificity and accuracy for
RF training model for the classification of slags with different10
input variables. As seen from Table 3, it can be obtained a well
RF training model with different input variables. All of
sensitivity, specificity with six RF model were over than 0.9900,
and all of averaged OOB error were under 0.01. However, the
averaged OOB error of RF training model with the input15
variable(200-500nm) is lowest, and the same time, it takes the
relative less time and improves the RF efficiency of
classification analysis based on RF. The LIBS spectra with the
range of 500-800nm doesn’t contribute to the classification for
slags, there is no change for sensitivity, specificity and accuracy20
of RF model with the input variables(200-600, 200-700 and 200-
800nm). Although there are a rich spectral information for the
whole spectra(200-800nm), it takes a longer time to construct the
RF training model. For the LIBS spectra of 200-300 and 200-
400nm, there are less LIBS spectral information, and fails to25
obtain a better classification result of RF model for slags.
Therefore, the LIBS spectra with range of 200-500nm were
selected as input variable to construct the RF training model for
slag samples.
3.3. RF model with variable importance for the classification30
of slags
Variable importance of RF model can be obtained by using

OOB data. The greater the variable importance of RF model is
obtained, the better the classification performance of slags, and
vice versa. Fig 2 shows the relationship between the variable35
importance of RF model and LIBS spectra(200-500nm) of slags.
The majority variable importance of LIBS spectra(200-500nm)
on RF model for classification analysis of slags is 0-0.15. Some
variable importance is 0, in other words, the LIBS spectral peaks
of variable importance equals to zero that doesn’t contribute to40

the classification of slags. Hence, we can remove the LIBS
spectral peaks of variable importance equals to zero, and extract
the spectral peaks of variable importance over zero in order to
improve the classification performance of slags based on RF. In
order to validation the classification abilities of VIRF model for45
slags, we compared the VIRF model with PLS-DA, support
vector machine(SVM) and RF method. Input variables of these
four methods for training model are the LIBS spectrum(200-
500nm). For the training model based on PLS-DA, the best latent
variables optimized by 5-fold cross-validation is 10. When the50
PLS-DA model was trained upon the training set, the averaged
classification accuracy is 97%. For SVM training model, the best
parameters selected by genetic algorithm(GA) were used as input
for an epsilon classification SVM with a radial basis
function(RBF) kernel. The optimum parameters were set as:55
penalty parameter C = 98.25 and kernel parameter of RBF g =
0.08. The averaged classification accuracy is 95% for optimized
SVM training model. Table 4 lists the classification result of
PLS-DA, SVM, RF and VIRF model. The classification
performance of VIRF model is better than conventional RF60
model. Sensitivity, specificity and accuracy of VIRF model is
larger than other three model, meanwhile, its averaged OOB
error is less than other three model. Hence, VIRF model shows a
better classification performance for slag samples.

Conclusions65

In summary, LIBS technique coupled with RF has been
successfully used for the classification of 60 slag samples.
Normalized by maximum integrated intensity LIBS spectra(200-
500nm) of slag samples as input variable was constructed the
PLS-DA, SVM, RF and VIRF model for the classification70
analysis of slags. VIRF model shows a better classification
performance than other three model. It has been confirms that
LIBS technique coupled with RF is promising approach to
achieve the online analysis and process control of slag and even
industrial waste recycling.75
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Laser induced breakdown spectroscopy(LIBS) technique coupled with random forest based on variable 

importance(VIRF) was presented for classification analysis of slag samples(open-hearth furnace slag, converter 

slag and high titanium slag).  
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