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Liquid chromatographic fingerprints and 

profiles of polyphenolic compounds applied to 

the chemometric characterization and 

classification of beers 

Clara Pérez-Ràfols and Javier Saurina 

In this paper, liquid chromatography with UV-vis detection was used to 

generate compositional fingerprints of beers to be exploited for the 

characterization and classification purposes. Chromatographic profiles 

recorded at 280 nm contained features mainly associated to polyphenolic 

components such as phenolic acids and flavonoids. Beers from different 

styles and elaborated in various countries were analyzed by the proposed 

method and data generated was treated chemometrically to assess 

characterization and classification models. Three different types of data sets 

based on chromatograms, peak areas and concentrations were explored by 

principal component analysis (PCA) to evaluate their performances to 

discriminate among ale and lager beers. The use of raw chromatographic 

profiles required a comprehensive pretreatment to improve the data 

quality. When dealing with peak areas, single and complex integrated peaks 

of known and/or unknown compounds were used as the source of analytical 

information. In this two approaches (chromatographic fingerprints and peak 

areas), calibration was not necessary so the sample analysis was simplified. 

In the case of concentrations, selected phenolic acids and flavonoids were 

considered as the data to discriminate among beer types. Differences in the 

polyphenolic composition were relevant and some components resulted in 

efficient markers of beer classes. Further studies based on partial least 

squares discriminant analysis (PLS-DA), soft independent modelling of class 

analogy (SIMCA) and other methods were used to discriminate beers 

according to brewing styles.  Classifications were highly satisfactory in terms 

of selectivity and sensitivity as, in general, beers of test set were correctly 

assigned to their actual classes.  

Introduction 

Instrumental fingerprints and compositional profiles of compounds 

naturally occurring in food products have recently been exploited 

for characterization, classification and authentication purposes.
1-4

 

Hence, apart from organoleptic, nutritional and medical 

implications of some small molecules such as amino acids, biogenic 

amines, polyphenols, volatile organic compounds (VOC) and sugars, 

their potentiality in exploratory and predictive tasks cannot be 

underestimated. The present study is mainly concerned in the 

generation of fingerprints and compositional profiles of beers by 

liquid chromatography with UV-vis detection as the source of 

analytical information. The concept of fingerprint is coined to define 

a complex instrumental signal that may contain mixed contributions 

from several known or unknown components while the term 

(compositional) profiling refers to concentrations of components of 

interest.  

The vast majority of beers produced all over the world can be 

classified according to the brewing process into top (ale) and 
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bottom (lager) fermentation. Nowadays, lager beers represent the 

90% approx. of worldwide production and are very popular in 

countries such as USA, France, Czech Republic and Spain. In 

contrast, traditional ales, with less trade impact, are highly 

appreciated and consumed in Britain, Germany and Belgium.
5
 The 

composition of beer strongly depends on the raw materials used as 

well as the brewing practices followed. If so, it is not surprising that 

beer fingerprints and compositional profiles have great impact in 

description and discrimination issues. For instance, ale beers are 

produced at warmer temperature than ale ones (typically between 

16°C and 24°C) which allows yeasts to generate higher amounts of 

VOCs such as esters, thus providing characteristic flavor notes.
6
 In 

parallel, the extraction of components from the raw materials is 

also favored by temperature so, in general, richer extracts in terms 

of variety and quantity of soluble molecules are commonly found in 

ale beers.  

Some interesting studies dealing with the characterization and 

classification of beers, published recently in the scientific literature, 

will be briefly commented as follows. Often, the huge amount of 

data generated with modern analytical instruments makes 

necessary the use of chemometrics to facilitate the recovery of the 

underlying information.
7
 Among other methods, principal 

component analysis (PCA) is commonly applied to preliminarily 

sample exploration. For more specific classification and 

authentication studies, predictive methods such partial least 

squares regression – discriminant analysis (PLS-DA) can be utilized. 

The potential role of some polyphenols as chemotaxonomical 

descriptors of food products and beverages has been pointed out 

by several authors.
8-11

 It has been found, for instance, that phloretin 

and phlorizin are typical components of apple, arbutin is quite 

specific of pear, naringenin is commonly present in citric fruits, and 

ellagic acid derivatives are really abundant in pomegranate.
12-15

 As a 

result, contents of polyphenols in foodstuffs have been envisaged 

as a source of information to try to discriminate among product 

varieties, origins, manufacturing processes, etc. This idea has been 

exploited by Vrhovsek et al.
16

 to classify fruits using cluster analysis 

on the basis of contents of about 90 polyphenolic compounds. In a 

similar context, the recognition and authentication of protected 

designations of origin (PDO) of olive oils, such as in the case of 

Moroccan
17

 or Italian
18

 oils, has been studied extensively. A lot of 

work has been carried out in the field of wines.  For instance, red 

Spanish wines from three PDOs, analyzed by HPLC-DAD-F and HPLC-

ESI-QqQ-MS, have been classified using PLS-DA.
19

 Conclusions on 

characteristic components of each PDO have been extracted. In 

another study, Italian Lambrusco wines belonging to three varieties 

have been discriminated chemometrically by using HPLC-UV data as 

a source of information.
20 

Boselli and coworkers have studied the 

influence of specific polyphenols on color attributes of wines.
21

 

Colored components such as malvidin, petunidin and peonidin 

(di)glucosides, quantified by HPLC-MS/MS, have been found to be 

characteristic descriptors of given Italian origins. Regarding beers, in 

a previous publication, we worked with the contents of various 

phenolic acids and flavonoids to assess a preliminary classification 

of samples into lager and ale styles.
23

 Quifer-Rada et al. have 

developed a LC-MS method for the comprehensive elucidation of 

polyphenolic compounds of beers.
22

 Mass measurements of high 

accuracy and MS
2
 experiments have allowed several phenolic acids 

and flavonoids to be identified, some of them recognised for the 

first time in beer. In another study, Marova et al. have used 

concentrations of 11 representative polyphenols, quantified by LC-

UV-MS, to distinguish among Czech and foreign lager beers. Results 

have suggested that some flavonoids could have a potential use in 

beer authentication.
24

 Mattarucchi and coworkers have reported a 

method for authentication of Rochefort Trappist beers from other 

styles.
25

 In another example, additional chemical parameters 

including chloride, phosphate, sulfate, total amino acids, pH and 

overall polyphenols were exploited to characterize blond beers.
26

  

Beyond compositional data, complex spectral fingerprints can be 

generated with instrumental techniques such as nuclear magnetic 

resonance (NMR),
27-29

 infrared (IR),
29-32

 UV-vis spectroscopies
33

 and 

mass spectrometry (MS).
34-35

 Apart from spectra, another 

interesting proposals for beer characterization relied on 

voltammetric electronic tongues.
36

 Some authors proposed the 

combination or fusion of responses from several instruments as a 

way to enrich the data sets for enhancing the descriptive 

performance. For instance, Biancolillo et al. joined 

thermogravimetric profiles, and mid- and near- infrared and UV-vis 

spectra in augmented data arrangements to try to discriminate 

among two high quality Italian beers from other products of lower 

quality.
37

 Focusing on chromatography, typical data consists of 

absorbance values recorded over time at one (or several) 

wavelength. Specific data pretreatments may be required to correct 

some drawbacks such as baseline drifts and peak shifting.
38-39

 

Regarding chromatography and MS hyphenation, methods of LC-

MS
40-41 

and GCxGG-MS
42

 have been reported for beer analysis. 

In our study, beers of different types and manufactured in several 

countries were analyzed chromatographically. For each sample, 

data of different nature was obtained, including beer fingerprints 

consisting of absorbance values recorded at 280 nm over the entire 

chromatogram, areas of selected major and minor peaks, and 

concentrations of relevant polyphenolic compounds. Preliminary 

screening of beers by PCA displayed interesting patterns dealing 

with brewing styles, especially when using concentration data. 

Further beer classifications by PLS-DA, SIMCA and other methods 

were investigated for all types of data sets constructed. The most 

accurate predictions were obtained by PLS-DA when working with 

concentrations although results from corrected chromatographic 

fingerprints were also highly satisfactory. 

Experimental 

Chemicals and standards  

Unless specified, analytical grade reagents were used. The mobile 

phase was prepared with Milli-Q water (Millipore, Milford, MA), 

formic acid (99% w/w, from Merck, Darmstadt, Germany) and 

methanol (MeOH, from Panreac, Barcelona, HPLC grade). Phenolic 

acids and flavonoids, including caffeic, coumaric, 2,5-

dihydroxybenzoic, ferulic, gallic, 4-hydroxibenzoic, protocatechuic, 

salicylic and vanillic acids, (+)-catechin, (-)-epicatechin, quercetin 

and rutin, to be used as standards were purchased from Sigma-

Aldrich (St. Louis, MO). 

Samples 

Beers of various styles and produced in several countries were 

purchased from several supermarkets in Barcelona. The set of 

samples considered in this study was composed of 42 lager and 21 

ale beers. Beers were filtered and diluted (1:1, v:v) prior to injection 

into the chromatograph. Each sample was analyzed in triplicate and 

results of each independent replicate were used to evaluate the 

repeatability of the method as well as the success of the correction 

data pretreatment procedures. It is important to mention that the 
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set of beers was not analyzed in a same working session but in 

groups of 6 - 10 samples for a period of 2 months, approx.  

Liquid chromatographic method  

The chromatograph consisted of Agilent 1100 Series HPLC 

instrument equipped with a G1311A quaternary pump, a G1379A 

degasser, a G1392A autosampler, a G1315B diode-array detector 

and a PC with the Agilent Chemstation software (Rev. A 10.02), all 

of them from Agilent Technologies (Waldbronn, Germany). The 

separation column was a Kinetex C18 (100 mm × 4.6 mm i.d., 

particle size 2.6 μm) furnished with a SecurityGuard C18 cartridge 

(both from Phenomenex, Torrance, CA).The separation was based 

on the following gradient using 0.1% (v/v) formic acid aqueous 

solution and MeOH as the components of the mobile phase: 0 to 

11.5 min, 5% → 26% MeOH; 11.5 to 19 min, 26% → 60% MeOH; 19 

to 20 min, 60 → 90% MeOH. APer cleaning the column at 90% 

MeOH for 3 min the solvent percentage retuned to the initial value. 

The flow rate was 1 mL min
-1

 and the injection volume 10 μL. 

Chromatograms were recorded at 280 nm. 

Data analysis  

Solo from Eigenvector Research was used for calculations with 

Principal Component Analysis (PCA), Partial Least Squares - 

Discriminant Analysis (PLS-DA), Soft Independent Modelling of Class 

Analogy (SIMCA) and other chemometric methods.
43

 A detailed 

description of theoretical background of these methods is given 

elsewhere.
44

 

For exploratory studies by PCA, three different data matrices were 

constructed using chromatographic profiles, peak areas and 

polyphenol concentrations from a set of 63 samples analyzed by 

triplicate. Various data pretreatment procedures were investigated 

in order to ascertain which conditions led to the best description 

and classification performance. Among other, peak synchronization, 

baseline correction by asymmetric least squares (AsLS), 

normalization through the chromatographic domain, Pareto scaling, 

and autoscaling were assayed.  

Beer classification was attempted by PLS-DA, SIMCA and other 

modelling approaches. Samples available were distributed among 

training and test sets. In particular, two thirds of samples, approx., 

were devoted to the training stage while the remaining ones were 

used for test assays (23 lager and 13 ale for calibration, and 19 lager 

and 7 ale for predictions). X-data matrices of chromatographic 

profiles, peak areas and concentrations variables were used. As in 

the case of PCA, the influence of several data preprocessing 

approaches on the classification rates was evaluated. The 

assignation of samples to lager and ale classes was defined in the Y-

matrices as follows: 0 was used for lager and 1 for ale.  

Results and discussion 

An HPLC-UV method established and validated elsewhere was here 

applied to the characterization and classification of beers.
22

 

Concentrations of some relevant polyphenols in beers were 

quantified to obtain the corresponding data set. The method 

offered an excellent repeatability in terms of peak areas and the 

retention time of compounds of interest, with RSD% values ranging 

from 0.2 to 0.7%. Regarding reproducibility, however, it was 

detected that the variability in the chromatograms obtained in 

different working sessions, evaluated from the injection of a given 

beer sample used as a control, was more remarkable. In particular, 

as shown in Fig. 1, slight variations in retention time, of ± 5 to 15 s, 

were observed. Peak shifting seemed to increase with time as it was 

more evident in the last part of the chromatogram. Additionally, the 

peak variability in partially overlapping peaks provoked changes in 

the resolution as well as in the shape of overall profiles. As 

commented below, this phenomenon may hinder the interpretation 

of further results so it should be minimized in order to obtain more 

reliable descriptions. Fortunately, peak areas and concentrations 

were less sensitive in front of the influence of the working session, 

especially for well-resolved components that presented RSD values 

below 2%. For poorly resolved systems comprising two or several 

overlapping compounds, peaks could hardly be integrated 

separately and the precision of individual peak areas was poor. 

Anyway, the information provided by such multi-peak systems 

should not be underestimated as underlying data may be relevant 

for descriptive tasks. Then, in order to take advantage of variance 

from such overlapping peak systems, they were integrated as a 

whole and the resulting overall areas were used as a source of 

highly reproducible data to be incorporated to enrich the data sets. 

Fig. 1. Scheme of correction of chromatographic data. (a) 

Chromatograms of three sample replicates of a given beer; (b) 

Focus on the peak shifting; (c) Corrected data on the selected 

window taking the peak maximum as a reference. 

Exploratory studies by PCA 

PCA provided plots of scores and loadings, showing the distribution 

of the samples and variables on the principal components (PCs), 

respectively. The study of scores revealed patterns of sample 

characteristics, such as brewing style or origin, clusters of similar 

beers, etc. The plot of loadings displayed the distribution of 

variables to gain information dealing with their correlations as well 

as relationships of polyphenols with beer properties. 

Chromatographic data 

First beer characterization was attempted using raw 

chromatographic profiles (i.e., absorbance over time) as the 

analytical data. Chromatograms were processed in different ways to 
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find out the best pretreatment conditions, including AsLS de-

trending, normalization, Pareto scaling and autoscaling. The 

aforementioned variations on the overall shape of chromatographic 

profiles depending on the working session affected the 

performance of the PCA model. Results in Fig. 2a, corresponding to 

autoscaled data, indicated that the distribution of beers was poorly 

structured as a function of brewing style. More precisely, some 

replicates of beers appeared dispersed on the map of samples and 

similar beers belonging to a same class were widely spread on the 

plot of scores. It was then deduced that samples were mainly 

distributed according to the working session so all beers analyzed in 

a same day tended to form a cluster regardless the brewing style. 

Similar inefficient models were obtained with the other 

preprocessing procedures. The study concluded that raw 

chromatographic data was quite inefficient for beer 

characterization.  

Further work was focused on stablishing corrective mechanisms to 

reduce the chromatographic variability while enhancing the overall 

quality of data. First, time ranges 0 - 1.5 min and 20 - 25 min were 

removed from the data set as they corresponded to the death 

volume front and cleaning step. Subsequently, chromatograms 

were synchronized using various representative peaks distributed 

throughout the chromatogram were chosen as references. It should 

be mention that the use of an only peak for repositioning the whole 

chromatogram was not sufficient for an accurate correction since, 

although peaks were well aligned in the close vicinity of the 

reference point, some shifting still remained in the furthest regions. 

Asymmetric time windows were defined by taking an adjustable 

number of time channels (n and m) to the left and right of the peak 

maximum selected (see scheme in Fig. 1). If baseline drifts occurred, 

AsLS could be applied for signal de-trending. After preprocessing, 

sections were assembled to obtain the reconstructed 

chromatogram. The resulting data set was referred to as “Corrected 

chromatogram”. In comparison with raw data, the overall 

descriptive performance of this data matrix was improved and the 

plot of scores from PCA denoted clear patterns depending on the 

brewing style. As depicted in Fig. 2b (model with autoscaled data), 

it was deduced that PC1 was related with the overall beer body 

(possibly related with the dry extract percentage as well as the 

alcoholic content). Non-alcoholic and light beers were mainly 

located to the left while stronger ones were to the right part. PC2 

allowed a reasonable discrimination among brewing styles as 

samples belonging to each class were mostly distributed around 

specific areas (e.g., in general, lager beers had higher scores than 

ales). Of course the separation between the two classes was not 

strict and some samples were confounded. On the other hand, lager 

beers formed a more compact group of samples while ales 

exhibited higher diversity in agreement with the wider variety of ale 

subclasses. 

Peak area data 

Areas of 27 peaks were integrated to generate the so-called “Peak 

area” data set. Data was pretreated in different ways (see Data 

analysis section) to equalize the influence on the model of minor 

and major peaks. The map of scores using autoscaling as the 

pretreatment (Fig. 2c) indicated that replicates appeared in close 

positions, thus suggesting that data variability was acceptable. As in 

the previous case, PC1 described the behavior regarding the beer 

body and PC2 showed that lager and ale beers appeared 

predominantly in top and bottom areas, respectively. To conclude, 

data from peak areas was found to be of potential interest as a 

source of information for tackling characterization issues.  

 

 

 

Fig. 2. Scatter plot of scores of PC1 versus PC2 corresponding to raw 

chromatograms (a), corrected chromatograms (b), peak areas (c) 

and concentrations (d). Symbols: Circle = lager; square = ale. 

 

Concentration data 

The use of concentrations of selected polyphenols for the 

characterization and classification of beers was also explored. It 

should be noted that obtaining such a type of data is time-

consuming as prior quantification step is required. In our case, 

polyphenols were determined by external calibration using the 

HPLC-UV method. Results obtained indicated that gallic acid (~ 30 

mg L
-1

) was the most abundant and other compounds such as 

catechin, epicatechin and ferulic acid occurred at concentrations 

around 2 mg L
-1

. The rest of polyphenols were present, in general, 

at levels below 1 mg L
-1

. PCA model working with autoscaled data 

showed that PC1 described the overall content of polyphenols, with 

concentrations increasing from left to right (see Fig. 2d). PC2 

provided a first rough separation of among beer types. Lager beers 

were mainly located to the top left part of the plot of scores while 

ale beers took up to the bottom right area. In accordance with the 

previous results, ale samples were not located compactly but were 

spread in broad area thus confirming the higher variability in 

composition and attributes. It was concluded that polyphenolic 

contents depended on the brewing method. In general, ale beers 

were 15% richer in overall polyphenols and the diversity of sub-

types was also in accordance with up- or down expressed contents 

of given polyphenols. In particular, a subgroup of ale beer was 

characterized by higher amounts of epicatechin and gentistic acid 

(samples to the bottom), and another subgroup was represented by 
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rutin and syringic acid as descriptors (samples to the right). 

Regarding lager beers, although they typically contained lower 

polyphenol concentrations, ferullic and coumaric acids were 2-fold 

more abundant in this class. 

 

Table 1. Results of the classification of beers by PLS-DA for the 

different types of data sets. Data corresponds to the number of 

replicates wrongly assigned in both training a test steps.  

 

 

Classification of beers  

 

The preliminary inspection of the different types of data by PCA 

suggested they could be exploited to carry out the classification of 

beers according to the brewing style. For such a purpose, 

chemometric methods were used to assign a set of commercial 

beers into lager and ale classes. In all the cases, the training set 

consisted of 13 ale and 23 lager beers and the test set of unknown 

samples was composed of 7 ale and 19 lager beers. Table 1 

summarizes the results obtained including the number of latent 

variables (LV) to be used and the number of wrong assignations to 

each class in both training and prediction steps. The number of LV, 

pre-established by cross-validation, was in agreement with that 

deduced from the application of a classification rate criterion 

relying on the number of misclassified samples.   

As shown in the table, these results corresponded to the 4 types of 

data sets (i.e., raw and corrected chromatograms, peak areas and 

concentrations) under the application of several pre-processing 

conditions. In general, it can be seen that the use of some scaling 

procedures as well as baseline correction by AsLS slightly improved 

the predictive performance of PLS-DA models. In contrast, the 

application of normalization on the chromatographic domain 

negatively affected the quality of results. With the exception of 

normalization, all samples of the training set were correctly 

assigned to their actual classes.  

When dealing with the test set, however, various wrong 

assignations occurred. In general autoscaling was found to be the 

most appropriate pretreatment. Regarding the data type, the best 

option corresponded to the use of concentrations from which 

classification models were exempt of mistakes when applying 

Pareto scaling or autoscaling.  

 

 

 

 

 

 

 

 

 

Fig. 3 shows complementary plots illustrating the classification 

performance for autoscaled data based on the analysis of the areas 

under the ROC (receiver operating characteristic) curves. In all the 

cases, ROC areas were close to 1 which indicated that the 

classification was highly satisfactory (ROC areas were 0.90 for raw 

chromatograms, 0.92 for corrected chromatograms, 0.88 for areas 

and 1.00 for concentrations, see Fig. 3). Scores plots of the 

corresponding classification results are depicted in Fig. 4 with the 

sample distribution as a function of LV1 and LV2, with circles and 

squares corresponding to lager and ale classes, respectively. In 

accordance with the ROC results, most of the samples were located 

in their correct positions so that the classification was satisfactory 

in terms of selectivity and sensitivity. In particular, the two classes 

were clearly separated across the line plotted in the case of 

concentration data, which was the most efficient model. 

As an alternative to PLS-DA classifications, SIMCA was applied to 

the study of the beer data sets. The probability of each sample of 

belonging to lager and ale classes was accounted on the basis of Q 

and T2 statistics. For class assignation, the significance level was set 

to 0.05. The best data pre-processing options previously established 

were here applied as recommended pretreatment prior SIMCA 

analyses. Results summarized in Table 2 indicated that, in general, 

ale beers were more efficiently classified than lager. As above, the 

most limited strategy corresponded to raw chromatographic data, 

with only 4.5 and 14.3% of correct assignations of lager and ale in 

the test set. In the case of corrected chromatograms the 

performance of the SIMCA models was more satisfactory, thus 

corroborating that the chromatographic treatment certainly 

 Training Test 

Data set Pretreatment 

Latent 

Variables False + False - False + False - 

Raw chromatograms Normalization 7 1 4 10 5 

 AsLS detrending 2 0 0 7 0 

 Pareto Scaling 8 1 3 9 6 

 Autoscaling 5 0 0 5 4 

Corrected chromatograms Normalization 5 1 0 9 9 

 AsLS detrending 2 0 0 6 1 

 Pareto Scaling 2 0 0 7 9 

 Autoscaling 2 0 0 3 3 

Peak areas Normalization 6 0 3 7 6 

 Pareto Scaling 3 0 0 6 4 

 Autoscaling 2 0 0 3 3 

Concentrations Normalization 3 2 3 3 12 

 Pareto Scaling 2 0 0 0 0 

 Autoscaling 2 0 0 0 0 
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improved the quality of data. In this case, 50.0 and 71.4% of lager 

and ale samples of the test set were classified correctly. Again, the 

best predictions were obtained when concentrations were used as 

the analytical data, with 68.2 and 71.4% of success in the 

classification of lager and ale beers, respectively. 

 

 

Fig. 3. Plots of receiving operating characteristic (ROC) curves of 

lager and ale classes. Assignments: 1, raw chromatograms; 2, 

corrected chromatograms; 3, peak areas; 4, concentrations. In all 

the cases, autoscaling was used as the data pretreatment.  

 

From the comparison of results obtained with PLS-DA and SIMCA, it 

was found that predictions with PLS-DA were more accurate. PLS-

DA allowed better percentages of correct assignations while the 

number of misclassifications was more limited. 

 

Table 2. Results of the classification of beers by SIMCA for the 

different types of data sets. Data corresponds to the percentage of 

replicates wrongly assigned in both training a test steps.  

 

 

 

Fig. 4. Results of distribution of beers into lager and ale classes by 

PLS-DA. (a) Raw chromatograms; (b) Corrected chromatograms; (c) 

Peak areas; (d) Concentrations. Symbols: Circle = lager; square = ale; 

solid symbol = calibration sample; empty symbol = test sample. 

  

 Training Test 

Data set 
Beer 

class 

Latent 

Variables Assigned 

 

Mis-

classified 

 

Non-

classified 

Multiple 

assigned Assigned 

 

Mis-

classified 

 

Non-

classified 

Multiple 

assigned 

Raw 

chromatograms 

Lager 5 8.6 2.5 4.9 84.0 4.5 7.6 10.6 77.3 

 Ale 2 38.5 0 2.5 59.0 14.3 0 85.7 4.8 

Corrected 

chromatograms 

Lager 5 81.5 0 3.7 14.8 50.0 0 22.7 27.3 

 Ale 5 100 0 0 0 71.4 0 4.8 23.8 

Peak areas Lager 5 53.1 0 4.9 42.0 25.8 1.5 18.2 54.5 

 Ale 5 100 0 0 0 71.4 0 28.6 0 

Concentrations Lager 2 76.6 0 3.7 19.7 68.2 0 4.5 27.3 

 Ale 3 89.7 0 0 0 71.4 0 0 28.6 
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Conclusions 

This paper aims at exploring the possibilities of various types of 

HPLC-UV data for the characterization and classification of beers. In 

contrast to those more expensive approaches based on LC-MS, the 

proposed HPLC-UV may have a great practical impact offering a 

simpler, faster and more robust method for quality control and 

routine analysis. In particular, the performance of chromatographic 

fingerprints, peak areas and compositional profiles was compared. 

Raw chromatographic profiles required pretreatment to enhance 

the data quality. Further exploratory sample evaluation by PCA 

allowed a reasonable discrimination of beers depending on their 

main classes (lager and ale). Regarding potential markers of each 

class, it was encountered that some compounds occurred at 

concentrations significantly higher in lager (e.g., ferulic and 

coumaric acids) while other were much more abundant in ale (e.g., 

gentisic and syringic acids). The classification of commercial beers 

using chemometric methods, especially PLS-DA, was highly 

promising. Results working with concentration data were excellent,  

with 100% of correct assignations to the respective lager or ale 

classes. We expect that this approach could be extended to other 

purposes such as classifications on geographical factors or 

authentication studies.  
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