Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

1	
2	Direct determination of cadmium in geological samples by
3	slurry sampling electrothermal atomic absorption
4	spectrometry
5	
6	
7	Hao Cui ^a , Wei Guo ^{a,} *, Mengting Cheng ^a , Ping Zhang ^b , Lanlan Jin ^a ,
8	Qinghai Guo ^a , Shenghong Hu ^{a,**}
9	^a State Key Laboratory of Biogeology and Environmental Geology, China University
10	of Geosciences, Wuhan, 430074, P. R. China
11	^b Beijing CKC, PerkinElmer, Inc. 100015, China
12	
13	
14	
15	*Corresponding Author. Tel and Fax: +86-27-67883495;
16	Email address: Wei.Guo@cug.edu.cn (Wei Guo); Shhu@cug.edu.cn (Shenghong Hu).
17	† Electronic supplementary information (ESI) available, see DOI: 10.1039/c5ay
18	XXXXX.
19	
20	
	1

Analytical Methods Accepted Manuscript

21 ABSTRACT

22	Cadmium (Cd) is an important element for the assessment of environmental pollution.
23	An accurate and high throughput method involving slurry sampling electrothermal
24	atomic absorption spectrometry (ETAAS) was developed to detect trace Cd content in
25	geological samples. After sonication of the sample with 0.5% v/v HNO3 and 0.5% v/v
26	Triton X-100 solution, the slurry was directly introduced into a graphite atomizer and
27	detected by AAS. This simple method was shown to take 80% less time, and resulted
28	in 90% less reagent waste than the conventional acid digestion method. Under
29	optimized conditions (sample size \leq 75 μ m, sonication time: 20 min, pyrolysis
30	temperature: 450 °C, and atomization temperature: 1600 °C), the characteristic mass
31	and limit of detection for Cd were 0.8 pg and 0.002 μ g g ⁻¹ , respectively. The proposed
32	method was applied to the determination of Cd in 86 soil, sediment, and rock standard
33	reference materials (SRMs). The results for 78 of these materials were in good
34	agreement with the reference values. The Cd levels in five limestone SRMs (GUI-1,
35	GUI-2, DIAN-1, DIAN-2, and DIAN-3) and one clay SRM (GBW03103) were
36	reported for the first time. The proposed method shows great potential for the direct
37	determination of trace Cd in various geological samples.

39 Introduction

The assessment of cadmium (Cd) in the environment or geological is important in the study of environmental pollution because of the toxic effect of Cd on human health and the fact that Cd-contaminated crops can grow from polluted soil. ¹⁻³ The abundance of Cd in upper continental crust is only 0.09 $\mu g g^{-1}$. Therefore, the concentration of Cd is at trace or ultra-trace levels in natural soils, sediments, and rocks (except for Cd mineral deposits). ⁴⁻⁶ Consequently, highly sensitive and high-throughput analytical methods are needed for Cd determination of solid environmental samples. In addition, accurate determination of Cd is imperative for Cd isotopic analysis, which is vital for the study of cosmology, the tracing of anthropogenic sources, the study of micronutrient cycling, and oceanography.⁷

Two main techniques have been proposed that can be used for the accurate determination of trace Cd in soils, sediments, or rocks in typical geological laboratories. One method is inductively coupled plasma mass spectrometry (ICP-MS), which has high sensitivity, low detection limits, and is capable of simultaneous multi-element analysis.⁸⁻¹⁹ However, isobaric and/or polyatomic interferences derived from the presence of high concentrations of matrix elements are significant limitations of this technology.²⁰ All isotopes of Cd are subject to interferences from various isobaric ions and/or oxide or hydroxide ions of Pd, Sn, In, Zr, Mo, Ru, Nb, and Y.²¹ Complicated separation procedures, such as chromatography, precipitation, extraction,

2
3
4
5
4 5 6
6 7
~
8
9
10
8 9 10 11 12
12
13
14
15
10
16
17
18
12 13 14 15 16 17 18 19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32
~~ ??
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
27
20
38
39
32 33 34 35 36 37 38 39 40
41
42
43
44
45
46
46 47
48
49
50
51
52
53
53 54
55
56
57
58
59

60

1 2

59	and volatile species generation, are usually required to eliminate these interferences
60	²²⁻²⁵ . Isotope dilution ICP-MS (ID ICP-MS) ^{26, 27} and dynamic reaction cell ICP-MS
61	(DRC ICP-MS) ^{28, 29} have been demonstrated as valid methods to accurately detect
62	trace Cd in environmental or geological samples. However, the high cost and complex
63	operating procedures associated with these methods prevent their routine use in a
64	high-throughput geological laboratory. The other method is electrothermal atomic
65	absorption spectrometry (ETAAS), which has emerged as a better technique than
66	ICP-MS for trace Cd determination as it is less subject to interference, more
67	economical, relatively simple, and is capable of direct determination of Cd in complex
68	matrices. ³⁰⁻³³

69 Sample preparation is the most time-consuming step for solid environmental 70 sample analysis, and microwave-assisted or high-pressure closed acid digestion has 71 been extensively employed for sample dissolution which avoids analyte losses and contamination. ³⁴ The main drawbacks are the high cost of vessels and ovens, the risk 72 73 of explosions, low sample throughput, and the long time required for the cooling step. ³⁵ Direct solid sampling ETAAS (DSS-ETAAS) may be used to simplify sample 74 preparation procedures, and to avoid sample contamination. ³⁶⁻⁴¹ However, the 75 76 DSS-ETAAS method was not widely accepted until recently, owing to the difficulty in 77 handling and introducing small sample masses, the high imprecision of the results due 78 to the heterogeneity of some natural samples, the difficulty in calibration due to the

79	requirement of solid standards with similar matrix composition and structure, the
80	limited linear working range of AAS, and the difficulty in diluting solid samples. ³⁵
81	Another attractive alternative is the use of slurry sample introduction in ETAAS,
82	which combines the advantages of liquid and solid sampling and avoids many
83	problems associated with direct solid sampling. Here, simple aqueous standards are
84	used instead of solid-sample matrix calibration, the sample concentration can easily
85	be changed by dilution, it can avoid weighted errors and inhomogeneity problems are
86	eliminated, and the analyte concentration falls within the linear range. Furthermore,
87	slurry can be directly sampled using the conventional autosampler used in ETAAS,
88	avoiding the need for specialized expensive equipment such as a microbalance and
89	solid sampling accessories. 42, 43 Slurry sampling ETAAS techniques have been
90	proposed for trace Cd determination in various biological and food materials, such as
91	plant, honey, wheat, and rice. ^{32, 33, 44, 45} However, limited literature is available
92	regarding Cd determination in environmental soil or sediment samples. 46, 47 Most
93	literature relates to acid digestion procedures but not direct slurry sampling. Therefore,
94	to investigate whether the slurry sampling method is effective for non-soft matrices,
95	such as soil, sediment, and rock, it is necessary to carefully optimize various operating
96	conditions and comprehensively evaluate the accuracy and precision of this method
97	for Cd determination.

Analytical Methods Accepted Manuscript

2
3
4 5 6 7 8 9 10
5
6
7
8
9
10
11
12 13
13 14 15
14
15
16 16 17
17
18
10
20
∠∪ ว₄
21
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
00
54
55
56
50 57
58
59
60

1

98 The aim of this work was to develop an easy, accurate, reliable, green, and 99 routine method for determination of trace Cd in solid geological samples using slurry 100 sampling ETAAS. The optimization of the technique and its analytical performance, 101 as well as its application to the determination of trace Cd in 86 soil, sediment, and 102 rock standard reference materials (SRMs) are discussed in detail.

103

104 **Experimental**

105 Instrumentation

All measurements were performed with a PinAAcleTM 900T atomic absorption
spectrometer (PerkinElmer, Inc., Shelton, USA), which was equipped with a
longitudinal AC Zeeman background correction system, a transversely heated graphite
atomizer (THGA), PerkinElmer Cd electrodeless discharge lamps (EDL), and an AS
900 autosampler. A TubeViewTM color furnace camera was used to monitor the
process of slurry sampling in the graphite tube (Fig. S1, see ESI†).

112 Materials

113 De-ionized water used for the preparation of all blank, standard, and sample solutions 114 was obtained from a water purification system (Merck Millipore, Fontenay-sous-Bois, 115 France). The Cd standard solution (1000 μ g L⁻¹) was purchased from the National 116 Center for Analysis and Testing of Steel Materials, China. Nitric acid (65–70%, w/w,

Analytical Methods

117	99.999%) and Triton X-100 (> 99%) were purchased from Alfa Aesar Ltd. (Tianjin,
118	China). Eighty-six geological SRMs were used to evaluate the accuracy of the
119	proposed method, which covers 26 soil SRMs, 25 sediment SRMs, and 35 rock SRMs.
120	Five of these SRMs were purchased from the United States Geological Survey (USGS)
121	and the remainder from the Institute of Geophysical and Geochemical Exploration of
122	China (IGGE). A detailed description of these SRMs is given in Table S1 (see ESI [†]).
123	Slurry sampling procedures
124	Slurries were prepared by weighing 0.1000 to 0.3500 g of the sample in a 50 mL
125	conical polypropylene tube and diluting to 50 mL with 0.5% v/v HNO3 containing
126	0.6% v/v Triton X-100. After homogenizing in an ultrasonic bath (Branson, USA) for
127	20 min, the uniform slurries were transferred into acid-cleaned propylene autosampler
128	cups. Then, 20 μL of slurry was taken up and delivered to the graphite tube for
129	ETAAS analysis.
130	For comparison, a conventional digestion method employing closed acid digestion
131	with a mixture of HF + HNO3 was also used (see ESI Table 2S ⁺) $^{48-50}$
132	
133	Results and discussion
134	Optimization of slurry sampling ETAAS conditions
135	To obtain accurate results with the slurry sampling ETAAS techniques, the slurry

Analytical Methods Accepted Manuscript

2
2
3 4 5 6 7 8 9 10 11
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 32 33 4 35 36 37 8 9 9
19
20
21
22
23
24
27
20
26
27
28
29
30
31
22
32
33
34
35
36
37
38
20
39
40
41
42 43
43
44
45
46
46 47 48
47
48
49
51
52
53
50
54
50 51 52 53 54 55 56 57
56
57
58
59
60
00

1

136	sampling procedures and graphite furnace heating parameters were optimized in detail.
137	AGV-2, which is an andesite SRM provided by USGS with a certified Cd content of
138	0.069 μ g g ⁻¹ , was used to optimize all of the parameters. As shown in Fig. 1a, the
139	recovery of Cd from the AGV-2 with HNO ₃ was investigated by varying the HNO ₃
140	concentrations from 0.1% and 0.6% (v/v), while other parameters, such as particle
141	size (62 μ m), sonication duration (20 min), Triton X-100 concentration (0.5% v/v),
142	and slurry concentration (0.5% m/v), pyrolysis temperature (450 $^{\circ}$ C), and atomization
143	temperature (1600 °C), were kept constant. As is evident from the figure, the best
144	recovery of Cd is obtained when 0.5% v/v HNO ₃ is used.
145	Sonication and the addition of the stabilizing medium Triton X-100 were used to
146	improve the homogeneity of the sample slurries, and similar optimization procedures
147	as for HNO_3 concentration were performed for Triton X-100 concentration and
148	sonication time, as shown in Fig. 1b and Fig. 1c. Under the optimized Triton X-100
149	concentration (0.5% v/v) and sonication time (20 min), sample particles formed
150	homogenous and stable slurries (Fig. S2, see ESI [†]).
151	It is important to optimize particle size in order to attain quantitative recoveries

151 If is important to optimize particle size in order to attain quantitative recoveries 152 with the heat extraction procedure. Different particle sizes ranges of a soil sample 153 with a Cd content of $0.230 \pm 0.012 \ \mu g \ g^{-1}$ (determined by the closed acid digestion 154 ETAAS method) were studied. Particle sizes of 83 μ m, 75 μ m, 62 μ m, and 38 μ m 155 were investigated, as shown in Fig. 1d, and quantitative recoveries were attained for

Analytical Methods

particles both 38 μ m (97%) and 62 μ m (98%) in size. 10 min of sample grinding in a ball mill is required to obtain a particle size of 38 μ m. However, only 4 min is required to obtain a particle size of 62 μ m. Therefore, 62 μ m particle sizes (240 mesh) was employed for the rest of this work.

The concentration of slurry suspensions is an important factor, which can affect the measurement precision. Here, a number of suspensions with different percentages of SRM AGV-2 were prepared, and the precision (RSD, %) of the integrated absorbance results was explored. Fig. 1e shows the relationship between precision and slurry concentration in the range 0.1 - 1.0% (m/v). The optimum concentration ranges from 0.2% to 0.7% (m/v). Although quantitative recovery in the slurry sampling procedure is achieved for sample concentrations outside this range (> 0.7% m/v or < 0.2%), a high level of error (RSD > 9.5%) is observed.

Analytical Methods Accepted Manuscript

As it is a volatile element, Cd is lost from the graphite atomizer at temperatures higher than 300 °C in the absence of a chemical modifier. ^{51, 52} To increase the thermal stability of Cd and allow higher pyrolysis temperatures for the removal of higher levels of concomitants, Pd(NO₃)₂ solution was assayed as a chemical modifier. The effect of the pyrolysis and atomization temperature on the integrated absorbance were studied in experiments on the AGV-2 SRM slurry with or without a $Pd(NO_3)_2$ chemical modifier. As shown in Fig. 1f, the addition of 5 μ L 0.05% m/v Pd(NO₃)₂ modifier allowed the optimum pyrolysis temperature to increase from 350 °C (without

Analytical Methods Accepted Manuscript

modifier) to 450 °C. The optimum atomization temperature was found to be 1600 °C
(Fig. 1f), which is similar to that of without a modifier. In addition to the graphite
furnace temperature programs described in Table 1, a pre-pyrolysis step (350 °C)
using air was added to avoid carbon residues on the platform of the graphite tube ⁵³.

180 Analytical features of merit

Calibrations were carried out using aqueous standard solutions with a linear range of 0.1 to 3.0 ng mL⁻¹ Cd. The characteristic mass (m_0) , defined as the mass of analyte corresponding to 0.0044 absorbance units, is 0.8 pg. The limit of detection (LOD) is $0.002 \ \mu g \ g^{-1}$, which was calculated from 20 consecutive measurements of the blank solutions, and a 200-fold sample dilution factor, i.e., a 0.5% m/v slurry concentration. The tube lifetime using the proposed slurry sampling ETAAS method is 785 ± 28 analytical firings, which is only 15% shorter than that with the conventional closed acid digestion ETAAS method. By considering the time taken the preparation of sample slurries (10 samples per each batch spent 0.5 hour) and the determination by ETAAS, the analytical throughput of the method is estimated to be 7 samples per hour. For each sample analysis, only 0.25 mL HNO₃ and 0.30 mL Triton X-100 is required with the proposed method. Conversely, conventional closed acid digestion ETAAS requires 6.0 mL HNO3 and 2.0 mL HF per sample, representing much higher cost and more waste.

195	Geological	sample analysis	
-----	------------	-----------------	--

196	Five USGS SRMs were assessed using the proposed method (Table 2). For
197	comparison, the USGS certified Cd values and those reported elsewhere in the
198	literature are also listed in Table 2. Cd contents determined for SRMs AGV-2, SBC-1,
199	SGR-1b, and BCR-2 are in agreement with the USGS reference values. The reference
200	value of BHVO-2 (USGS) is 0.06 μ g g ⁻¹ , which is lower than our reported value of
201	$0.116 \pm 0.011 \ \mu g \ g^{-1}$. However, our result is consistent with the value obtained by
202	isotope dilution ICP-MS (0.112 μg g^-1), 26 which is regarded as the most reliable
203	method for Cd detection. To further confirm that our reported values are reasonable,
204	ten separate aliquots of BHVO-2 were analyzed over a period of three months, and
205	consistent results (0.093-0.123 $\mu g \ g^{\text{-1}})$ were obtained (Fig. 2a). The Cd content of
206	BCR-2 obtained by ICP-MS (0.227 μ g g ⁻¹ , ⁵⁴ and 0.75 μ g g ⁻¹ , ⁵⁵ etc.) is significantly
207	higher than the USGS reference value (0.14 $\mu g~g^{\text{-1}})$ and the values obtained by
208	ID-ICP-MS (0.136 μ g g ^{-1 56}), and our proposed ETAAS method (0.142 ± 0.008 μ g g ⁻¹).
209	The large errors obtained using the ICP-MS method could be attributed to the
210	presence of large amounts of Zr (Zr/Cd > 1880) and Mo (Mo/Cd > 2510) in BCR-2.
211	Similar results were observed for AGV-2 and SGR-1b, which further confirms that
212	our slurry sampling ETAAS method is more reliable than ICP-MS.
213	The method we report herein was also used to determine Cd levels in 81 Chinese

Analytical Methods Accepted Manuscript

214 geological SRMs, comprising 25 soil, 26 sediment, and 30 rocks. The obtained values

Analytical Methods Accepted Manuscript

2
2
3
4
5
6
7
8
à
10
10
11
12
13
14
15
16
17
17
18
$\begin{array}{c} 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 23\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 20\\ 21\\ 22\\ 22\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 23\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 20\\ 21\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22$
20
21
22
23
20
24
25
26
27
28
20
23
30
31
32
33
34
35
26
30
37
38
39
40
41
42
7 <u>7</u> 40
43
44
45
46
47
48
10
+3 50
50
51
52
53
54
55
56
50
48 49 50 51 52 53 54 55 56 57 58 59 60
58
59
60
-

1

215	and their certified values compared in Fig. 3, except for those of one clay
216	(GBW03103), and one ultra-basic rock (GBW07101), and five limestone (GUI-1,
217	GUI-2, DIAN-1, DIAN-2, and DIAN-3) samples, which have no available certified or
218	literature values. As shown in Fig. 3, the Cd levels of 74 of the geological SRMs are
219	in good agreement with the certified values or reference values. The detailed results
220	for these SRMs are given in Table S1 (see ESI [†]). As shown in Table 3, the Cd content
221	found for the ultra-basic rock GBW07101 is 0.044 \pm 0.002 µg g ⁻¹ , which is nearly
222	twice its reference value 0.024 $\mu g~g^{\text{-1}}.$ This SRM was analyzed ten times over a
223	three-month period, and the results ranged from 0.043 to 0.047 $\mu g~g^{-1}$ (Fig. 2b). The
224	proposed method was also used to analyze one clay SRM GBW03103, and five
225	limestone SRMs (GUI-1, GUI-2, DIAN-1, DIAN-2, and DIAN-3), which have no
226	reported Cd value available (Table 3). Our recommended values are $0.108 \pm 0.009 \ \mu g$
227	g^{-1} (GBW03103), 0.056 ± 0.005 µg g^{-1} (GUI-1), 0.176 ± 0.012 µg g^{-1} (GUI-2), 0.134
228	\pm 0.009 µg g ⁻¹ (DIAN-1), 0.335 \pm 0.005 µg g ⁻¹ (DIAN-2), and 0.244 \pm 0.004 µg g ⁻¹
229	(DIAN-3), respectively. The results of repeated analysis over a period of three months
230	are very stable (Fig. 4), which further confirms that our reported values are reasonable.
231	In addition, these values are in good agreement with the conventional closed acid
232	digestion ETAAS method (Table 3).
233	

234 Conclusion

Analytical Methods

235	A method using slurry sampling ETAAS to accurately determine trace Cd in various
236	soils, sediments, and rocks was developed and validated. In our method, sample
237	digestion is not needed; thus, the problems related to conventional acid digestion,
238	such as the use of concentrated acids, time consumption, the risk of contamination,
239	and possible analyte loss are avoided. Using of the proposed method, Cd levels were
240	determined for 78 international geological SRMs, and the results were found to be in
241	good agreement with their certified or literature values of the samples. The Cd levels
242	in five limestone SRMs (GUI-1, GUI-2, DIAN-1, DIAN-2, and DIAN-3) and one clay
243	SRM (GBW03103) were reported for the first time in the literature, and the values for
244	one ultra-basic rock SRM (GBW07101) and one basalt SRM (BHVO-2) were updated.
245	In conclusion, our method has great potential for the direct determination of trace
246	levels of Cd in various solid geological samples.

Analytical Methods Accepted Manuscript

248 Acknowledgement

This work was supported by the National Nature Science Foundation of China
(No. 21175120 and 21207120) and the National Key Scientific Instrument and
Equipment Development Projects of China (No. 2011YQ06010008), and the
Fundamental Research Funds for the Central Universities, China University of
Geosciences (Wuhan) (No. CUGL140411).

References

- 256 1. X. F. Mao, J. X. Liu, Y. T. Huang, L. Feng, L. H. Zhang, X. Y. Tang, J. Zhou, Y. Z.
- 257 Qian and M. Wang, *Journal of agricultural and food chemistry*, 2013, **61**, 848-853.
- 258 2. K. Ono, Journal of hazardous materials, 2013, 262, 741-747.
- 259 3. S. Enamorado, J. M. Abril, A. Delgado, J. L. Mas, O. Polvillo and J. M. Quintero,
- *Journal of hazardous materials*, 2014, **266**, 122-131.
- 261 4. R. J. Bian, S. Joseph, L. Q. Cui, G. X. Pan, L. Q. Li, X. Y. Liu, A. Zhang, H.
- 262 Rutlidge, S. W. Wong, C. Chia, C. Marjo, B. Gong, P. Munroe and S. Donne, Journal
- *of hazardous materials*, 2014, **272**, 121-128.
- 264 5. E. Galunin, J. Ferreti, I. Zapelini, I. Vieira, C. R. T. Tarley, T. Abrao and M. J.
- 265 Santos, Journal of hazardous materials, 2014, 265, 280-287.
- 266 6. D. W. Xue, H. Jiang, X. X. Deng, X. Q. Zhang, H. Wang, X. B. Xu, J. Hu, D. L.
- 267 Zeng, L. B. Guo and Q. Qian, *Journal of hazardous materials*, 2014, **280**, 269-278.
- 268 7. A. D. Schmitt, S. J. G. Galer and W. Abouchami, *Earth Planet Sc Lett*, 2009, 277,
 269 262-272.
- 270 8. R. F. Wei, Q. J. Guo, H. J. Wen, J. X. Yang, M. Peters, C. W. Zhu, J. Ma, G. X.
- 271 Zhu, H. Z. Zhang, L. Y. Tian, C. Y. Wang and Y. X. Wan, *Analytical Methods*, 2015, 7,
 272 2479-2487.
- 273 9. Z. H. Wang, Q. Z. Xu, S. Y. Li, L. Y. Luan, J. Li, S. X. Zhang and H. H. Dong,
 274 *Analytical Methods*, 2015, 7, 1140-1146.

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

275	10. J. Sun, Z. G. Yang, H. W. Lee and L. Wang, Analytical Methods, 2015, 7,
276	2653-2658.
277	11. Y. X. Liu, T. Zhou, J. Y. Wang, Y. L. Wang, D. Zhao and Q. Zhang, Analytical
278	Methods, 2015, 7, 1872-1877.
279	12. D. P. Bishop, D. J. Hare, A. de Grazia, F. Fryer and P. A. Doble, Analytical
280	Methods, 2015, 7, 5012-5018.
281	13. A. Philippe, M. Gangloff, D. Rakcheev and G. E. Schaumann, Analytical Methods,
282	2014, 6, 8722-8728.
283	14. P. Li, X. Q. Zhang, Y. J. Chen, H. Z. Lian and X. Hu, Analytical Methods, 2014, 6,
284	4205-4211.
285	15. C. Han, J. N. Sun, H. Y. Cheng, J. H. Liu and Z. G. Xu, Analytical Methods, 2014,
286	6 , 5369-5375.
287	16. S. Z. Chen, X. L. Guo, Y. Zhang and D. B. Lu, Analytical Methods, 2014, 6,
288	3668-3673.
289	17. M. Balski, H. Kipphardt, A. Berger, S. Meyer and U. Panne, Analytical Methods,
290	2014, 6, 77-85.
291	18. Z. Bao, H. L. Yuan, R. Wen and K. Y. Chen, Analytical Methods, 2015, 7,
292	5034-5040.
293	19. N. I. Rousis, L. N. Pasias and N. S. Thomaidis, Analytical Methods, 2014, 6,
294	5899-5908.

295	20. W. Guo, S. H. Hu, J. A. Zhao, S. S. Jin, W. J. Liu and H. F. Zhang, Microchemical
296	Journal, 2011, 97, 154-159.
297	21. T. W. May and R. H. Wiedmeyer, Atomic Spectroscopy, 1998, 19, 150-155.
298	22. T. C. Duan, X. J. Song, P. R. Guo, H. F. Li, L. H. Pan, H. T. Chen and J. W. Xu,
299	Journal Of Analytical Atomic Spectrometry, 2007, 22, 403-406.
300	23. X. Y. Jia, Y. Han, X. L. Liu, T. C. Duan and H. T. Chen, Microchim Acta, 2010,
301	171, 49-56.
302	24. P. H. Liao, S. J. Jiang and A. C. Sahayam, Journal Of Analytical Atomic
303	Spectrometry, 2012, 27, 1518-1524.
304	25. W. N. Chen, S. J. Jiang, Y. L. Chen and A. C. Sahayam, Analytica chimica acta,
305	2015, 860 , 8-14.
306	26. A. Makishima, H. Kitagawa and E. Nakamura, Geostand Geoanal Res, 2011, 35,
307	57-67.
308	27. R. Q. Thompson and S. J. Christopher, Analytical Methods, 2013, 5, 1346-1351.
309	28. W. Guo, S. H. Hu, Y. F. Xiao, H. F. Zhang and X. J. Xie, Chemosphere, 2010, 81,
310	1463-1468.
311	29. J. M. Jarrett, G. Xiao, K. L. Caldwell, D. Henahan, G. Shakirova and R. L. Jones,
312	Journal Of Analytical Atomic Spectrometry, 2008, 23, 962-967.
313	30. Naeemullah, T. G. Kazi, H. I. Afridi, F. Shah, S. S. Arain, A. H. Panhwar, S. A.
314	Arain and M. B. Arain, Analytical Methods, 2014, 6, 6909-6915.
	16

 $\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$

Analytical Methods

315	31. S. Mohajer, M. Chamsaz and M. H. Entezari, Analytical Methods, 2014, 6,
316	9490-9496.
317	32. R. F. de Oliveira, C. C. Windmoller, W. B. Neto, C. C. de Souza, M. A. Beinner
318	and J. B. B. da Silva, Analytical Methods, 2013, 5, 5746-5752.
319	33. I. C. F. Damin, A. V. Zmozinski, A. R. Borges, M. G. R. Vale and M. M. da Silva,
320	Analytical Methods, 2011, 3 , 1379-1385.
321	34. Y. Z. Yi, S. J. Jiang and A. C. Sahayam, Journal Of Analytical Atomic
322	Spectrometry, 2012, 27, 426-431.
323	35. J. Sardans, F. Montes and J. Penuelas, Spectrochim Acta B, 2010, 65, 97-112.
324	36. P. Torok and M. Zemberyova, Spectrochim Acta B, 2011, 66, 93-97.
325	37. A. de Jesus, A. V. Zmozinski, I. C. F. Damin, M. M. Silva and M. G. R. Vale,
326	Spectrochim Acta B, 2012, 71-72 , 86-91.
327	38. P. Torok and M. Zemberyova, Food chemistry, 2012, 132, 554-560.
328	39. A. V. Zmozinski, L. D. Passos, I. C. F. Damin, M. A. B. E. Santo, M. G. R. Vale
329	and M. M. Silva, Analytical Methods, 2013, 5, 6416-6424.
330	40. A. V. Zmozinski, T. Pretto, A. R. Borges and M. G. R. Vale, Analytical Methods,
331	2015, 7, 3735-3741.
332	41. M. Resano, A. C. Lapena and M. A. Belarra, Analytical Methods, 2013, 5,
333	1130-1139.
334	42. M. C. Santos, J. A. Nobrega, N. Baccan and S. Cadore, Talanta, 2010, 81,

1781-1787.

- 43. A. R. Borges, E. M. Becker, C. Lequeux, M. G. R. Vale, S. L. C. Ferreira and B.
- 337 Welz, Spectrochim Acta B, 2011, 66, 529-535.
- 338 44. R. A. Sanchez-Moreno, M. J. Gismera, M. T. Sevilla and J. R. Procopio,
- *Phytochem Analysis*, 2010, **21**, 340-347.
- 340 45. C. K. de Andrade, V. E. dos Anjos, M. L. Felsner, Y. R. Torres and S. P. Quinaia,
- *Food chemistry*, 2014, **146**, 166-173.
- 342 46. D. Baralkiewicz and H. Gramowska, *Analytica chimica acta*, 2004, **510**, 249-256.
- 343 47. A. L. Souza, F. F. da Silva, G. A. R. Kelmer and P. V. Oliveira, *Analytical*344 *Methods*, 2013, 5, 2059-2063.
- 345 48. W. Guo, S. H. Hu, X. J. Wang, J. Y. Zhang, L. L. Jin, Z. L. Zhu and H. F. Zhang,
- *Journal Of Analytical Atomic Spectrometry*, 2011, **26**, 1198-1203.
- 347 49. W. Guo, S. H. Hu, J. Y. Zhang, L. L. Jin, X. J. Wang, Z. L. Zhu and H. F. Zhang,
- *Journal Of Analytical Atomic Spectrometry*, 2011, **26**, 2076-2080.
- 349 50. W. Guo, S. H. Hu, J. Y. Zhang and H. F. Zhang, *Sci Total Environ*, 2011, 409,
 350 2981-2986.
- 351 51. E. C. Lima, F. Barbosa and F. J. Krug, *Fresen J Anal Chem*, 2001, **369**, 496-501.
- 352 52. P. Wu, C. H. Li, J. B. Chen, C. B. Zheng and X. D. Hou, *Appl Spectrosc Rev*,
 353 2012, 47, 327-370.
- 354 53. W. Guo, P. Zhang, L. L. Jin and S. H. Hu, Journal Of Analytical Atomic

Analytical Methods

2		
3		S
4	355	Spectrometry, 2014, 29, 1949-1954.
5		
6	356	54. S. K. Marx and B. S. Kamber, Applied Geochemistry, 2010, 25, 1221-1237.
7		······································
8	~	
9	357	55. Z. C. Hu and S. Gao, Chem Geol, 2008, 253, 205-221.
10		
11 12	358	56. R. D. Loss, K. J. R. Rosman and J. R. Delaeter, Geochimica Et Cosmochimica
13		
14		
15	359	Acta, 1984, 48 , 1677-1681.
16		
17	360	
18		
19		
20	361	
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39 40		
40 41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		19
59		
60		

Analytical Methods Accepted Manuscript

362 Figure captions

363	Fig. 1. Effects of the slurry sampling ETAAS conditions on Cd recoveries from the
364	geological SRM AGV-2. (a) Effect of HNO ₃ concentration, (b) effect of Triton X-100
365	concentraiton, (c) effect of sonication time, (d) effect of sample particle size, (e) effect
366	of slurry concentration, and (f) effect of pyrolysis and atomization temperatures.
367	Fig. 2. Results of repeated analyses of (a) a basalt SRM BHVO-2, and (b) an
368	ultra-basic rock SRM GBW 07101. The average values of Cd in BHVO-2 and
369	GBW07101 are 0.116 \pm 0.011 µg g ⁻¹ and 0.044 \pm 0.002 µg g ⁻¹ , respectively. Ten
370	separate aliquots of the samples were analyzed during a period of three months.
371	Fig. 3. Obtained Cd values for 74 Chinese geological SRMs by slurry sampling
372	ETAAS vs. their reference values.
373	Fig. 4. The stability of Cd values obtained by our method in six geological SRMs: (a)
374	clay SRM GBW 03103, (b) limestone SRM GUI-1, (c) limestone SRM GUI-2, (d)
375	limestone SRM DIAN-1, (e) limestone SRM DIAN-2, and (f) limestone SRM
376	DIAN-1. Ten separate aliquots of the samples were analyzed during a period of three
377	months.

1	
2	
2 3 4 5 6 7 8	
4	
5 6	
07	
/ 0	
0	
9	
10	
10	
12	
13	
14	
10	
10	
10	
10	
9 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 52 62 7 28 9 30 132 33 435 36 37 8 9 29	
∠∪ 24	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

380 Table 1

381 Graphite furnace temperature programs and spectrometer operating conditions

<u>Star</u>	Temp. (°C)	Ramp. time	Hold time	Inter. flow (mL	Gas	
Step		(s)	(s)	\min^{-1})	type	
Druing	110	5	30	250	Ar	
Drying	130	15	30	250	Ar	
Drugalausia	350	15	15	50	Air ^a	
Pyrolysis	450	10	20	250	Ar	
Atomization	1600	0	4	0	/	
Cleaning	2500	1	3	250	Ar	
Wavelengh/nm: 228.8		Me	Measurement mode: Peak area			
Spectral band	lwidth/nm: 0.7	Ze	Zeeman-effect background correction system			
Cathode lamp	o intensity/mA	: 8 Py	Pyrolytic graphite tubes with platform			
Integration tim	me/s: 3	Inj	Injection volume/µL: 20			

382 ^a Air gas come from the air compressor.

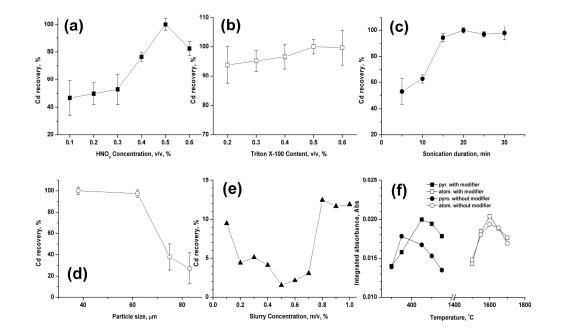
385 Table 2

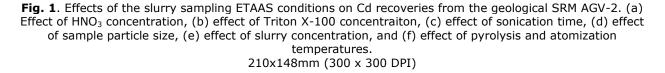
300 Cu utitutitu itsuits of 0505 geological bitilis. $ug g$	386	Cd detected results of USGS geological	SRMs. $\mu g g^{-1}$
---	-----	--	----------------------

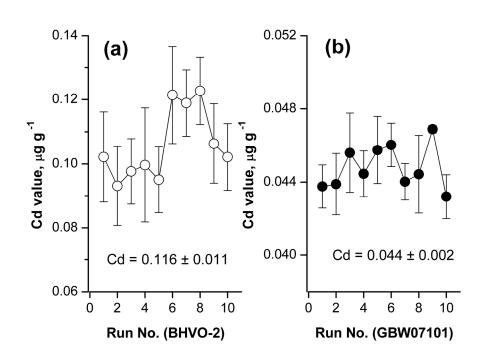
USGS SRMs	This study (N=15)	USGS Ref. ^a	Literature values
AGV-2, andesite	0.070 ± 0.003	(0.061)	0.121 ^b , 0.082 ^c ,
BHVO-2, basalt	0.120 ± 0.012	(0.06)	0.112 ^d
SBC-1, shale	0.400 ± 0.003	(0.4)	/
SGR-1b, oil shale	0.900 ± 0.040	(0.9)	1.14 °
BCR-2, basalt	0.155 ± 0.013	(0.14)	0.227 ^b , 0.75 ^c , 0.136 ^e

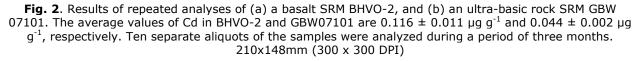
- ^a Reference value by USGS
- **388** ^b ICP-QMS value by Marx and Kamber ⁵⁴
- 389 ^c ICP-QMS value by Hu and Gao⁵⁵
- **390** ^d ID-ICP-MS value by Makishim et al. ²⁶
- ^e ID-ICP-MS value by Loss et al. ⁵⁶

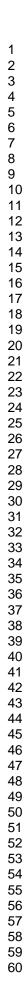
Table 3


395 Updated Cd values for seven SRMs determined by this method, $\mu g g^{-1}$


Geological SRMs	This work	Reference	Closed acid digestion
	(N=10)	values	ETAAS method (N=3)
GBW07101, Ultrabasic rock	0.044 ± 0.004	(0.024) ^a	0.048 ± 0.012
GBW03103, Clay	0.108 ± 0.009	/ ^b	0.108 ± 0.029
GUI-1, Limestone	0.056 ± 0.005	/ ^b	0.060 ± 0.012
GUI-1, Limestone	0.176 ± 0.012	/ ^b	0.185 ± 0.015
DIAN-1, Limestone	0.134 ± 0.009	/ ^b	0.142 ± 0.022
DIAN-2, Limestone	0.335 ± 0.005	/ ^b	0.342 ± 0.025
DIAN-3, Limestone	0.244 ± 0.004	/ ^b	0.238 ± 0.018


^a Reference value by the Institute of Geophysical and Geochemical Exploration of


397 China


398 ^b No reference or reported value

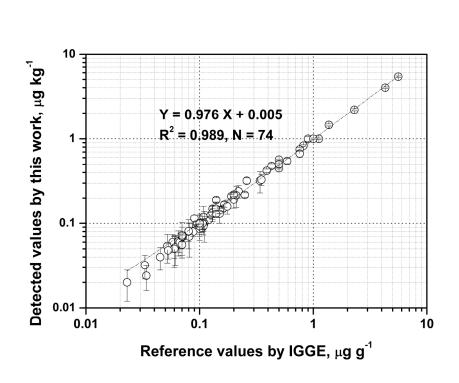
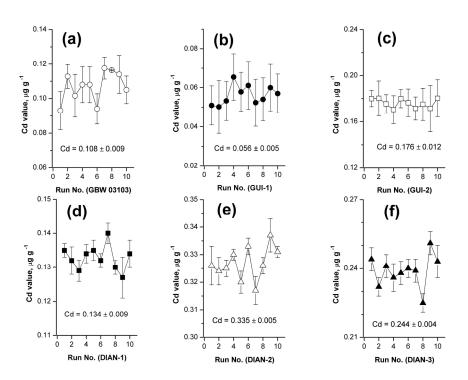
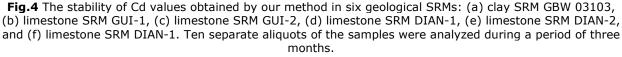




Fig. 3. Obtained Cd values for 74 Chinese geological SRMs by slurry sampling ETAAS vs. their reference values. 210x148mm (300 x 300 DPI)

209x148mm (300 x 300 DPI)

Analytical Methods Accepted Manuscript

Graphical Abstract: An accurate and high throughput method involving slurry sampling ETAAS was developed to detect trace Cd content in various geological samples 41x14mm (300 x 300 DPI)