Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Electrochemical sensor for sensitive determination of nitrites based on the Pt–PANI–graphene Nanocomposites Sai Zhang, Bo-Qiang Li, Jian-Bin Zheng*

Institute of Analytical Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China

A new sandwich structure nanocomposite of Pt nanoparticles supported on PANI modified graphene was synthesized and used for fabricating nitrite sensor. Morphology and composition of the nanocomposites were characterized by transmission electron microscope and X-ray diffraction. Electrochemical investigation indicated that the nanocomposites possess excellent electrochemical oxidation ability towards nitrites. The sensor exhibited two linear ranges: one from 0.4 µM to 0.99 mM with a correlation coefficient of 0.9974 and sensitivity of 485.5 μ A·mM⁻¹·cm⁻²; another from 0.99 mM to 7.01 mM with a correlation coefficient of 0.9981 and sensitivity of 154.3 μ A mM⁻¹ cm⁻². The limit of detection (LOD) of this sensing system was 0.13 μ M at the signal-to-noise ratio of 3. Additionally, the sensor exhibited good reproducibility, long-term stability, and anti-interference.

Analytical Methods Accepted Manuscrig

19 Keywords: electrochemical sensor, graphene, polyaniline, nitrite

21 1. Introduction

Nitrite is considered to be a terrible pollutant to the human health and environment ^[1, 2] because it is widely present in the dye industry, food industry and other fields. It is reported that nitrite can interact the secondary amine to generate carcinogenic nitrosamines in human body ^[3]. Thus exists a great potential safety hazard to the human health. Therefore it is very important for environmental protection and public health to the detection of nitrite. A lot of methods based on different principles have been developed to detect nitrite, such as chromatography ^[4],

^{*}Corresponding author, e-mail: zhengjb@nwu.edu.cn

Analytical Methods Accepted Manuscrig

chemiluminescence ^[5], fluorescence ^[6] and electrochemistry methods ^[7]. Among various methods for nitrite detection, electrochemical sensor has attracted considerable attentions because it shows many advantages such as simple operation, low cost, high sensitivity, and fast response. The oxidation of nitrite can directly occur on the glassy carbon electrode (GCE), but its overpotential is very high, which limits the sensitive and selective detection of nitrite. It is necessary to develop new functional nanomaterials to promote the electron transfer and to lower the operating potential for nitrite oxidation.

Among various materials, Graphene (GE) has attracted considerable attentions thanks to its high specific surface area, the special electronic properties, strong mechanical strength and perfect conductive. [8-10] Graphene shows above excellent physical properties because of its single atomic plane of sp²carbon atom networks ^[11-13]. Its excellent electron transfer property and large surface-to-volume ratio endow graphene-based materials with large specific surface area ^[14, 15], perfect electrical conductivity ^[16, 17], good biological compatibility, more catalytic activity center ^[18,19] and so on. All kinds of graphene-based materials modified electrodes have been used for detection of various kinds of biological molecules ^[20-22]. For instance, Sun et al ^[23] reported the first graphene-based hydrogen peroxide biosensor with wide linear responses, good reproducibility, and high stability.

Polyaniline (PANI) as a kind of conductive polymer, have been extensively used in electrochemical sensing fields due to its simple synthesis, synthesis of low cost and reversible redox properties ^[24-26]. Unfortunately, PANI usually suffers from a limited long-term stability during cycling due to the degradation caused by swelling and shrinking. In order to overcome the above problems, hybrid nanocomposite combined with carbons has been widely studied in recent years. Numerous studies have found that graphene (GE) and polyaniline can be linked together through π - π conjugate steadily ^[27], which not only improves the easy agglomeration and poor solubility of graphene, but also contribute to the existence of long-term stability of polyaniline.

Pt nanoparticles (PtNPs) have attracted considerable attentions in the development of novel electrochemical sensors thanks to its large surface-to-volume

Analytical Methods

1 ratio and high electrocatalytic activity ^[28].

In this work, a kind of Pt–PANI–GE nanocomposites was firstly synthesized, and then a nitrite electrochemical sensor based on the Pt–PANI–GE nanocomposites was constructed and further applied in a real sample analysis.

2. Experimental section

6 2.1. Chemicals and material

High purity graphite powder with an average particle diameter of 4 mm was purchased from Shanghai Carbon plant (Shanghai, China). Aniline was distilled under vacuum to remove the oxidation impurities before using. H₂PtCl₆ (99%) was purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Polyvinylpyrrolidone (PVP), hydrogen peroxide, ammonium persulfate (APS), sodium nitrite and other reagents were of analytical reagent grade and doubly distilled water was used in experiments. 0.1 M phosphate buffered saline (PBS, pH=6.0) was used as the supporting electrolyte unless other stated.

Analytical Methods Accepted Manuscrip

15 2.2. Apparatus and measurements

X-ray diffraction (XRD) patterns of the samples were observed by D/MAX-3C (Rigaku, Japan). The transmission electron microscope (TEM) image was carried out by Tecnai G² F20 S-TWIN (FEI, USA). Electrochemical measurements were carried out in a conventional three-electrode electroanalysis system controlled by CHI660 electrochemical workstation (Shanghai CH Instrument Co., Ltd., China). Glassy carbon electrodes (3 mm in diameter) were used as a working electrode, saturated calomel electrode (SCE) and platinum wire was used as the reference electrode and counter electrode, respectively. All electrochemical experiments were carried out at room temperature.

25 2.3. Preparation of the sensor

26 2.3.1. Synthesis of PANI

According to the previously report ^[29], the purified aniline (146 μ L, 1.6 mmol) and ammonium peroxydisulfate (APS, 91.2 mg, 0.4 mmol) in two beakers containing 10 mL of 0.5 M HCl, respectively. Afterwards, the APS solution was rapidly added
into the aniline solution and shaken vigorously for 40 s. Polymerization procedure
was carried out at 20°C for 2 h.

4 2.3.2. Preparation of GO nanosheets

Graphene oxide (GO) was prepared from natural graphite powder by a modified Hummers method ^[30]. Briefly, 1 g of graphite powder and 0.6 g NaNO₃were stirred in 30 mL of 98% H₂SO₄ for 4h. Then 4 g KMnO₄ was added while cooling to maintain the mixture below 20 °C. The mixture then stirred at 35-40 °C for 40 min, then at 65-80°C for 50 min. Next 60 mL of distilled water was slowly added to the mixture and heated at 98-105°C for 20min. The reaction was terminated by adding 180 mL of distilled water followed by 10 mL of 30% H₂O₂ solution. The product was collected by centrifugation and washed repeatedly with 5% HCl solution and dried in vacuum at 60°C overnight.

14 2.3.3. Preparation of PANI–GE nanoparticles

In a typical reaction, a 2 mg/mL GO dispersion was prepared by the sonication of 20 mg GO in 10 mL water for about 2 h, and 10 mL suspension (2 mg/mL) of PANI was obtained as the same. Then the 10 mL GO dispersion and 80 mg PVP were added into PANI suspension with further sonication for about 30min. The mixed solution were transferred into a 25 mL Teflon-lined autoclave. After heating at 180°C for 20 h and naturally cooling to room temperature. The final product, denoted as PANI-GE. composites, obtained by centrifuged, then washed with water and dried at 70 °C before characterization and application.

23 2.3.4. Preparation of Pt–PANI–GE nanocomposites

10 mg PANI–GE was dispersed in 15 mL water solution by ultrasonication for 30 min, 1 ml of 19.3 mM H₂PtCl₆ aqueous solution was added. After sonicating for another 30 min, 10 ml NaBH₄ solution (24 mM) was added into the dispersion in a dropwise manner under magnetic stirring. After stirring for 24h at room temperature, the composite product was centrifuged and washed with doubly distilled water. The obtained powder was dired at 60 °C for 4 h.

1 2.3.5. Electrode modification

The modified electrode was prepared by a simple casting method. First, the GCE for each experiment was mechanically polished with 0.3 µm alumina powder to obtain mirror like surface. After that, the electrode was successively washed in ethanol solution and doubly distilled water for 3min by sonication method. Then, the GCE was allowed to dry in a steam of nitrogen. The 1.5 mg nanocomposite was dispersed into 1 ml doubly distilled water and sonicated for 30 minutes; 5 μ L Pt -PANI-GE suspension was cast onto the GCE and then dried in air at room temperature (27 °C).

3. Results and discussion

11 3.1. Characterization of Pt–PANI–GE nanocomposites

The morphology and microstructure of as-prepared nanocomposites were characterized by transmission electron microscope (TEM). Fig. 1A demonstrated typical single monolayer structure of GO sheet, some folds were seen on the surface of GO clearly. It was clearly seen from Fig. 1B, that Polyaniline was interwoven by different lengths of nanowires, each the length of about 200 nm. Figure C and D were Pt-PANI-GE TEM image. It was clearly observed that PANI was wrapped on the surface of GE from the pictures, and also observed that spherical Pt nanoparticles were uniformly deposited on PANI-GE surface. The particle diameter was only about 5nm. No PtNPs aggregation was observed, which may be because PANI-GE provides a large specific surface area for Pt sufficient nucleation sites.

Analytical Methods Accepted Manuscrig

Fig. 1.

Fig. 2 showed the XRD patterns of GO, PANI, PANI–GE and Pt–PANI–GE nanocomposites, respectively. The GO sheets (curve a) showed a clear diffraction peak at $2\theta = 10^{\circ}$, which was due to the existence of aqueous solution in the hydrophilic surface GO layer ^[31]. The pure polyaniline (curve b) showed a clear diffraction at $2\theta = 25^{\circ}$, which was consistent with (200) crystal plane of PANI in its

Analytical Methods Accepted Manuscr

1

1	emeraldine salt [32]. PANI-GE (curve c) and Pt-PANI-GE (curve d) had emerged
2	PANI diffraction peaks, as compared to the PANI–GE, at $2\theta = 41^{\circ}$, 47° , 68° appeared
3	three new diffraction peak in curve of Pt-PANI-GE, which corresponded to the (111),
4	(200) and (220) crystallographic planes of PtNPs [33], respectively.
5	
6	Fig. 2.
7	
8	3.2. Mechanism of the Pt–PANI–GE formation
9	Based on the above experimental process and characterization, Fig.3 clarified the
10	preparation mechanism for the Pt-PANI-GE nanocomposites. As shown: First of all,

11 through polymerization generated polyaniline at room temperature. Then PANI, GO 12 and PVP suspension was then transferred into a Teflon-lined autoclave and reacted at 180°C for 20 h. At high temperature, the reduction took place with PVP as reducing 13 agent, GO was reduced to GE, and PANI through π - π interactions connected with GE. 14 15 In the presence of PANI, the PANI-GE could offer more active area for Pt dispersing. The H₂PtCl₆ solution was introduced into the suspension of PANI-GE and mixed 16 uniformly under ultrasonicating condition, PtCl6²⁻ wrapped around and formed layer 17 on PANI-GE surface during the sonication. Then the reduction took place with 18 NaBH4 as reducing agent and continuous magnetic stirring, and finally, well 19 dispersed PtNPs supported on PANI-GE were obtained. 20

Fig. 3.

24

21

22

23

25 3.3. Electrochemical properties of Pt–PANI–GE

Electrochemical impedance spectroscopy (EIS) was a common and effective method for studying interfacial properties of the working electrode. The results of different modified electrodes were shown in Fig. 4A. Bare GCE had a large semicircle diameter (curve a), implying its obstructive role to electron transfer in electrolyte

Page 7 of 19

Analytical Methods

solution. When GO was modified onto the electrode surface, compared to the bare electrode, the semicircle diameter of GO/GCE (curve b) was further larger, Showing that GO played a certain insulation blocking the electron transfer due to destruction of its sp² bonding networks ^[34]. The semicircle diameter of PANI-GE/GCE (curve c) was significantly smaller than that of the GO/GCE, which was mainly due to two reasons: at high temperature, GO was reduced to GE, reinforced its electrical conductive; another reason was PANI having a good electrical conductivity. When Pt was immobilized onto PANI-GE, The semicircle diameter of Pt-PANI-GE/GCE was reduced owing to the good conductivity of Pt NPs that promoted the electron transfer.

Fig. 4.

Analytical Methods Accepted Manuscrip

The electrocatalytic performance of different modified electrodes toward the oxidation of nitrite were studied by cyclic voltammetry(CV). Figure 4 B illustrated the CV behaviors of the bare GCE (a), GO/GCE (b), PANI-GE/GCE (c) and (d) Pt-PANI -GE/GCE in 0.10 M phosphate buffer (pH 6.0) solution containing 1.0 mM nitrite at the scan rate of 50 mV s⁻¹. No current response was observed at the GO/GCE (curve b), the reason was GO act as an insulating layer that hinder the electron transfer ^[35]. In comparison with that of the bare GCE (a), the oxidation current response of PANI-GE/GCE (curve c) had obvious larger. The reason was that PANI-GE has big area and good electrical conductivity, which was advantageous to the electron transfer. When Pt was immobilized onto PANI-GE, compared with PANI-GE/GCE, the oxidation current response of Pt-PANI-GE/GCE (curve d) were increased 35 µA. The reason was owing to the good conductivity of Pt NPs that accelerated electron transfer.

The CVs of the Pt–PANI–GE/GCE in different concentrations of nitrite were also measured in Fig. 5A. It can be seen that no characteristic peak was appeared when no nitrite was added into the system. Along with adding different concentrations of nitrite, the oxidation peak current appeared and gradually increased, and showed a good linear relationship (Figure 5.A inset) between peak current and concentration. This indicated that Pt–PANI–GE nanocomposites have good electrocatalytic activity Fig. 5.

Analytical Methods Accepted Manuscrip

toward nitrites.

Figure 5B exhibited the CVs of Pt–PANI–GE/GCE gaining 4.0 mM nitrite at different scan rates. As the scan rate increased, the peak currents also increased, and the oxidation peak current increased linearly with the square root of the scan rate (Figure 5B inset), which proved nitrite in the modified electrode surface catalytic oxidation reaction was controlled by diffusion ^[36].

To improve the performance of the sensor, we optimized the pH value of 0.1 M PBS by testing the CVs of the Pt-PANI-GE/GCE toward 1.0 mM NO₂⁻⁻. As it was clearly shown in Fig. 6, with the increase of pH peak, current also increased, until reach maximum at pH = 6.0, but in the pH range of $6.0 \sim 9.0$, with the increase of pH the peak current decreased. The reason for this phenomenon could be attributed to when pH <6.0, NO₂⁻ could not be stable, it would quickly break down into NO₃^{- [37,} ³⁸]. In contrast, nitrite oxidation became more difficult when the pH was above 7.0 (up to 9.0), owing to the lack of protons $^{[39, 40]}$. Thus, pH = 6 was selected as the optimum pH value in our experiments. Therefore, the electrocatalytic oxidation mechanism for nitrite oxidation can be proposed:

- $\mathrm{H}^{+} + \mathrm{NO}_{2}^{-} \leftrightarrow \mathrm{HNO}_{2} \tag{1}$

- $NO_2^- \leftrightarrow NO_2 + e^-$ (2)
- $2NO_2 + H_2O \leftrightarrow 2H^+ + NO_2^- + NO_3^-$ (3)
 - **Fig. 6**.

Fig. 7A showed the amperometric current-time curve of the Pt-PANI-GE/GCE under 0.75 V with successive additions of nitrite. With different concentrations of nitrites were added into a continuous stirring PBS, Pt-PANI-GE/GCE responsed for matrix quickly. It took less than 3 s to achieve the steady-state current, indicating that the sensor has good catalytic activity toward nitrite. The calibration curve for the

Analytical Methods

1	nitrite sensor was shown in the Fig.7B. The Pt-PANI-GE/GCE gave two linear
2	dependence in the nitrite concentration ranges: one from 0.4 μ M to 0.99 mM, linear
3	regression equation was Ip (μA) = 0.150 + 34.3C (mM) with the correlation
4	coefficient of 0.9974 and sensitivity of 485.5 µA·mM ⁻¹ ·cm ⁻² ; another from 0.99 mM
5	to 7.01 mM, linear regression equation was Ip (μA) = 22.7+10.9 $\cdot C$ (mM) with the
6	correlation coefficient of 0.9981 and sensitivity of 154.3 μ A mM ⁻¹ cm ⁻² . The limit of
7	detection (LOD) of this sensing system was 0.13 μ M at the signal-to-noise ratio of 3.
8	Compared with some other modified electrodes listed in Table 1, the results indicated
9	that the proposed Pt-PANI-GE/GCE may be an excellent platform for
10	electrochemical detection of nitrite. The reasons of two linear curves were shown
11	below: in the low concentration range, nitrite spreads to the modified electrode
12	surface and reacted quickly, the response current was large; in high range, while
13	mixing had been accompanied by the whole reaction process, but in the process of
14	reaction, electrode surface inevitably produced the adsorption, resulting in nitrite
15	diffusion hindered. So the small response current generated in a high concentration
16	range and the sensitivity was low.
17	
18	Fig. 7.
19	
20	Table1.

3.4. Reproducibility, stability and anti-interference performance of
Pt–PANI–GE/GCE

optimal conditions, the anti-interference advantage Under of the Pt-PANI-GE/GCE was studied by using amperometric method. As was shown in Fig. 8, 0.5mM NaNO₂, Na₂SO₄, KCl, KNO₃, KClO₄ and CuCl₂ were continuously added into the solution, the result showed that the interfering substance almost had little effect on the detection of nitrite. The above results showed that Pt-PANI-GE/GCE possess perfect anti-interference abilities for detecting nitrite.

1	
2	Fig. 8.
3	
4	In order to study the repeatability of the applied electrode, the same electrode
5	was used for detecting the same concentration of NaNO2 six times in a row by cyclic
6	voltammetry, the oxidation current standard deviation was 3.42%. This result
7	indicated that the sensor has good reproducibility for detection of nitrite. When the
8	modifed electrode was stored at 4 °C for a month, for the same concentration NaNO ₂ ,
9	its current response was approximately 92% of the initial value, which showed that
10	the sensor has a good stability for detection of nitrite.
11	3.5. Application
12	In order to assess the practical applications of the sensor, we use the standard
13	addition method to detect nitrite in tap water by amperometric detection methods. The
14	sample was dissolved in 0.1 mol • L^{-1} PBS (pH = 6) solution for testing, the results
15	were shown in Table 2. As seen from the table, the recovery was 104.2%, 99.1% and
16	100.7%, respectively. Relative standard deviation (RSD) was 2.3%, 1.9% and 2.6%,
17	respectively. The result indicated that the sensor can be applied to detect the actual
18	sample.
19	
20	Table 2.
21	
22	
23	4. Conclusions
24	In summary, Pt-PANI-GE nanocomposites were synthesized successfully and
25	used for constructing a novel nitrite sensor. The sensor showed high electrocatalytic
26	activity toward nitrites and many excellent features such as wide linear range,

electrochemical sensing conductive graphene-based polymer nanocomposites. Analytical Methods Accepted Manuscr

long-term storage stability, high sensitivity, satisfactory anti-interference ability, and

high reproducibility. This research could provide a reference for the study of

21 [1

22 [1

23 [1

25 [1

26 [1

27 [1

24 [1

Analytical Methods

	Acknowledgements. The authors gratefully acknowledge financial support of
thi	s project by the National Science Fund of China (No. 21275116), Specialized
Re	search Fund for the Doctoral Program of Higher Education (No.
20.	126101120023), Natural Science Foundation of the Shaanxi Province in China
(Ne	o. 2012JM2013, 2013JM2006), the Fund of the Shaanxi Province Educational
Со	mmittee of China (No. 12JK0576), and the Scientific Research Foundation of the
She	aanxi Provincial Key Laboratory (11JS080, 12JS087, 13JS097, 13JS098).
Re	eferences
[1]	N. S. Bryan, Free Radical Biol. Med., 2006, 41, 691.
[2]	W. Lijinsky and S. S. Epstein, Nature, 1970, 225, 21.
[3]	S. S. Mirvish, Cancer Lett., 1995, 93, 17.
[4]	A. Gáspár, P. Juhász and K. Bágyi, J. Chromatogr. A, 2005, 1065, 327.
[5]	Z. Lin, W. Xue, H. Chen and J. Lin, Anal. Chem., 2011, 83, 8245.
[6]	H. Li, C. J. Meininger and G. Wu, J Chromatogr. B Biomed. Appl., 2000, 746, 199.
[7]	M. Muchindu, T. Waryo, O. Arotiba, E. Kazimierska, A. Morrin, A. J. Killard, M. R. Smyth,
	N. Jahed, B. Kgarebe, P. G. L. Baker and E. I. Iwuoha, Electrochim. Acta, 2010, 55, 4274.
[8]	J. Zhang, F. Zhao, Z. P. Zhang, N. Chen and L. T. Qu, Nanoscale, 2013, 5, 3112.
[9]	J. Q. Ling, W. T. Zhai, W. W. Feng, B. Shen, J. F. Zhang, and W. G. Zheng, ACS Appl. Mater.
	Inter., 2013, 5, 2677.
[10]	H. P. Cong, J. F. Chen and S. H. Yu, Chem. Soc. Rev., 2014, 43, 7295.
[11]	G. He, H. Chen, J. Zhu, F. Bei, X. Sun and X. Wang, J. Mater. Chem., 2011, 21, 14631.
[12]	D. Li and R. B. Kaner, Nat. Nanotechnol., 2008, 3, 101.
[13]	A. K. Geim, and K. S. Novoselov, Nat. Mater., 2007, 6, 183.
[14]	M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett., 2008, 8, 3498.
[15]	S. Park and R. S. Ruoff, Nat. Nanotechnol., 2009, 4, 217.
[16]	K. S. A. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,
	S. V. Dubonos and A. A. Firsov, Nature, 2005, 438, 197.

Y. Zhang, Y. Tan, H. L. Stormer and P. Kim, Nature, 2005, 438, 201.

Analytical Methods Accepted Manuscr

2		
3		
4		
י ה		
5		
6		
7		
8		
g		
1	n	
1	4	
1	1	
1	2	
1	3	
1	4	
1	5	
4	с С	
1	о _	
1	7	
1	8	
1	9	
2	Ô	
<u>م</u>	4	
2	1	
2	2	
2	3	
2	4	
2	5	
<u>~</u>	с С	
2	0	
2	1	
2	8	
2	9	
3	Ô	
2	1	
3 0	1	
3	2	
3	3	
3	4	
3	5	
ç ک	6	
ა ი	7	
ა ~	1	
3	8	
3	9	
4	0	
Δ	1	
т л	י ר	
4	~	
4	3	
4	4	
4	5	
4	6	
Δ	7	
т Л	ò	
+	0	
4	9	
5	0	
5	1	
5	2	
5	2	
0 F	J ∧	
о -	4	
5	5	
5	6	
5	7	
5	8	
5	a	
0 6	3	
n	U	

1

1 [17]

2	[18]	H. Teymourian, A. Salimi and S. Khezrian, Biosens. Bioelectron., 2013, 49, 1.
3	[19]	H. Liu, J. Gao, M. Xue, N. Zhu, M. Zhang and T. Cao, Langmuir, 2009, 25, 12006.
4	[20]	W. J. Lin, C. S. Liao, J. H. Jhang and Y. C. Tsai, Electrochem. Commun., 2009, 11, 2153.
5	[21]	Y. Chen, Y. Li, D. Sun, D. Tian, J. Zhang and J. Zhu, J. Mater. Chem., 2011, 21, 7604.
6	[22]	F. Xu, M. Deng, Y. Liu, X. Ling, X. Deng and L. Wang, Electrochem. Commun., 2014, 47,
7		33.
8	[23]	J. Sun, K. Huang, S. Zhao, Y. Fan and Z. Wu, Bioelectrochem., 2011, 82, 125.
9	[24]	K. Zhang, L. Zhang, X. Zhao and J. Wu, Chem. Mater., 2010, 22, 1392.
10	[25]	K. Wang, H. Wu, Y. Meng and Z. Wei, Small, 2014, 10, 14.
11	[26]	Y. Zhou, Z. Qin, L. Li, Y. Zhang, Y. Wei, L. Wang and M. Zhu, Electrochim. Acta, 2010, 55,
12		3904.
13	[27]	J. Zhang and X. Zhao, The J. Phys. Chem. C, 2012, 116, 5420.
14	[28]	D. Yuan, S. Chen, F. Hu, C. Wang and R. Yuan, Sens. Actuators B: Chemical, 2012, 168,
15		193.
16	[29]	D. Li and R. B. Kaner, J. Am. Chem. Soc., 2006, 128, 968.
17	[30]	D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B.
18		Alemany, W. Lu and J. M. Tour, ACS Nano, 2010, 4, 4806.
19	[31]	M. Z. Kassaee, E. Motamedi and M. Majdi, Chem. Eng. J., 2011, 172, 540.
20	[32]	F. Yang, M. Xu, S. Bao, H. Wei and H. Chai, Electrochim. Acta, 2014, 137, 381.
21	[33]	Z. Li, L. Zhang, X. Huang, L. Ye and S. Lin, Electrochim. Acta, 2014, 121, 215.
22	[34]	Y. Hu, F. Li, X. Bai, D. Li, S. Hua, K. Wang and L. Niu, Chem. Commun., 2011, 47, 1743.
23	[35]	S. Basu and P. Bhattacharyya, Sens. Actuators B: Chemical, 2012, 173, 1.
24	[36]	D. Ning, H. Zhang and J. Zheng, J. Electroanal. Chem., 2014, 717, 29.
25	[37]	B. Piela and P. K. Wrona, J. Electrochem. Soc., 2002, 149, E55.
26	[38]	X. Xing and D. A. Scherson, Anal. Chem., 1988, 60, 1468.
27	[39]	B. R. Kozub, N. V. Rees and R. G. Compton, Sens. Actuators B: Chemical, 2010, 143, 539.
28	[40]	Z. Meng, B. Liu, J. Zheng, Q. Sheng and H. Zhang, Microchim. Acta, 2011, 175, 251.
29	[41]	S. Zhao, K. Zhang, Y. Sun and C. Sun, Bioelectrochem., 2006, 69, 10.
30	[42]	P. Wang, F. Li, X. Huang, Y. Li and L. Wang, Electrochem. Commun., 2008, 10, 195.
		12

Analytical Methods

1	[43] P Miao M Shen I Ning G Chen and Y Yin Anal Bioanal Chem 2011 399 2407
1 2	[44] V Mani A P Periasamy and S Chen Electrochem Commun 2012 17 75
2	[++] V. Man, A. I. Ferlasaniy and S. Chen, Electrochem. Commun., 2012, 17, 75.
3	Figure contions:
5	Figure captions: Fig. 1 TEM images of (A) GO (B) PANI_GE (C, D) Pt_PANI_GE
5	Fig. 7. YPD patterns of CO(a) DANI(b) DANI GE(a) Dt DANI GE(d)
7	Fig. 2. AND patterns of OO(a), TAN(0), TANI-OE(c), TE-TANI-OE(d).
0	Fig. 4. (A) Electrochemical impedance spectra of $Parc(a) = CO/CCE(b)$
0	Fig. 4. (A) Electrochemical impedance spectra of Bare(a), $OO/OCE(0)$, PANI GE/GCE(a) Pt PANI GE/GCE(d) in a 0.1 M KCl solution containing 5 mM
9	$K_{a}[E_{a}(CN)^{6}]/K_{a}[E_{a}(CN)^{6}]$ (B) CV_{a} of bara(a) $CO/CCE(b)$ PANI $CE/CCE(a)$
10	$K_3[Fe(CN)]/K_4[Fe(CN)]$. (B) CVS of $bare(a)$, $OO/OCE(b)$, FANI-OE/OCE(c), Pt PANI GE/GCE(d) in 0.1 M PBS (nH 6.0) in the presence of 1.0 mM NOs ⁻ scan
11	rate: 50 mV c^{-1}
12	Fig. 5. (A) Cyclic voltammograms obtained Pt PANI GE/GCE in Na saturated pH
13	7.2 PBS in the presence of NO ₂ ⁻ with different concentrations (from a to i: 0, 0.5, 1.0)
14	15 20 25 30 35 and 40 mM) at a scan rate of 50 mV/s (B) Cyclic
16	voltammograms obtained Pt-PANI-GE/GCE in N2-saturated pH 7.2 PBS contained
17	4.0 mM NO_2^- at different scan rates (from a to j: 20, 40, 60, 80, 100, 120, 140, 160
18	180 and 200 mV/s). Inset: plot of electrocatalytic peak current of NO ₂ ⁻ versus $v^{1/2}$.
19	Fig. 6. Effect of solution pH on the oxidation current of 1.0 mM NO_2^- at
20	Pt–PANI–GE/GCE in 0.1 M PBS.
21	Fig. 7. (A) Amperometric curve obtained Pt–PANI–GE/GCE for successive additions
22	of NO_2^- in N ₂ -saturated pH 7.2 PBS at the work potential of 0.75 V under constant
23	stirring. (B) Calibration curve of NO ₂ ⁻ versus its concentration.
24	Fig. 8. Amperometric response of NaNO2, Na2SO4, KCl, KNO3, KClO4 and CuCl2
25	(0.05 mM, respectively) on Pt-PANI-GE/GCE in N2-saturated pH 7.2 PBS at the
26	work potential of 0.75 V under constant stirring.
27	
28	
29	
30	

Analytical Methods

Analytical Methods Accepted Manuscrij

				Detection	
Sensors	Applied	Linear range	Sensitivity limit (µM)	limit	Literature
	potential (V)	(µM)		(µM)	
GCE	_	2.5–10	$36\mu A m M^{-1}$	0.4	[39]
Hb ^a /Ag/TiO ₂ /GCE	0.987	2000-6000	$5.84 \mu A \ mM^{-1} \ cm^{-2}$	34	[41]
Ag-PAMAM ^b /GCE	0.80	4–1440	$265 \mu A \ m M^{-1} \ cm^{-2}$	0.4	[36]
Pt nanoclusters/GCE	0.82	1.2–900	_	0.4	[42]
Pt NPs/Au electrode	-	10-1000	-	5	[43]
CR-GO ^c /GCE	0.80	8.9–167	$26.7 \mu A \ mM^{-1}$	1.0	[44]
DANU CE/CCE	0.75	0.4-990.0	$485.5\mu A m M^{-1} cm^{-2}$	0.10	This work
PI-PANI-GE/GCE	0.75	990.0-7010.0	$154.3 \mu A \ mM^{-1} \ cm^{-2}$	0.13	
Hemoglobin.					
^b Polyamidoamine.					
^c Chemically reduced	l graphene oxi	de.			

15	

Table 2. Detection of NaNO₂ in real tap water samples using Pt–PANI–GE/GCE

Tap water sample	Added/µM	Founded/µM	Recovery/%	RSD/%
1	5.0	5.21	104.2	2.3
2	15.0	14.86	99.1	1.9

1
2
3
1
4
5
6
7
8
9
10
11
40
12
13
14
15
16
17
18
10
19
∠∪ 04
21
22
23
24
25
26
27
21
28
29
30
31
32
33
3/
25
30
36
37
38
39
40
41
12
72 12
43 44
44
45
46
47
48
49
50
51
51
5Z
53
54
55
56
57
58
50
03
υU

3	30.0	30.22	100.7	2.6

Eletrochemical sensing of nitrites based on novel Pt-PANI-graphene nonocomposites