Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

Huiju Gao^a, Ning Gan^b*, Daodong Pan^{a, c}*, Yinji Chen^d, Tianhua Li^b, Yuting Cao^b,

Tian Fu^a

^a Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang,
 Ningbo University, Ningbo 315211, P. R. China

^b State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.

^c Food Science & Nutrition Department, Nanjing Normal University, Nanjing 210097,
P. R. China

^d College of Food Science & Engineering, Nanjing University of Financial and Economics, Nanjing 210007, P. R. China

*Corresponding author:

Ning Gan, Daodong Pan

E-mail: ganning@nbu.edu.cn

E-mail: daodongpan@163.com

Tel: +86-574-87609987; Fax: +86-574-87609987.

Tel: +86-574-87608347; Fax: +86-574-87608347.

Analytical Methods Accepted Manuscript

Abstract

A novel colorimetric aptasensor was developed for sensitive and selective determination of chloramphenicol (CAP) based on gold nanoparticles (AuNPs) labeled with Power Vision (PV) and magnetic separation. The PV, with a high enzyme-to-antibody ratio, is composed of a compact enzyme-linker antibody conjunction. In this assay, the aptamer of CAP was immobilized on Fe₃O₄@Au magnetic nanoparticles as capture probe (AuMNPs-Apt) to concentrate target CAP. The complementary DNA (cDNA) and PV were both labeled on AuNPs to form a nano-peroxidase polymer as signal tag (cDNA-AuNPs-PV). And the special tags could hybridize with aptamer and cDNA to form AuMNPs-Apt/cDNA-AuNPs-PV conjugates. In the presence of CAP, the aptamer preferentially bound with CAP and caused the dissociation of some cDNA-AuNPs-PV on the conjugates with magnetic separation. PV, carried on signal tags, could greatly catalyze 3,3',5,5'-tetramethylbenzidine (TMB) for color development, which could be quantified by Ultraviolet-visible (UV-vis) spectroscopy. Linear response to CAP concentration in the range of 0.05-200 ng mL⁻¹ was measured with this proposed method, with low detection limit down to 0.02 ng mL⁻¹. Besides, this assay was successfully employed to analyze CAP in fish and pork samples, whose results were consistent with conventional enzyme-linked immunosorbent assay (ELISA) method.

1 Introduction

Chloramphenicol (CAP) is an effective broad spectrum antibiotic, which can inhibit the activity of both Gram-positive and Gram-negative bacteria.^{1,2} Recent researches have demonstrated that CAP is a suspected carcinogen which may cause deathful side effects such as aplastic anemia and hypersensitivity in humans, and even low concentration of CAP may lead to seriously adverse influence.^{3,4} Therefore, some countries, such as USA, Canada and China, have banned the use of CAP in food-producing animals. However, CAP is still illegally used in some major food-producing animals all over the world due to its highly effective, accessibility, low cost.^{5,6} CAP residues have been found in different food samples, such as crop, honey, shrimp, poultry meat, and milk.⁷⁻¹⁰ Considering the efficiency, developing a specific and sensitive method for the detection of CAP residues in food samples is therefore of great significance.

Analytical Methods Accepted Manuscript

To date, the commonly existing methods and strategies to determine CAP are as follows: high-performance liquid chromatography (HPLC),^{11,12} liquid chromatography-tandem mass spectrometry,¹³ enzyme linked immunosorbent assay (ELISA)¹⁴ and electrochemical sensors,^{15,16} etc. Some of these methods above have been successfully applied in real samples determination. However, there are still some limitations in practical applications for these assays. Some of them are time-consuming for sample preparation, some require a great amount of organic solvents and some need valuable apparatus. Although ELISA method is quick, simple and visible, there still exists some challenges. And the LOD of commercial ELISA

Analytical Methods Accepted Manuscript

method to detect CAP was 0.11 ng mL⁻¹ according to the kit's protocol (Product ID: HE09001). The ELISA Kit's price is very high, which due to that the antibodies being employed to detect small moleculars are usually expensive. Moreover, the immunizing potency of the same antibody in different batch is very different owing to their preparation from different animal sources and thus heavily limits their wide application. Therefore, a new bio-receptor based biosensor for analytical application is an urgent need.

Aptamers (ssDNA) are single-stranded DNA or RNA sequences that could be in vitro synthesized with systematic evolution of ligands by the exponential enrichment (SELEX).¹⁷ Aptamers are cost-effective, reproducible, animal-friendly, stable and can be produced faster than antibodies. And aptamers are nucleic acid ligands that are able to specifically and selectively recognize a given target alternatives to antibodies.¹⁸ Thus, aptamers have been extensively used as promising alternative bio-receptors in a widespread variety of analytical applications.¹⁹⁻²¹ Moreover, colorimetric assays are becoming well known techniques and commonly used for routine analysis due to its low cost and simplicity.²² Hence, aptamer-based colorimetric biosensors have gained considerable concern and become one of the predominant analytical techniques with the advantages of high chemical stability, low cost, feasibility, and ease of observation.²³⁻²⁵ Luo et al. developed a simple colorimetric sensing method to detect invA gene of Salmonella by using DNAzyme probe self-assembled AuNPs as signal tags.²³ Liu et al. have designed a colorimetric aptasensor for the determination of 8-hydroxy-2'-deoxyguanosine based on G-quadruplex-hemin DNAzyme.²⁶ However,

Analytical Methods

the obtained absorbance signals are usually restricted by the detection tracers' density. Therefore, rapid and sensitive strategies are required to achieve an amplification signal.

Nowadays, one of the most widely used tracers in aptasensor is horseradish peroxidase (HRP), which can catalyze a variety of substrates, such as 3,3'-diaminobenzidine tertrahydrochloride (DAB), 3,3',5,5'-tetramethylbenzidine (TMB), to form colored products. During this measurement, the color change is mainly due to the catalytic reaction of enzymes toward substrates.²⁷ Hence, the detection sensitivity is always hindered by the amount of enzymes to some extent. To solve this problem, our goal in this study is to exploit a novel tracer for developing a colorimetric aptasensor with high sensitivity. Therefore, a more compact enzyme-linker antibody conjugate, such as PowerVision (PV) is urgently needed. The PV is derived from a compact enzyme-linker linear polymer, which was composed of a great number of enzyme molecules (about more than 100 HRPs in one polymer chain).²⁸ To achieve the high sensitivity, gold nanoparticles (AuNPs) have been the most widely used in different biosensing assays for signal amplification because of its high surface-to-volume ratio and good biocompatibility.²⁹⁻³¹ Hence, in this study, PV is incubated with the AuNPs, the resulting copolymers (AuNPs-PV) act as highly sensitive signal tags, which could greatly catalyze the oxidation of TMB for color development and produce superior detection efficiency. Moreover, the capture probes' preparation steps were friendly and inexpensive. It was prepared only by Au-S bond self-assembling and DNA hybrid technique without other chemical derivatiztion.

Analytical Methods

Analytical Methods Accepted Manuscript

Herein, we fabricated a novel colorimetric aptasensor for detecting CAP based on PV functionalized AuNPs for signal amplification with magnetic separation. Scheme 1 illustrated the developed strategy. Specifically, aptamer coated $Fe_3O_4(a)Au$ magnetic nanoparticles (Fe₃O₄@Au-Apt) is utilized to capture and concentrate target CAP with high affinity and specificity. It also allows for easy removal of excess CAP under high magnetic field, which facilitates efficient extraction. In the next step, PV, which was connected to complementary DNA/AuNPs and used as signal tags (cDNA-AuNPs-PV). Subsequently, this designed signal tags hybridized with aptamer and cDNA to form AuMNPs-Apt/cDNA-AuNPs-PV conjugates. Upon adding CAP, some signal tags could be dissociated into the supernatant due to the higher affinity between CAP and aptamer. The PV on signal tags could catalyze the oxidation of TMB, generating a colorimetric signal, which can be monitored simply by naked eve or detected by Ultraviolet-visible (UV-vis) spectroscopy. This technique provides a promising alternative way for real-time monitoring of CAP residues in food with a sensitive and selective strategy.

Scheme.1

2 Experimental

2.1 Materials

The oligonucleotides used in this experiment were purchased from Shanghai Sangon Biological Engineering Technology & Services Co., Ltd. (Shanghai, China). With the following sequences: thiolated aptamer, 5'SH-(CH₂)₆-ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G-3' was chosen according to the

Analytical Methods

previously reported literature;^{32,33} thiolated complentary DNA, 5'SH-(CH₂)₆-TTT TCT ACC ACC GAC TCG C-3'. CAP ELISA kit was supplied by Huaan Magnech Bio-tech Co., Ltd. (Beijing, China) and PowerVision was purchased from GBI Co., Ltd. (Mukilteo, WA, USA) and provided as a kit by ImmunoVision Technologies (Daly City, CA) and consisted of a blocking solution (that also could be used as the primary antibody diluent), a poly-HRP-labeled linker antibody (goat anti-mouse or goat anti-rabbit IgG), and a chromogen substrate solution. CAP, streptomycin, tetracycline and oxytetracycline and 6-mercaptohexanol (MCH) were purchased from Sigma (Milan, Italy). Ferric chloride (FeCl₃·6H₂O), sodium acetate anhydrous (NaAc) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Hydrogen tetrachloroaurate (III) tetrahydrate (HAuCl₄), hydrogen peroxide (H₂O₂, 30%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and 3, 3', 5, 5'-tetramethylbenzidine (TMB) and Poly diallyldimethylammonium chloride solution (PDDA) were purchased from Sigma (USA). PBS buffer (pH 7.4, 0.1 M KH₂PO₄-K₂HPO₄, 0.1 M KCl) was used as washing and binding buffer. All other reagents were all of analytical grade and were used without further purification. Distilled water was used throughout the study.

2.2 Apparatus

The transmission electron microscopic (TEM) image was obtained with a H600 transmission electron microscope (Hitachi, Japan). Scanning electron micrographs (SEM) images were obtained with a S3400N scanning electron microscope (Hitachi, Japan). The UV-vis spectra were recorded on a UV-1800 spectrophotometer

Analytical Methods Accepted Manuscript

(Shimadzu Co., Japan).

2.3 Preparation of AuNPs

AuNPs were prepared according to the Frens method with slight modifications.³⁴ Typically, 0.01 wt% HAuCl₄ (100 mL) was boiled and vigorously stirred in a flask. 1 wt% trisodium citrate solution (2.5 mL) was quickly added into this boiling solution and the color changed from grey, blue, purple, to wine red, which indicated the formation of AuNPs. The solution was maintained for another 10 minutes at boiling temperature, then cooled to room temperature and stored at 4 °C for further experiments.

2.4 Preparation of Fe₃O₄@Au nanospheres

Firstly, Fe₃O₄ nanospheres (Fe₃O₄ NPs) were prepared through a solvothermal reaction by Li's method.³⁵ In a typical procedure, 8.1 g FeCl₃· $6H_2O$ and 21.6 g NaAc were dissolved in 300 mL ethylene glycol and stirring for 30 min to form a clear solution. Then the mixture solution was transfered to Teflon-lined stainless-steel autoclaves and hermetically heated at 200 °C. After reaction for 8 h, the autoclaves were cooled to room temperature. The obtained black products were collected by a magnet and washed several times with deionized water and ethanol respectively, then dried under vacuum at 60 °C for further use.

Fe₃O₄@Au nanospheres (AuMNPs) were synthesized according to the previously reported literature with minor modifications.³⁶ In brief, 0.02 g Fe₃O₄ NPs was dispersed in 5 mL 3% PDDA aqueous solution and then stirred for 30 min. After magnetic separation and removal of the unbounded PDDA, the resulting solid was

Analytical Methods

spreaded in 130 mL gold gum solution and stirred for 8 h at room temperature. The dark purple AuMNPs were obtained until the supernatant was colorless through magnetic separation. After washed several times with deionized water and ethanol respectively, the AuMNPs were dispersed into 100 mL ultrapure water. Prior to use, the solution was stored at 4 °C.

2.5 Preparation of the AuMNPs-Apt

The immobilization of aptamer onto AuMNPs was carried out according to the previously reported with some modification.³⁷ First, 50 µL AuMNPs were washed for several times with PBS buffer (pH 7.4), and then resuspended in 500 μ L PBS buffer, subsequently, ultrasonicated for 30 min. In order to fully integrate aptamers and AuMNPs, excess of thiolated Apt (50 μ M) was added into the above solution and gently stirred for 12 h at room temperature. The superfluous Apt were removed through magnetic separation. Next, the as-prepared AuMNPs-Apt was washed three times with 500 μ L PBS buffer. 500 μ L, 1 mM MCH was then added and incubated for about 30 min at room temperature to block the possible residual sites. The resulting conjugates were finally re-suspended in 500 µL PBS buffer followed by washing and magnetic separation. The final concentration of as-prepared capture probe was 38 mg mL⁻¹ and then stored at 4 °C for further use. The remaining ratio of the magnetic bead was obtained from the concentration ratio of as-prepared capture probe and Fe₃O₄ NPs. And we can know that 0.02 g Fe₃O₄ NPs was finally resuspended in 500 μ L PBS buffer, the concentration of Fe_3O_4 NPs was 40 mg mL⁻¹. Thus, we could calculate the remaining ratio of the magnetic bead after washing was 95%.

Analytical Methods Accepted Manuscript

2.6 Preparation of the cDNA-AuNPs-PV conjugates

AuNPs co-immobilized with PV and cDNA were prepared according to the literature with some modification.³⁸ Briefly, 500 μ L, 10 mg mL⁻¹ AuNPs was initially adjusted to pH 9.0 by 0.1 M K₂CO₃ aqueous solution. Then, 20 μ L PV reagents (the original concentration of PV in Kits) was added to the solution and incubated for 15 min at room temperature. In this process, PV was covalently bound to AuNPs through the dative binding between AuNPs and free -SH groups of the antibody on PV.³⁹ Afterward, 10 μ L, 50 μ M thiol-modified cDNA was injected into the mixture solution. Subsequently, the solution was kept for 24 h at 4 °C, followed by centrifugation for 15 min at 10000 rpm. After the supernatant was discarded, the red pellets were washed several times with PBS buffer. Following that, 500 μ L, 1 mM MCH was added and then incubated for about 30 min at room temperature to block the possible residual sites. The resulting cDNA-AuNPs-PV conjugates were finally resuspended in PBS buffer and stored at 4 °C for further use.

2.7 Preparation of colorimetric aptasensor for CAP detection

The fabrication procedures of the colorimetric aptasensor for CAP were illustrated in Scheme 1. Briefly, 40 μ L, 38 mg mL⁻¹ of as-prepared capture probe was added to excess amount of signal tag. The mixture solution was gently stirred for 45 min at 37 °C to obtain the hybridized biocomplex. And then the hybridization solution was collected by the external magnet. For determination of CAP, the above solution was incubated with 100 μ L PBS containing different concentrations of CAP for 30 min at room temperature. Then cDNA-AuNPs-PV signal tags released from the

Analytical Methods

biocomplex were separated into the soluble supernatant with magnetic separation. Subsequently, 50 μ L, 0.2 mg mL⁻¹ TMB and 0.015% H₂O₂ were added. Finally, the mixture solution was shaked thoroughly for color development and the absorbance was measured at 652 nm by UV-vis spectrometer for quantitative analysis. For practical convenience, all measurements were conducted at room temperature.

2.8 Sample preparation

Fish and pork samples were purchased from retail supermarket in Ningbo, China. These samples were triturated in a blender, freeze-dried, and stored at -18 °C before analysis. All experiments were performed in compliance with the relevant laws and institutional guidelines of Ministry of Agriculture of China. Moreover, fish and pork collection and transportation activities were authorized by of Ministry of Agriculture of China, license number CARS-43-17. Procedures involving animal handling and experiment were approved by the Center of Experimental Animals (SCXK (HU) 2012-0002), Ningbo University, China.

Results and discussion

3.1 Construction and characterization of cDNA-AuNPs-PV conjugates

AuNPs, AuNPs-cDNA, cDNA-AuNPs-PV were characterized by TEM and UV-vis spectrophotometry. The results were shown in Fig. 1. The size of AuNPs was about 20 nm in diameter (Fig. 1A). Compared to bare AuNPs, some pearl chain-like nanostructures were observed in AuNPs-cDNA composites (Fig. 1B). These results indicated that the cDNA may be successfully assembled on the surface of AuNPs and it can recognize aptamer on capture probe through the hybridization of

Analytical Methods

Analytical Methods Accepted Manuscript

complementary sequences. After conjugating with PV on the AuNPs-cDNA, a shadow and aggregated coating was observed around the dark AuNPs core (Fig. 1C). It meant that PV was successfully modified on AuNPs-cDNA to form cDNA-AuNPs-PV conjugates. Fig. 1D showed the UV-vis absorption spectrum of AuNPs, AuNPs-cDNA and cDNA-AuNPs-PV conjugates. The bare AuNPs exhibited a characteristic absorption peak at 520 nm (curve a), which was related to the surface plasmon resonance of AuNPs. In curve b, a new absorption peak at 260 nm was observed, which could be ascribed to the characteristic absorption peak of DNA. And the characteristic absorption peak of AuNPs-cDNA showed a slight red shift from 520 to 522 nm compared with bare AuNPs. It meant that cDNA was successfully modified on AuNPs. Moreover, as shown in curve c, a new absorption peak occurred at 385 nm belongs to HRPs on PV was observed which meant the successful formation of cDNA-AuNPs-PV conjugates.

Fig. 1

3.2 Characterization of AuMNPs-Apt

Fe₃O₄ NPs, AuMNPs samples were characterized by SEM and UV-vis spectrophotometry. Fig. 2A depicted the average diameter of spherical Fe₃O₄ NPs was about 350 nm with a rough surface. Fig. 2B was the SEM image of the AuMNPs and showed many 20 nm AuNPs were adhered to the surface of the Fe₃O₄ NPs. In addition, the ultraviolet visible absorption spectra of AuNPs (curve a), AuMNPs (curve b), AuMNPs-Apt (curve c), Fe₃O₄ NPs (curve d) were shown in Figure 2C, respectively. As shown in Fig. 2C, bare Fe₃O₄ NPs has no absorption peak from 300 to 800 nm.

Analytical Methods

However, AuMNPs had a maximum absorption peak at 522 nm and showed a slight red shift from 520 to 522 nm. The phenomenon may be attributed to the interaction between AuNPs and Fe₃O₄ NPs. Hence, we could conclude that AuNPs maybe successfully assembled on Fe₃O₄ NPs surface. A new absorption peak at 262 nm was also observed on the UV-vis absorption spectrum of AuMNPs-Apt, which indicating that the aptamer was successfully bound onto AuMNPs.

To further verify the successful preparation of AuMNPs-Apt, the following experiment was proposed. The conjugation of AuMNPs with aptamers was characterized by UV-vis absorption spectrum, as shown in Fig. 2D. Before conjugation to AuMNPs, the strong absorbance of aptamers can be seen at about 260 nm (curve a). After incubation of AuMNPs and aptamers, the supernatant was gathered with magnetic separation. The absorbance of the supernatant was much weaker at 260 nm (curve b), which was due to part of the aptamers successfully combined with AuMNPs. Vibrating sample magnetometry (VSM) was employed to evaluate the magnetic properties of Fe₃O₄ NPs, AuMNPs and AuMNPs-Apt. Details have been presented in Section S1.1 of Supplementary material.

Fig. 2

3.3 Principle of colorimetric aptasensor for CAP detection

In order to verify this detection principle, some controlled experiments were performed. Fig. 3 showed the UV-vis spectrum of TMB solution under various conditions. It can be seen that, in the absence (curve a) and in the presence (curve b) of H_2O_2 , TMB solution exhibited no characteristic peak in the range of 500 - 800

Analytical Methods

Analytical Methods Accepted Manuscript

nm.⁴⁰ Moreover, in the presence of AuNPs-cDNA, the TMB-H₂O₂ mixture solution also exhibited no characteristic peak. However, the TMB-H₂O₂ mixture solution exhibited a strong absorption peak at 652 nm after the cDNA-AuNPs-PV conjugates was added for about 5 min at room temperature, which should be attributed to the redox reaction of TMB-H₂O₂ caused by HRPs on PV. The inset in Fig. 3 showed the corresponding photo images. It was showed that the color of TMB solution (curve a), TMB-H₂O₂ solution (curve b) and TMB-H₂O₂/AuNPs-cDNA solution (curve c) were not changed. However, after 80 µL cDNA-AuNPs-PV conjugates were added into TMB-H₂O₂ solution, a dramatic color change and a strong absorption peak at 652 nm were observed in curve d. Consequently, it can be inferred from the above phenomenon that PV can greatly catalyze the redox reaction of TMB with H₂O₂. Fig. 3

Fig. 5

3.4 Comparison of colorimetric aptasensor responses using various labels

In order to acquire a high sensitivity of the aptasensor, it is extremely critical to amplify the colorimetric responses by choosing favorable signal tags. Hence, we performed four controlled experiments by adding AuNPs-cDNA, PV-cDNA, cDNA-AuNPs-HRP and cDNA-AuNPs-PV signal tags into the TMB-H₂O₂ solution at the same concentration (10 mg mL⁻¹), respectively. As shown in Fig. 4a, the TMB solution exhibited no absorption peak from 500 to 800 nm due to the slow oxidizing ability of H₂O₂ without peroxidase. And in the presence of AuNPs-cDNA, the TMB-H₂O₂ mixture solution also exhibited no characteristic peak (Fig. 4b). However, Fig. 4c exhibited an obvious absorption peak at 652 nm with the addition of

Analytical Methods

PV-cDNA. From Fig. 4b and 4c, we could conclude that the absorption peak was ascribed to the oxidative product of TMB by H_2O_2 in the presence of HRP enzymes on PV instead of AuNPs. Additionally, compared with PV-cDNA (Fig. 4c), cDNA-AuNPs-PV (Fig. 4e) displayed a higher absorption peak, which showed that AuNPs have the ability to gather more PVs on signal tags and then strengthen the catalytic ability. In Fig. 4e, a significantly increased absorption peak (about 15-fold higher than Fig.4d) can be observed at 652 nm while adding cDNA-AuNPs-PV into the TMB-H₂O₂ solution. This phenomenon showed that cDNA-AuNPs-PV has higher catalytic response towards TMB with H₂O₂ than cDNA-AuNPs-HRP, which should be attributed to much more HRPs on AuNPs-PV than AuNPs-HRP. It can be concluded that PV has an excellent signal amplification effect to achieve high sensitivity for the colorimetric aptasensor.

Fig. 4

3.5 Optimization of experimental conditions

To obtain an optimal analytical performance, various conditions, such as the concentration of TMB and H_2O_2 , the volume of PV and the incubation time, were optimized in this study including the pH of detection solution.

The pH value of the detection solution played an important role in the response of the colorimetric aptasensor. Fig. S2 (A) illustrated the effect of pH from 5.0 to 9.0 on the absorbance response. With the increasing solution pH, the absorbance intensity increased and achieved a maximum value at pH 7.0. Herein we chose pH 7.0 PBS solution as the optimal buffer.

Analytical Methods

Analytical Methods Accepted Manuscript

Fig. S2 (B) exhibited the absorbance of various concentrations of TMB. With the increasing concentration of TMB, the absorbance sharply increased and reached to a steady value when a higher concentration of TMB (> 0.2 mg mL⁻¹) was used. Therefore, 0.2 mg mL⁻¹ was chosen as the favorable TMB concentration. In addition, the concentration of H_2O_2 was also investigated. As shown in Fig. S2 (C), the absorbance intensity increased rapidly with the increasing concentration of H_2O_2 . However, no further increase of the absorbance was observed when the H_2O_2 concentration was over 0.015%. Thus, 0.015% was selected as the favorable concentration to receive high signal response.

For sensitivity study, the effect of the volume of PV was also optimized. Fig. S2 (D) showed the absorbance value from 5 μ L to 30 μ L of PV (the original concentration of PV in Kits) in the AuNPs-cDNA composite solution to prepare the signal tag, and the largest absorbance value was obtained at 20 μ L of PV. In this test, 20 μ L of PV was chosen as the optimal volume. Fig. S2 (E) showed the signal response between AuMNPs-Apt/cDNA-AuNPs-PV hybridization composites and CAP target in the range from 10 min to 60 min. At first, the absorption peak at 652 nm increased with the increasing incubation time. However, the signal response reached to a plateau when the reaction time was higher than 30 min. This phenomenon indicated that the reaction of aptamer with CAP reached to equilibrium. Thus, 30 min could be chosen for the favorable incubation time. In addition, the response time of the detection for measurement sample from 1 min to 20 min was also examined, as shown in Fig. S2 (F). The results showed that the absorbance intensity first increased

Analytical Methods

and then stabilized after 10 min. This indicated that 10 min was selected as the favorable response time.

3.6 Analytical performance of the colorimetric aptasensor

Under the optimal detection conditions, the catalytic ability of PV on TMB oxidation was investigated. The colorimetric aptasensor was used for quantitatively detecting different concentrations of target CAP based on the absorbance at 652 nm (Fig. 5). Obviously, the absorbance density increased gradually with increasing concentration of target CAP (Fig. 5A). The standard calibration curve of the ΔA ($\Delta A = A-A_0$, where A_0 and A are the absorbance at 652 nm in the absence and presence of CAP, respectively) for CAP detection in the range from 0.05 to 200 ng mL⁻¹ was shown in Fig. 5B. The detection limit (LOD) was 0.02 ng mL⁻¹. Moreover, the color changes of different concentrations of target CAP were recorded by digital camera. As shown in Fig. 5C, an obvious change from colorless to light blue could be distinguished with naked eyes when the concentration of CAP is over 0.1 ng mL⁻¹. The analytical properties are comparable or even better than previous reports on CAP detection shown in Table S1. These advantages of the assay may lead to the significant change of the absorbance and greatly improve the sensitivity.

Analytical Methods Accepted Manuscript

Fig. 5

3.7 Specificity, reproducibility and stability of the proposed aptasensor

To further evaluate the specificity and selectivity of the developed colorimetric aptasensor, we challenged the assay with several possible components in real samples, such as streptomycin (STR), tetracycline (TC) and oxytetracycline (OTC). They were

Analytical Methods

Analytical Methods Accepted Manuscript

added into the incubation solution with the same concentration of 1000 ng mL⁻¹, respectively. The assay was implemented by the above developed method. As indicated in Fig. 6, higher absorbance values were observed with target CAP (5 ng mL⁻¹) toward 200-fold higher interfering substances. The absorbance in the presence of STR, TC and OTC was almost the same as the control sample. More significantly, the absorbance of the mixture containing target CAP and interfering substances was not significantly changed compared with target CAP alone. Therefore, the results revealed that the developed colorimetric aptasensor was sufficiently selective for the target CAP.

The reproducibility of the proposed colorimetric aptasensor was evaluated according to intra-assay and inter-assay precision. We evaluated the intra-assay precision by assaying a standard sample for six repeated measurements. The inter-assay precision was evaluated by assaying a standard sample in six assays performed identically. The coefficient of variation (CV) of intra-assay was 4.5% for 50 ng mL⁻¹ CAP and the inter-assay was 7.9% for 50 ng mL⁻¹ CAP. Additionally, the stability was also investigated. After the AuMNPs-Apt and cDNA-AuNPs-PV were stored at 4 °C for 29 days, they still remained 93.2% and 94.6% of the initial responses of colorimetric, indicating that the proposed aptasensor possess good stability.

Fig. 6

3.8 Application in real samples

In order to validate the feasibility and application potential of the proposed

Analytical Methods

colorimetric aptasensor, the detection of CAP in fish and pork samples was assayed, respectively. The real samples were spiked with various concentrations of CAP. The results analyzed using the proposed method were compared with the reference values obtained using the commercially ELISA method. The results were shown in Table 1. The recoveries of the CAP standards in fish sample are 99.9% to 102%, while 98% to 100.5% in pork sample. These desirable recoveries definitely indicated the reliability of the proposed method for detection of CAP in fish and pork samples.

Table 1

4 Conclusion

This work demonstrated a novel and sensitive colorimetric aptasensor for CAP determination based on cDNA-AuNPs-PV conjugates for signal amplification. The carried PV labeled on signal tags could greatly catalyze the H₂O₂-mediated oxidation of TMB, causing a dramatic color change and resulting in the change of the UV-vis absorbance. The absorbance at 652 nm linearly increased with the increment of CAP concentration. The method detection limit down to 0.02 ng mL⁻¹ was measured by UV-vis absorption spectroscopy and 0.1 ng mL⁻¹ of CAP can be clearly distinguished with naked eyes. More importantly, this proposed method had been successfully applied in fish and pork samples. Compared with the conventional methods, the designed assay is cheaper, faster and more specific, and offers great potential for application in on-site detection by controlling aptamer.

Acknowledgements

Analytical Methods

Analytical Methods Accepted Manuscript

This work is financially supported by the Projects of Zhejiang Public Benefit Research Project of China (2014C32051), Science & Technology of Ministry of P.R. China (2012BAK08B01-2 & 2013GB2C200191), East China Sea Mariculture Collaborative Innovation Center, National Waterfowl Industry System (CARS-43-17) and the Natural Science Foundation of Zhejiang and Ningbo (Y15B050008, 2013A610163, 2014A610184), The KC Wong Magna Fund in Ningbo University.

References

- 1 A. Wang, L. Zhang, Y. Fang, Anal. Chim. Acta, 394, 1999, 309-316.
- 2 X. Que, D. Tang, B. Xia, M. Lu, D. Tang, Anal. Chim. Acta, 830, 2014, 42-48.
- 3 L. Wang, Y. Zhang, X. Gao, Z. Duan, S. Wang, J. Agric. Food. Chem., 58, 2010, 3265-3270.
- 4 H. Wang, X. Zhou, Y. Liu, H. Yang, Q. Guo, J. Agric. Food. Chem., 59, 2011, 3532-3538.
- 5 M. Ramos, P. Munoz, A. Aranda, I. Rodriguez, R. Diaz, J. Blanca, J. Chromatogr. B, 791, 2003, 31-38.
- 6 M. Yuan, W. Sheng, Y. Zhang, J. Wang, Y. Yang, S. Zhang, I. Goryacheva and S. Wang, Anal. Chim. Acta, 751, 2012, 128-134.
- 7 B. Berendsen, M. Pikkemaat, P. Römkens, R. Wegh, M. van Sisseren, L. Stolker, M. Nielen, J. Agric. Food. Chem., 61, 2013, 4004-4010.

Analytical Methods Accepted Manuscript

- 8 J. Xu, W. Yin, Y. Zhang, J. Yi, M. Meng, Y. Wang, H. Xue, T. Zhang, R. Xi, Food Chem., 134, 2012, 2526-2531.
- 9 X. Yu, Y. He, J. Jiang, H. Cui, Anal. Chim. Acta, 812, 236-242.
- 10 C. Douny, J. Widart, E. De Pauw, G. Maghuin-Rogister, M. Scippo, Food Anal. Method., 6, 2013, 1458-1465.
- 11 Q. Zhang, T. Peng, D. Chen, J. Xie, X. Wang, G. Wang, C. Nie, J. AOAC Int., 96, 2013, 897-901.
- 12 J. Han, Y. Wang, C. Yu, Y. Yan, X. Xie, Anal. Bioanal. Chem., 399, 2011, 1295-1304.

- 13 T. Sniegocki, A. Posyniak, M. Gbylik-Sikorska, J. Zmudzki, Anal. Lett., 47, 2014, 568-578.
 - 14 N. Liu, S. Song, L. Lu, D. Nie, Z. Han, X. Yang, Z. Zhao, A. Wu, X. Zheng, Food Agr. Immunol., 25, 2014, 523-534.
 - 15 T. Alizadeh, M. Ganjali, M. Zare, P. Norouzi, Food Chem., 130, 2012, 1108-1114.
 - 16 S. Yadav, B. Agrawal, P. Chandra, R. Goyal, Biosens. Bioelectron., 55, 2014, 337-342.
 - 17 A. Ellington, J. Szostak, Nature, 346, 1990, 818-822.

- 18 S. Pilehvar, T. Dierckx, R. Blust, T. Breugelmans, K. De Wael, Sensors, 14, 2014, 12059-12069
- 19 M. Zhao, Y. Zhuo, Y. Chai, Y. Xiang, N. Liao, G. Gui, R. Yuan, Analyst, 138, 2013, 6639-6644.
- 20 Z. Lv, A. Chen, J. Liu, Z. Guan, Y. Zhou, S. Xu, C. Li, PloS one, 9, 2014, e85968.
- 21 A. Keefe, S. Pai, A. Ellington, Nat. Rev. Drug. Discov., 9, 2010, 537-550.
- 22 Y. Kim, J. Jurng, Sens. Actuators, B: Chem., 176, 2013, 253-257.
- 23 R. Luo, Y. Li, X. Lin, F. Dong, W. Zhang, L. Yan, W. Cheng, H. Ju, S. Ding, Sens. Actuators, B: Chem., 198, 2014, 87-93.
- 24 X. Xiang, L. Chen, Q. Zhuang, X. Ji, Z. He, Biosens. Bioelectron., 32, 2012, 43-49.
- 25 L. Ou, P. Jin, X. Chu, J. Jiang, R. Yu, Anal. Chem., 82, 2010, 6015-6024.
- 26 H. Liu, Y. Wang, J. Wang, J. Xue, B. Zhou, H. Zhao, S. Liu, X. Tang, S. Chen, M.

Li, J. Cao, Anal. Biochem., 458, 2014, 4-10.

Analytical Methods

- 27 Y. Yin, Y. Cao, Y. Xu, G. Li, Int. J. Mol. Sci., 11, 2010, 5077-5094
- 28 S. Shi, J. Guo, R. Cote, L. Young, D. Hawes, Y. Shi, S. Thu, C. Taylor, Appl. Immunohistochem. Mol. Morphol., 7, 1999, 201-208.
- 29 T. Yu, W. Cheng, Q. Li, C. Luo, L. Yan, D. Zhang, Y. Yin, S. Ding, Talanta, 93, 2012, 433-438.
- 30 Z. Zhou, W. Wei, Y. Zhang, S. Liu, J. Mater. Chem. B, 22, 2013, 2851-2858.
- 31 K. Lee, V. Scardaci, H. Kim, T. Hallam, H. Nolan, B. Bolf, G. Maltbie, J. Abbott, G. Duesberg, Sens. Actuators B: Chem., 188, 2013, 571-575.
- 32 J. Mehta, B. Van Dorst, E. Rouah-Martin, W. Herrebout, M. Scippo, R. Blust, J. Robbens, J. Biotechnol., 155, 2011, 361-369
- 33 L. Yan, C. Luo, W. Cheng, W. Mao, D. Zhang, S. Ding, J. Electroanal. Chem., 687, 2012, 89-94.
- 34 G. Frens, Nature, 241, 1973, 20-22.
- 35 H. Dong, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. Int. Ed., 44, 2005, 2782-2785.
- 36 X. Chen, J. Zhu, Z. Chen, C. Xu, Y. Wang, C. Yao, Sens. Actuators B: Chem., 159, 2011, 220-228.
- 37 J. Zhao, Y. Zhang, H. Li, Y. Wen, X. Fan, F. Lin, L. Tan, S. Yao, Biosens. Bioelectron., 26, 2011, 2297-2303.
- 38 B. Zhang, B. Liu, D. Tang, R. Niessner, G. Chen, D. Knopp, Anal. Chem., 84, 2012, 5392-5399.
- 39 G. Hermanson, Bioconjugate Techniques, 2nd ed.; San Diego: Academic Press,

2008, 1202.

40 Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Adv. Mater., 22, 2010, 2206-2210.

Analytical Methods Accepted Manuscript

Table 1

Recoveries of CAP comparison of two methods obtained in the spiked fish and pork

samples (n = 3).

		The proposed	Conventional	
Sample	CAP Added	method	ELISA	Recovery of the method
type	$(ng mL^{-1})$	CAP Detected	CAP Detected	(%)
		$(ng mL^{-1})$	$(ng mL^{-1})$	
Fish	blank	0.28 ± 0.04	0.21 ± 0.05	/
	0.5	0.79 ± 0.12	0.68 ± 0.06	102.0
	20	20.48 ± 0.33	20.32 ± 0.18	101.0
	50	50.23 ± 0.24	50.13 ± 0.31	99.9
Pork	blank	0.08 ± 0.01	-	/
	0.5	0.57 ± 0.04	0.49 ± 0.04	98.0
	20	20.18 ± 0.34	19.84 ± 0.13	100.5
	50	49.58 ± 0.56	48.75 ± 0.35	99.0

a The symbol '-'suggest that the sample could not be detected by the corresponding method.

Analytical Methods Accepted Manuscript

Figure captions:

Scheme 1. Scheme of depicting the proposed colorimetric aptasensor to detect CAP using cDNA-AuNPs-PV as signal tags.

Fig. 1. TEM images of (A) bare AuNPs, (B) AuNPs-cDNA conjugates, (C) cDNA-AuNPs-PV conjugates, (D) UV-vis spectra of AuNPs (a), AuNPs-cDNA conjugates (b) and cDNA-AuNPs-PV conjugates (c).

Fig. 2. SEM images of (A) Fe_3O_4NPs , (B) AuMNPs, (C) UV-vis spectra of AuNPs (a), AuMNPs (b), AuMNPs-Apt (c) and Fe_3O_4NPs (d), (D) UV-vis spectra of initial aptamer solution (a), supernatant liquor after aptamer conjugation to AuMNPs (b).

Fig. 3. UV-vis spectra of TMB solution in the absence (black) and presence (red) of H_2O_2 , TMB- H_2O_2 solution catalyzed by AuNPs-cDNA (blue), and TMB- H_2O_2 solution catalyzed by cDNA-AuNPs-PV (pink) as signal tag. Inset shows the corresponding digital camera pictures of TMB solution (a), TMB- H_2O_2 solution (b), TMB- H_2O_2 /AuNPs-cDNA (c) and TMB- H_2O_2 /cDNA-AuNPs-PV (d), respectively.

Fig. 4. UV-vis spectra of TMB solution after the reaction with H_2O_2 (a), TMB- H_2O_2 mixture solution catalyzed by using various labels AuNPs-cDNA (b), PV-cDNA (c), cDNA-AuNPs-HRP (d), cDNA-AuNPs-PV (e) at the same concentration (10 mg mL⁻¹), respectively.

Fig. 5. (A) UV-vis absorption spectra of the proposed colorimetric aptasensor in the presence of different concentrations of CAP target, (B) calibration plot of the proposed colorimetric aptasensor in the presence of different concentrations of CAP target, (C) Photographs of colorimetric responses of different amounts of target CAP.

4
2
2
3
4
5
5
6
7
0
0
9
10
10
11
12
40
13
14
15
15
16
17
40
18
19
20
20
21
22
~~
23
24
25
25
26
27
21
28
29
20
30
31
22
32
33
34
0-
35
36
27
31
38
30
40
40
41
12
42
43
44
45
45
46
17
41
48
ΔQ
50
51
50
5Z
53
54
54
55
56
55
57
58
-

From a to g: the concentration of CAP are 0, 0.05, 0.1, 5, 20, 50, 100 ng mL⁻¹,

respectively.

Fig. 6. The specificity of the developed colorimetric aptasensor.

Scheme 1

Analytical Methods Accepted Manuscript

Fig. 1

Fig. 2

Analytical Methods Accepted Manuscript

Analytical Methods

Fig. 3

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

Fig. 4

Analytical Methods

Fig. 5

Fig. 6

The polymerase chain (PV), labeled gold colloid as signal tag, could greatly catalyze the H_2O_2 -mediated oxidation of TMB for color development, which can be easily observed with naked eyes and quantified by UV spectroscopy.