Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

1	Development and validation of a modified QuEChERS
2	method based on magnetic zirconium dioxide microspheres
3	for the determination of 52 pesticides in oil crops by gas
4	chromatography tandem mass spectrometry
5	
6	Wei Lu ^a , Xitian Peng ^{b,} *, Jing Shen ^b , Xizhou Hu ^b , Lijun Peng ^b , Yuqi Feng ^{a,} *
7	
8	^a Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of
9	Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
10	^b Institute of Agricultural Quality Standards and Testing Technology Research, Hube
11	Academy of Agricultural Science, Wuhan, 430064, China
12	
13	*Corresponding author, Xitian Peng, Tel.:+86-27-87389808, fax: +86-27-87389482,
14	E-mail address: pxitian@aliyun.com.cn; Yuqi Feng, Tel.:+86-27-68755595, fax:
15	+86-27-68755595, E-mail address: yqfeng@whu.edu.cn.
16	

Analytical Methods Accepted Manuscript

2
3
1
4
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
<u>2</u> 1
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
11
41
42
43
44
45
40
46
47
48
10
43
50
51
52
52
55 E 4
54
55
56
57
57
Эğ
59
60

17	Abstract: The residue analysis of pesticide in high-fat oil crops is a challenging task
18	because of the high amount of lipid co-extracts, which could seriously affect the
19	extraction efficiency and the performance of the instruments. In this study, a modified
20	QuEChERS (quick, easy, cheap, effective, rugged and safe) method based on
21	magnetic mesoporous ZrO_2 microspheres (m- $ZrO_2@Fe_3O_4$) and
22	n-octadecylphosphonic acid modified magnetic microsphere (Fe ₃ O ₄ -OPA) was
23	established for the determination of 52 pesticides in oil crops by gas chromatography
24	coupled to tandem mass spectrometry (GC-MS/MS). The ability of m-ZrO ₂ @Fe ₃ O ₄ to
25	remove fatty acids from acetonitrile extracts of oil crops has been evaluated. The
26	results indicated that m-ZrO ₂ @Fe ₃ O ₄ had better performance on the removal of fatty
27	acids than that of PSA, a commonly used sorbent to remove acidic co-extracts in
28	QuEChERS method. The parameters affecting the cleanup performance were also
29	investigated, including the amounts of m-ZrO2@Fe3O4 and Fe3O4-OPA. Under the
30	optimal condition, the method was validated in four kinds of oil crops (peanuts,
31	rapeseed, soybean and sesame) by GC-MS/MS. The linear correlation coefficients (R ²)
32	of all four oil crops were higher than 0.9904. Limits of detection (LODs) were found
33	to be in the range of 0.1–4.1 μ g/kg. The average recoveries of all analytes ranged
34	from 69.1% to 120.0% (except p,p'-DDE, p,p'-DDD, o,p'-DDT and p,p'-DDT) with
35	the intra-day and inter-day relative standard deviations (RSDs) less than 14.7% and
36	14.9%, respectively.
37	

1. Introduction

Vegetable oils, as the main source of human body fat, have become an irreplaceable component of our balanced diet ¹⁻². Generally, vegetable oils are extracted by mechanical pressure or organic solvents from oil crops, such as peanuts, rapeseed, soybean and sesame. Nowadays, various classes of pesticides have been widely used in the production of oil crops to increase faming yield 3 . However, because many pesticides retain in the crops up to harvest stage, they can easily contaminate the final vegetable oil products, causing great threat to human health. Therefore, development of simple, effective and sensitive analytical methods for analysis of pesticide residues in oil crops is very significant, which can help to effectively prevent vegetable oils being polluted by pesticides.

Analytical Methods Accepted Manuscript

For the fat-free or low-fat fruits and vegetables such as tomato, lettuce, apple, citrus, etc., there have been some reliable methods developed for analysis of pesticide ⁴⁻⁵. However, for high fatty samples such as oil crops, the analysis of pesticide residues is always a challenging problem, because high amount of lipid co-extracts can seriously affect the extraction efficiency and performance of analytical instruments ⁶⁻⁷. Even small amount of lipids could cause significant damage to column, source and detector ⁸⁻⁹. Additionally, fatty acids also interfere with the analysis because they produce broad peaks overlapping the analytes and increase matrix effects ¹⁰⁻¹¹. Therefore, sample pretreatment techniques are required to remove the lipid co-extractives prior to chromatography and/or mass spectrometry analysis.

Traditionally, low-temperature fat precipitation, liquid-liquid extraction (LLE),

Analytical Methods Accepted Manuscript

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
∠∪ ⊃1
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
40 17
41
48
49
50
51
52
53
54
55
50
00
5/
58
59

60

1

60	and gel permeation chromatography (GPC) are usually used as a cleanup procedure
61	for removing fatty matrices. Among them, freezing-out is the simplest method, of
62	which fat can be precipitated in the freezer and subsequently separated by
63	centrifugation. However, this method is time-consuming and unable to remove all of
64	fat, and other cleanup approaches are still required to further purify samples ¹²⁻¹⁴ . LLE
65	is another easy-to-operate approach, but the large consumption of solvents and low
66	selectivity of the extraction limit its applications ¹⁵ . GPC can be used to the separation
67	of low molecular mass pesticides from high molecular mass compounds such as
68	lipids. However, some pesticides with high molecular mass (e.g. pyrethroids) can not
69	be separated from lipids by GPC ¹⁶⁻¹⁷ . Additionally, GPC also consumes large volume
70	of solvents and takes much time and labor, which reduces laboratory efficiency and
71	sample throughput. In order to improve the removal efficiency of lipids and the
72	selectivity for the target analytes, some other kinds of sample preparation methods
73	such as matrix solid-phase dispersion extraction ¹⁸ , solid phase microextraction ¹⁹ ,
74	microwave assisted extraction ²⁰ , supercritical fluid extraction ²¹ and solid-phase
75	extraction based on carbon nanotubes ²² have been applied to oily matrices for
76	extraction and cleanup.

Quick, easy, cheap, effective, rugged and safe (QuEChERS) method originally developed by Anastassiades et al. in 2003 has been widely applied for pesticide multi-residues analysis in fruits and vegetables ²³. Recently, this technique has been extended to determine multiple pesticides in oil crops ²⁴⁻²⁵. Koesukwiwat et al. firstly evaluated a modified QuEChERS method for determination of pesticide residues in

Analytical Methods

. .

82	flaxseeds, doughs and peanuts ²⁴ . In this approach, the traditional dispersive
83	solid-phase extraction (d-SPE) and primary-secondary amine (PSA) adsorbent have
84	been applied. Later on, amine modified graphene has been successfully synthesized
85	and used to remove lipids from four oil crops ²⁵ . However, the adsorption capacity of
86	amino-based adsorbent is limited, and the removal efficiency is reduced in the present
87	of abundant lipids ¹¹ . Furthermore, in conventional QuEChERS methods, adsorbents
88	are separated from the acetonitrile extract by centrifugation, which takes extra time
89	and is not conducive to the high-throughput detection of a large number of samples
90	Therefore, development of modified QuEChERS methods based on novel adsorbents
91	of lipid matrices is highly desired to achieve rapid, high-throughput and sensitive
92	detection of pesticide residues in oil crops.

Zirconium dioxide (ZrO₂) has an amphoteric characteristic and its surface possess large amount of Lewis acid sites, which makes it a good adsorbent for Lewis bases such as fatty acids and glycerides. It has been reported that ZrO₂-based sorbents can be used as adsorbents of QuEChERS methods in some high fatty matrices, such as avocado, almonds¹⁰. The reported results indicate that the matrix components such as fatty acids and glycerides can be efficiently removed from sample extracts by ZrO_2 composite. Recently, our group has prepared and evaluated a novel mesoporous ZrO₂ magnetic microsphere (m-ZrO₂@Fe₃O₄) and n-octadecylphosphonic acid modified magnetic microspheres (Fe₃O₄-OPA) for the multi-residues analysis of 42 pesticides and 7 polychlorinated biphenyls (PCBs) in fishes by a modified QuEChERS method combined with gas chromatography tandem mass spectrometry (GC-MS/MS)²⁶.

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

> Under the magnetic field, magnetic materials can be easily separated from the solution, avoiding tedious centrifugation and filtration steps, which greatly save the extraction time and labor cost.

> In this work, the m-ZrO₂@Fe₃O₄ and Fe₃O₄-OPA microspheres were used as OuEChERS adsorbents for the analysis of 52 pesticides in four oil crops. By using this modified QuEChERS combined with GC-MS/MS, a rapid, high-throughput and sensitive pesticide multi-residues detection method for oil crops was successfully established.

2. Materials and methods

2.1 Reagents and materials

Sodium chloride (NaCl), anhydrous magnesium sulfate (MgSO₄), iron (III) chloride hexahydrate (FeCl₃·6H₂O), zirconyl chloride octahydrate (ZrOCl₂·8H₂O) anhydrous sodium acetate (NaOAc), ethanol (EtOH), ethylene glycol (EG), ammonium hydroxide (NH₄OH), tetrahydrofuran (THF), potassium hydroxide (KOH), sodium bisulfate, ethylenediamine and isooctane were all of analytical reagent grade and supplied by Shanghai General Chemical Reagent Factory (Shanghai, China). n-Octadecylphosphonic acid was purchased from TCI (Shanghai, China). PSA was supplied by Agela Technologies. Acetonitrile (ACN), methanol (MeOH) and acetone of HPLC grade were obtained from Tedia (Ohio, USA). Purified water was obtained from a Millipore Milli-Q apparatus (Bedford, MA, USA).

The standard solutions of 52 pesticides (1000 µg/mL) were provided by the

Analytical Methods

Agro-Environmental Protection Institute, Ministry of Agriculture (Tianjin, China).
The standard stock solution of a mixture 52 pesticides was made up to 10 μg/mL with
acetone and stored at -18 °C. The working standard solutions were prepared daily.

130 2.2 Preparation of m-ZrO₂@Fe₃O₄ and Fe₃O₄-OPA magnetic microspheres

The magnetite microspheres were prepared through the solvothermal reaction ²⁷, as described as follows: FeCl₃·6H₂O (5.4 g) was dissolved in ethylene glycol (160 mL) under magnetic stirring for 0.5 h. Then NaOAc (14.4 g) and polyethylene glycol (4.0 g) were added to the solution. After stirring for another 0.5 h, the resultant solution was transferred into a 200 mL Teflon lined stainless-steel autoclave. The autoclave was sealed and heated at 200 °C for 24 h and then cooled to room temperature. The magnetic microspheres were collected with the help of magnet, followed by washing with ethanol and deionized water 4 times. The product was dried in vacuum at 60 °C for 8 h.

Mesoporous ZrO₂ was directly coated onto the surface of magnetic Fe₃O₄ by the hydrolysis of ZrOCl₂ and using cethyltrimetylammonium bromide (CTAB) as the mesoporous template reagent according to our previous report 26 . Fe₃O₄ microspheres (0.5 g) were dispersed in a solution containing 1.5 g CTAB, 400 mL of deionized water, 7.5 mL of concentrated NH₄OH solution (28%) and 300 mL of ethanol. The mixture was stirred continuously for 30 min to form a homogenized dispersion. To the above dispersed solution, an aqueous solution of $ZrOCl_2$ (3.1 g dissolved in the minimum volume of water) was added drop-wise and then the reaction mixture was

Analytical Methods Accepted Manuscript

stirred for 6 h. Then the product was collected by a hand-held magnet and washed repeatedly with ethanol. The obtained particles were redispersed in 250 mL of acetone and refluxed at 80 °C for 60 h. The resultant particles were then washed with deionized water, separated through magnetic decantation and dried in vacuum at 60 °C for 12 h. At last, the obtained m-ZrO₂@Fe₃O₄ was further calcined at 300 °C for 6 h to age.

The Fe₃O₄-OPA was prepared according to the previously described method ²⁶. OPA (1.0 g) was dissolved in 50 mL THF, then bare Fe₃O₄ (5.0 g) was added into the solution. The mixture was refluxed at 80 °C for 12 h. The final product was magnetically collected and washed by water/ethanol/acetone/n-hexane successively and repeatedly, followed by drying at 60 °C for 6 h.

2.3 Sample preparation

Commercial oil crops (peanut, rapeseed, soybean and sesame) were cut into small pieces and comminuted with an electric grinder to achieve good sample homogeneity. The thoroughly homogenized sample (2.5 g) was then weighted into an Eppendorf vial (50 mL). ACN (10 mL) and deionized water (10 mL) were added and the vial was shaken vigorously for 1 min to ensure that the solvent interacted well with the entire sample. Subsequently, anhydrous NaCl (1.0 g) and anhydrous MgSO₄ (4.0 g) were added to the mixture and the shaking step was repeated for 1 min. After centrifugation (5000 rpm, 5 min), the extract was transferred to an Eppendorf vial (15 mL) containing 1.0 g anhydrous MgSO₄. The vial was shaken by hand followed by

Analytical Methods

170 standing for 1 min, and the supernatant was collected for the subsequent steps.

The cleanup procedure was performed by magnetic solid-phase extraction using m-ZrO₂@Fe₃O₄ and Fe₃O₄-OPA as co-adsorbents. 0.5 mL extract was added into a 1.5 mL centrifugal tube containing a certain amount of magnetic adsorbents (m-ZrO₂@Fe₃O₄ and Fe₃O₄-OPA), then the mixture was shaken vigorously for 0.5 min. The adsorbents were then separated rapidly from the solution by an external magnet. Finally, the above solution (1 μ L) was supplied to GC-MS/MS analysis.

2.4 Instrumentation and analytical conditions

GC-MS/MS analysis was performed using a Shimadzu GCMS-TQ8030 equipped with an AOC-20i auto-sampler (Kyoto, Japan). Data acquisition and analysis were performed using software from GCMS Solution (Shimadzu, Kyoto, Japan). The separation was achieved on a fused silica capillary column (Rtx-5MS, 30 $m \times 0.25$ mm i.d., film thickness 0.25 µm) (Restek, Pennsylvania, USA). The oven temperature was programmed at 40 °C for 4.0 min, increased to 125 °C at a rate of 25 °C min⁻¹, and then increased to 300 °C at a rate of 10 °C min⁻¹ and held for 6.0 min. The solvent cut time was 7 min. The injection volume was 1.0 μ L and splitless injection mode was used. The splitless time was 1.0 min. Helium (purity 99.999%) was used as the carrier gas at a flow rate of 1.0 mL min⁻¹. Argon (purity 99.999%) was used as a collision cell gas. The injection port, ion source and interface temperatures were set at 250, 230 and 250 °C, respectively. The QqQ mass spectrometer was operated in selected reaction monitoring mode detecting two transitions per analyte,

Analytical Methods Accepted Manuscript

3
Δ
5
5
6
7
8
9
10
10
11
12
13
14
15
16
10
17
18
19
20
21
22
~~
23
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
30
40
40
41
42
43
44
45
16
40
41
48
49
50
51
50
0Z
53
54
55
56
57
50
00
59
<u>^</u>

1 2

which are listed together with the particular collision energies in **Table 1**.

193

194 **3. Results and Discussion**

195 **3.1 Selection of target analytes and optimization of GC-MS/MS conditions**

Nowdays, a variety of pesticides have been widely applied in oil crops. In order
to establish a universal method for multi-residues analysis of pesticides in oil crops,
52 kinds of commonly used pesticides were selected in the present work, including
organochlorine, organophosphorus, organonitrogen, dimethrin and so on.

Compared with other analytical instruments, GC-MS/MS possesses the 200 201 advantages of higher sensitivity, specificity and selectivity. Therefore, it was 202 employed in this work, and multiple reaction monitoring (MRM) acquisition methods 203 were used. To optimize the triple quadrupole MS/MS, the relevant conditions were 204 considered for the best response, such as the choice of precursor ions, product ions, and optimization of collision energies ²⁸. The mass spectrometric parameters option 205 206 was initially performed by full scan for the compounds. After that, the precursor ion 207 for each analyte was selected, and then the collision energy voltages (potential on 208 second quadrupole) were optimized to generate MS/MS product ions. The 209 characteristic ion transition and collision energy for each compound during MRM 210 acquisition are listed in **Table 1**. The collision energy was optimized for two selective 211 ion transitions for every pesticide. Both pairs of MRM transitions were used for 212 confirmation analysis, which meets the EU Decision (European Council 2002/657/EC, 213 implementing council directive 96/23/EC concerning the performance of analytical

methods and the interpretation of results, 2002), and the most sensitive transitionswere selected for quantification analysis.

3.2 Compared with other QuEChERS adsorbents

In order to test the purification efficiency of the m-ZrO₂@Fe₃O₄, it was compared with PSA, a commonly used QuEChERS absorbent to remove acidic co-extracts. Twelve kinds of common fatty acids (chain length was C₁₈:3, C₁₆:1, C₂₂:2, C₁₈:1, C₁₇:0, C₂₀:2, C₂₀:1 C₁₈:2, C₂₄:1, C₂₄:0, C₁₆:0; C₁₈:0, respectively) were detected in the peanuts blank extract, which was then purified by m-ZrO₂@Fe₃O₄ and PSA, respectively. The purification efficiency of two sorbents was relative to the change of relative content of total fatty acids. The relative concentrations of fatty acids in QuEChERS acetonitrile extracts of peanut after cleanup with different sorbents and without cleanup were determined in three replicates according to the method of GB/T 17376-2008/ISO 5509. As shown in Figure 1, after cleanup with m-ZrO₂@Fe₃O₄, the relative content of fatty acids, which was equal to the sum of peak areas of 12 fatty acids after cleanup divided that of without cleanup, was less than 20%, while it was 68% for PSA. Therefore, the purification efficiency of m-ZrO₂@Fe₃O₄ is much better compared with that of PSA.

3.3 Optimization of sample pretreatment

The lipid contents of peanut, rapeseed, sesame seeds, soybean were 49.24%, 40.71%, 49.67% and 21.62%, respectively ²⁵. In this study, we used a blank peanut QuEChERS extract that has relatively high lipid content to optimize the amounts of

Analytical Methods Accepted Manuscript

m-ZrO₂(a)Fe₃O₄ and Fe₃O₄-OPA. We believed that the optimized results could be used to analyze other three oil crops, which have less or equivalent lipid contents. In the cleanup process of modified QuEChERS method, m-ZrO₂@Fe₃O₄ and Fe₃O₄-OPA microspheres were mixed and the resultant material can be separated from solvent rapidly and conveniently by applying an external magnetic field (Figure 2). Therefore, this magnetic property enables easy and rapid separation of solid adsorbents, simplifying the sample preparation process with manipulative convenience.

Optimization of the amount of m-ZrO₂(a)**Fe₃O₄.** The surface of m-ZrO₂(a)**Fe₃O₄** has many Lewis acid sites, which could adsorb Lewis bases such as fatty acids in QuEChERS extract of oil crops. The amount of m-ZrO₂@Fe₃O₄ was optimized. The experiment was performed using 0.5 mL of ACN extract that was placed into an Eppendorf vial (1.5 mL) which was containing different amounts of m-ZrO₂@Fe₃O₄ (i.e. 10, 15, 35 and 50 mg). After cleanup, the samples were analyzed by GC-MS in full scan mode. As shown in Figure 3, the wide peak of interfering substances gradually disappeared with the increase of amount of $m-ZrO_2@Fe_3O_4$. The wide spectrum bands in chromatograms were identified as fatty acids by GC-MS. At last, 35 mg of m-ZrO₂@Fe₃O₄ was enough to remove those fatty acids, and thus it was chosen for the following experiments.

Optimization of the amount of OPA-Fe₃O₄. Not only lipid co-extracts but also some apolar compounds have great effects on the matrix interference. OPA-Fe₃O₄ with hydrophobic C_{18} groups was used to remove the apolar matrix components.

Analytical Methods

2
3
4
5
5
6
7
8
9
10
10
11
12
13
14
15
16
10
17
18
19
20
21
ר ב רב
22
23
24
25
26
27
21
28
29
30
31
32
22
33
34
35
36
37
20
30
39
40
41
42
43
11
44 45
45
46
47
48
10
50
51
52
53
54
55
56
50
5/
58
59
60

258	Therefore, the quantity of OPA-Fe ₃ O ₄ was optimized. m-ZrO ₂ @Fe ₃ O ₄ (35 mg) and
259	different amounts of OPA-Fe ₃ O ₄ (i.e. 20, 30, 50, 70 mg) were used as co-adsorbents
260	for the cleanup process in QuEChERS method. It was found that 30 mg OPA-Fe $_3O_4$
261	was enough to remove the corresponding matrix components and obtain satisfactory
262	recovery of all pesticides. Therefore, 30 mg OPA-Fe ₃ O ₄ was chosen as the optimal
263	condition.
264	Under the optimal condition, typical GC-MS/MS chromatograms of a fortified
265	peanut sample are shown in Figure 4. There were no interference peaks in the region
266	of the chromatograms of all pesticides, indicating the good cleanup performance.
267	
268	3.4 Validation of the method
269	Calibration curves, detection limits, limits of quantification. To verify the
270	accuracy and precision of the established method, several basic analytical parameters
271	were evaluated, including recovery, linear range, limit of detection (LOD) and limit of
272	quantitation (LOQ). Calibration curves were calculated with a matrix-matched
273	
215	standard calibration in blank samples to avoid matrix effects, which were always
274	standard calibration in blank samples to avoid matrix effects, which were always observed in the form of signal enhancement in GC-MS/MS analysis, leading to
274 275	standard calibration in blank samples to avoid matrix effects, which were always observed in the form of signal enhancement in GC-MS/MS analysis, leading to unacceptable high recoveries. For the construction of the calibration curves, triplicate
274 275 276	standard calibration in blank samples to avoid matrix effects, which were always observed in the form of signal enhancement in GC-MS/MS analysis, leading to unacceptable high recoveries. For the construction of the calibration curves, triplicate measurements were performed, and the calibration curves were generated by plotting
274275276277	standard calibration in blank samples to avoid matrix effects, which were always observed in the form of signal enhancement in GC-MS/MS analysis, leading to unacceptable high recoveries. For the construction of the calibration curves, triplicate measurements were performed, and the calibration curves were generated by plotting the mean peak areas versus analytes concentration. The corresponding results are
 274 275 276 277 278 	standard calibration in blank samples to avoid matrix effects, which were always observed in the form of signal enhancement in GC-MS/MS analysis, leading to unacceptable high recoveries. For the construction of the calibration curves, triplicate measurements were performed, and the calibration curves were generated by plotting the mean peak areas versus analytes concentration. The corresponding results are listed in Table 2 . For all of the four oil crops, the linear correlation coefficients (\mathbb{R}^2)
 274 275 276 277 278 279 	standard calibration in blank samples to avoid matrix effects, which were always observed in the form of signal enhancement in GC-MS/MS analysis, leading to unacceptable high recoveries. For the construction of the calibration curves, triplicate measurements were performed, and the calibration curves were generated by plotting the mean peak areas versus analytes concentration. The corresponding results are listed in Table 2 . For all of the four oil crops, the linear correlation coefficients (R^2) are higher than 0.9904 in the range from 5 to 1000 µg/kg. The LOD and LOQ were

Analytical Methods Accepted Manuscript

2
3
4
5
6
7
8
9
10
11
12
13
1/
14
10
10
17
18
19
20
21
22
23
24
25
26
27
28
20
20
20
31
32
33
34
35
36
37
38
39
40
41
42
43
11
 15
40
40
4/
48
49
50
51
52
53
54
55
56
57
58
50
09
υu

1

280	calculated as the concentration giving a signal-to-noise ratio of 3 (S/N = 3) and 10
281	(S/N = 10), respectively. As shown in Table 2 , the LODs and LOQs for all analytes
282	are found to be in the range of 0.1–4.1 μ g/kg and 0.2–13.5 μ g/kg, respectively.
283	Accuracy and precision. To assay the accuracy of the method, peanut was also
284	used as a representative sample. The recoveries at three different spiking
285	concentrations were obtained by comparing the amount calculated from the
286	calibration curves with the corresponding spiking amount. The precision of the
287	method was assessed by determining the intra-day and inter-day relative standard
288	deviations (RSDs) at three concentration levels. The recoveries and precisions are
289	summarized in Table 3. Except p,p'-DDE, p,p'-DDD, o,p'-DDT and p,p'-DDT, the
290	average recoveries of most target pesticides ranged from 69.1% to 120.0% with the
291	relative standard deviation less than 15.1%. The recoveries of p,p'-DDE, p,p'-DDD,
292	o,p'-DDT and p,p'-DDT range from 41.1% to 64.0%, which is relatively low because
293	of their high lipid solubility in the lipid matrix ^{5, 29} . Simultaneously, the intra-day and
294	inter-day RSDs were below 14.7% and 14.9%, respectively (Table 4). The results
295	demonstrated that the accuracy of the present method was acceptable. Additionally,
296	the recoveries of other three kinds of oil crops (sesame, soybean and rapeseed) were
297	also verified. As shown in Table 5, the recoveries of 48 pesticides in the three samples
298	were in the range from 69.6 to 118.5% with the RSDs less than 14.3%, while the
299	recoveries of p,p'-DDE, p,p'-DDD, o,p'-DDT and p,p'-DDT were in the range of
300	41.1% to 94.9%.

301 Comparison with the previous methods. The comparison of the method

Analytical Methods

302 performance and cleanup time developed in this research with the previous methods 303 was studied. As illustrated in **Table 6**, our method took less cleanup time, had 304 satisfactory precisions and recoveries, and showed better sensitivity than the previous 305 methods. The experimental and comparative results well indicated that our method 306 could be used to effectively monitor pesticides in oil crops.

3.5 Application to commercial oil crops samples

309 Under the optimized conditions, the developed QuEChERS method was applied 310 to the analysis of the pesticide residues in oil crops including peanuts, sesame, 311 soybean and rapeseed. All the oil crops samples collected from local markets and 312 supermarkets in Wuhan. No analytes were detectable in those samples.

4. Conclusion

In this work, a simple and rapid method for the multi-residues analysis of 52 pesticides in four oil crops samples was developed based on a modified QuEChERS method coupled with GC-MS/MS analysis. Two magnetic microspheres, $m-ZrO_2@Fe_3O_4$ and Fe_3O_4 -OPA, were used as cleanup co-adsorbents for the removal of interferents from different oil crops matrices in the QuEChERS method. Compared to traditional QuEChERS methods in which phase separation must be achieved by centrifugation, the modified QuEChERS method using magnetic adsorbents endows the cleanup procedure with manipulative convenience through applying an external magnetic field. Furthermore, our results indicate that m-ZrO₂@Fe₃O₄ has better

Analytical Methods Accepted Manuscript

cleanup performance on the removing of fatty acids than that of PSA, a commonly used sorbent to remove acidic co-extracts in QuEChERS method. This study demonstrates that the QuEChERS method combined with GC–MS/MS analysis a simple, rapid, effective and sensitive method for pesticide multi-residues analysis in oil crops and will have broad applications in food analysis.

330 Acknowledgment

This work was supported by the National Natural Science Foundation of China (21475098, 91217309) and the Youth Fund for Hubei Academy of Agricultural Science (2013NKYJJ18).

Analytical Methods

S. Invir Heal, 2009 , 212,	
tovska, E. Hoh and N.	pt
nt, 2005 , 88, 595-614. Food Chem, 2013 , 61,	scri
Chromatogr A, 2013,	nu
, 79, 109-128. 0, 1315-1328. A. R. Fernandez-Alba,	d Ma
matogr A, 2007 , 1165,	ote
9. 089-5098. . Chromatogr: B, 2011 ,	Accel
Chromatogr A, 2006,	g
Medina, J Chromatogr	tho
o-Gonzalez and S.	Me
natogr A, 2006 , 1127,	cal
Inal Chim Acta, 2015,	yti
216, 7346-7350. J Aoac Int, 2003 , 86,	Anal
Leepipatpiboon, J Agr	N
Ye and Y. Q. Ma, J	

2			
3	224	Doforor	1005
4	554	Kelelel	
5 6	335	1	B. D. Oomah and L. Sitter, Food Chem, 2009, 114, 623-628.
7	336	2	T. Sanders, American Journal of Clinical Nutrition, 2000, 71, 176S-178S.
8	337	3	S. E. Carozza, B. Li, O. Wang, S. Horel and S. Cooper, Int J Hyg Envir Heal, 2009, 212.
9	338		186-195
10	339	4	S. I. Lehotav, K. A. Son, H. Kwon, II. Koesukwiwat, W. S. Fu, K. Mastovska, F. Hoh and N.
11	240	-	Loopingtrihoon I Chuomatogy A 2010 1217 2548 2560
12	241	E	Leepipatpioon, J Chromatogr A, 2010, 1217, 2548-2500.
14	341	5	S. J. Lenotay, A. de Kok, M. Hiemstra and P. van Bodegraven, <i>J Aoac Int</i> , 2005, 88, 595-614.
15	342	6	N. Chamkasem, L. W. Ollis, I. Harmon, S. Lee and G. Mercer, <i>J Agr Food Chem</i> , 2013, 61,
16	343		2315-2329.
17	344	7	L. Rajski, A. Lozano, A. Ucles, C. Ferrer and A. R. Fernandez-Alba, J Chromatogr A, 2013,
18	345		1304, 109-120.
19 20	346	8	B. Gilbert-Lopez, J. F. Garcia-Reyes and A. Molina-Diaz, Talanta, 2009, 79, 109-128.
21	347	9	M. Castillo, C. Gonzalez and A. Miralles, Anal Bioanal Chem, 2011, 400, 1315-1328.
22	348	10	A. Lozano, L. Rajski, S. Ucles, N. Belmonte-Valles, M. Mezcua and A. R. Fernandez-Alba,
23	349		Talanta, 2014 , 118, 68-83.
24	350	11	O. Shimelis, Y. H. Yang, K. Stenerson, T. Kaneko and M. Ye, J Chromatogr A, 2007, 1165,
25	351		18-25.
20 27	352	12	T.D. Nouven M.H.Lee and G.H.Lee Microchem J 2010 , 95, 113-119
28	353	12	V Jiang V Li V Jiang I Li and C Dan L Age Eard Cham 2012 60 5080 508
29	254	13	D. Su. V. Yu. V. H. Wang, D. Li, V. V. Li, H.O. Zhang and A. M. Yu. J. Chromotogy P. 2011
30	255	14	K. Su, A. Au, A. H. Walig, D. Li, A. T. Li, H. Q. Zhang and A. M. Tu, J. Chromatogr. D, 2011,
31	355		8/9, 3423-3428.
32	356	15	K. D. Yoon and J. Kim, <i>J Sep Sci</i> , 2009 , <i>32</i> , 74-78.
33 34	357	16	J. L. F. Moreno, F. J. A. Liebanas, A. G. Frenich and J. L. M. Vidal, J Chromatogr A, 2006,
35	358		1111, 97-105.
36	359	17	M. Guardia-Rubio, M. L. F. Cordova, M. J. Ayora-Canada and A. Ruiz-Medina, J Chromatogr
37	360		<i>A</i> , 2006 , <i>1108</i> , 231-239.
38	361	18	N. Rodriguez-Gonzalez, M. J. Gonzalez-Castro, E. Beceiro-Gonzalez and S.
39	362		Muniategui-Lorenzo, Food Chem, 2015, 173, 391-396.
40 41	363	19	C. Fan, N. Li and X. L. Cao, Food Chem, 2015, 174, 446-451.
42	364	20	E. N. Papadakis, Z. Vryzas and E. Papadopoulou-Mourkidou, J Chromatogr A, 2006, 1127.
43	365		6-11
44	366	21	S Vogliardi M Tucci G Stocchero S D Ferrara and D Favretto Anal Chim Acta 2015
45	367	21	857 1_27
46	269	22	557, 1-27. S. Longz Foria S. Cardonas and M. Valaaraal, <i>I.Chuamataan A</i> 2000 , 1216, 7246, 7250
48	200	22	S. Lopez-rena, S. Cardenas and M. Valcarcer, J Chromatogr A, 2009, 1210 , 7540 -7550.
49	369	23	M. Anastassiades, S. J. Lenotay, D. Stajnbaner and F. J. Schenck, J Aoac Int, 2003, 86,
50	370		412-431.
51	371	24	U. Koesukwiwat, S. J. Lehotay, K. Mastovska, K. J. Dorweiler and N. Leepipatpiboon, <i>J Agr</i>
52 52	372		Food Chem, 2010 , 58, 5950-5958.
53 54	373	25	W. B. Guan, Z. N. Li, H. Y. Zhang, H. J. Hong, N. Rebeyev, Y. Ye and Y. Q. Ma, J
55	374		Chromatogr A, 2013, 1286, 1-8.
56	375	26	X. T. Peng, L. Jiang, Y. Gong, X. Z. Hu, L. J. Peng and Y. Q. Feng, Talanta, 2015, 132,
57	376		118-125.
58			
59			

- 377 27 G. T. Zhu, X. S. Li, Q. Gao, N. W. Zhao, B. F. Yuan and. Y. Q. Feng, *J Chromatogr A*, 2012, *1224*, 11-18.
 379 28 S. Walorczyk, *J Chromatogr A*, 2007, *1165*, 200-212.
 380 29 H. Ruan, W. G. Rong, N. H. Song, W. L. Ji, H. L. Liu and Y. J. Ma, *Chin. J. Anal. Chem.*,
 - , *42*, 1110-1116.
 - 382 30 S. Nemoto, S.J. Lehotay, J. Agric. Food Chem, 1998, 42, 2190-2199

384	Figure captions
385	Figure 1 Relative concentrations of the content of fatty acids for blank peanut
386	extracts after different QuEChERS sorbents cleanup.
387	Figure 2 The photo of m-ZrO ₂ @Fe ₃ O ₄ and Fe ₃ O ₄ -OPA dispersed in peanut extract (a)
388	and collected by a magnet (b).
389	Figure 3 Effect of the amount of m- $ZrO_2@Fe_3O_4$ on the cleanup performance.
390	Figure 4 GC-MS/MS chromatograms of a blank peanut sample spiked with 52
391	pesticides at 100 µg/kg level.
392	

393 Tables

Table 1 Optimized GC-MS/MS acquisition method parameters for the 52 pesticides.

Pesticide	Retention time (min)	Quantication ion (m/z)	CE1	Confirmation ion (m/z)	CE2
Dichlorvos	10.046	185.00>93.00	14	185.00>109.00	14
Trifluralin	14.632	306.10>264.10	8	306.10>206.10	14
Phorate	14.907	260.00>75.00	8	260.00>231.00	4
alpha-HCH	15.072	218.90>182.90	8	218.90>144.90	20
Dimethoate	15.309	125.00>79.00	8	125.00>47.00	14
beta-HCH	15.629	218.90>182.90	8	218.90>144.90	20
Gamma-HCH	15.758	218.90>182.90	8	218.90>144.90	20
Quintozine	15.853	294.80>236.80	16	294.80>264.80	12
Pyrimethanil	15.965	198.10>183.10	14	198.10>158.10	18
Diazinon	15.978	304.10>179.10	10	304.10>162.10	8
delta-HCH	16.246	218.90>182.90	10	218.90>144.90	20
Chlorothalonil	16.336	265.90>230.80	14	265.90>168.00	22
Vinclozolin	16.973	285.00>212.00	12	285.00>178.00	14
Parathion-methyl	17.007	263.00>109.00	14	263.00>136.00	8
Chlorpyrifos-methyl	17.002	285.90>93.00	22	285.90>270.90	14
Metalaxyl	17.232	249.20>190.10	8	249.20>146.10	22
Fenitrothion	17.538	277.00>260.00	6	277.00>109.10	14
Malathion	17.697	173.10>99.00	14	173.10>127.00	6
Fenthion	17.909	278.00>109.00	20	278.00>125.00	20
Clorpyrifos	17.94	313.90>257.90	14	313.90>285.90	8
Parathion	17.961	291.10>109.00	14	291.10>137.00	6
Triadimefon	18.001	208.10>181.00	10	208.10>127.00	14
Dicofol	18.035	250.00>139.00	14	250.00>215.00	8
Isocarbophos	18.086	289.10>136.00	14	289.10>113.00	6
Isofenphos-methyl	18.435	199.00>121.00	14	199.00>167.00	22
Pendimethalin	18.579	252.10>162.10	10	252.10>191.10	8
Fipronil	18.714	366.90>212.90	30	366.90>254.90	22
Procymidone	18.936	283.00>96.00	10	283.00>255.00	12
Profenofos	19.677	336.90>266.90	14	336.90>308.90	6
p,p'-DDE	19.772	246.00>176.00	30	246.00>211.00	22
Chlorfenapyr	20.214	247.10>200.10	15	247.10>227.10	15
p,p'-DDD	20.566	235.00>165.00	24	235.00>199.00	14
o,p'-DDT	20.641	235.00>165.00	24	235.00>199.00	16
Triazophos	20.847	257.00>162.00	8	257.00>134.00	22
p,p'-DDT	21.262	235.00>165.00	24	235.00>199.00	16
Inrodione	21.041	314 00\245 00	12	314 00>56 00	22
ipiouione	21.941	514.00~245.00	12	514.00- 50.00	
Phosmet	21.941 22.170	160.00>133.00	12	160.00>77.00	24

Page 21 of 35

Analytical Methods

Bifenthrin	22.115	181.10>166.10	12	181.10>153.10	8
Fenpropathrin	22.264	265.10>210.10	12	265.10>172.10	10
Phosalone	22.845	182.00>111.00	14	182.00>138.00	8
Cyhalothrin-1	22.899	197.00>161.00	8	197.00>141.00	12
Cyhalothrin-2	23.092	197.00>161.00	8	197.00>141.00	12
Permethrin-1	23.860	183.10>168.10	14	183.10>165.10	14
Permethrin-2	23.983	183.10>168.10	14	183.10>165.10	14
Pyridaben	24.033	147.10>117.10	22	147.10>132.10	14
Cyfluthrin-1	24.427	226.10>206.10	14	226.10>199.10	6
Cyfluthrin-2	24.509	226.10>206.10	14	226.10>199.10	6
Cyfluthrin-3	24.626	226.10>206.10	14	226.10>199.10	6
Cyfluthrin-4	24.626	226.10>206.10	14	226.10>199.10	6
Cypermethrin-1	24.748	181.10>152.10	22	181.10>127.10	22
Cypermethrin-2	24.835	181.10>152.10	22	181.10>127.10	22
Flucythrinate-1	24.938	199.10>157.10	10	199.10>107.10	22
Cypermethrin-3	24.940	181.10>152.10	22	181.10>127.10	22
Cypermethrin-4	25.128	181.10>152.10	22	181.10>127.10	22
Flucythrinate-2	25.128	199.10>157.10	10	199.10>107.10	22
Phenvalerate-1	25.740	419.10>225.10	6	419.10>167.10	12
Fluvalinate-1	25.906	250.10>55.00	20	250.10>200.00	20
Phenvalerate-2	25.963	419.10>225.10	6	419.10>167.10	12
Fluvalinate-2	25.962	250.10>55.00	20	250.10>200.00	20
Difenoconazole-1	26.271	323.00>265.00	14	323.00>202.00	28
Difenoconazole-2	26.357	323.00>265.00	14	323.00>202.00	28
Deltamethrin-1	26.374	252.90>93.00	20	252.90>171.90	8
Deltamethrin-2	26.644	252.90>93.00	20	252.90>171.90	8
Azoxystrobin	27.033	344.00>329.10	15	344.00>183.10	15

Table 2 Determination coefficients (\mathbb{R}^2), limit of detection (LOD) and limit of

399 quantification (LOQ) of the target pesticides in peanut, rapeseed, soybean, sesame.

D	Peanut			R	apesee	d	Soybean			Sesame		
Pesticide	\mathbb{R}^2	LOD	LOQ	\mathbb{R}^2	LOD	LOQ	\mathbb{R}^2	LOD	LOQ	R^2	LOD	LOQ
Dichlorvos	0.9994	2.3	7.6	0.9908	0.3	0.9	0.9939	0.4	1.3	0.9975	0.2	0.5
Trifluralin	0.9972	0.2	0.7	0.9929	0.1	0.2	0.9963	0.2	0.7	0.9961	0.2	0.5
Phorate	0.9964	0.8	2.8	0.9914	0.2	0.7	0.9932	0.4	1.3	0.9972	0.4	1.5
alpha-HCH	0.9975	0.3	1.0	0.9919	0.1	0.3	0.9954	0.2	0.6	0.9968	0.3	0.9
Dimethoate	0.9932	2.7	8.8	0.9910	1.6	5.3	0.9980	4.1	13.5	0.9988	1.1	3.6
beta-HCH	0.9949	0.2	0.8	0.9953	0.1	0.3	0.9962	0.2	0.7	0.9977	0.2	0.7
gamma-HCH	0.9942	0.4	1.2	0.9934	0.1	0.4	0.9943	0.3	0.9	0.9972	0.3	0.9
Quintozine	0.9936	0.9	3.0	0.9930	0.3	0.9	0.9932	0.6	2.1	0.9978	0.6	2.1
Pyrimethanil	0.9953	2.4	7.9	0.9904	2.7	9.0	0.9969	3.1	10.4	0.9981	0.4	1.3
Diazinon	0.9914	0.2	0.6	0.9944	0.1	0.4	0.9951	0.3	0.9	0.9956	0.2	0.7
delta-HCH	0.9942	0.5	1.6	0.9906	0.3	0.9	0.9956	0.3	1.1	0.9969	0.3	0.9
Chlorothalonil	0.9930	1.8	6.1	0.9921	0.2	0.7	0.9974	1.4	4.6	0.9934	1.1	3.8
Vinclozolin	0.9956	0.2	0.7	0.9957	0.1	0.5	0.9947	0.5	1.8	0.9978	0.5	1.5
Parathion-methyl	0.9932	0.7	2.5	0.9968	1.6	5.3	0.9975	0.3	1.2	0.9979	0.5	1.6
Chlorpyrifos-methyl	0.9924	0.4	1.3	0.9914	0.3	0.9	0.9957	0.3	0.9	0.9967	1.5	5.0
Metalaxyl	0.9961	0.3	0.9	0.9955	0.1	0.4	0.9974	0.5	1.6	0.9981	0.3	0.8
Fenitrothion	0.9923	2.5	8.2	0.9948	0.7	2.3	0.9979	0.3	1.1	0.9979	0.4	1.4
Malathion	0.9923	0.2	0.8	0.9941	0.5	1.7	0.9982	0.1	0.5	0.9984	0.1	0.3
Fenthion	0.9937	0.1	0.5	0.9933	0.1	0.3	0.9970	0.1	0.4	0.9984	0.1	0.2
Clorpyrifos	0.9921	0.1	0.2	0.9954	0.1	0.2	0.9967	0.1	0.3	0.9976	0.1	0.3
Parathion	0.9915	0.9	3.0	0.9946	0.3	0.9	0.9990	0.3	0.9	0.9973	0.4	1.2
Triadimefon	0.9915	0.6	2.1	0.9956	0.8	2.7	0.9951	0.4	1.4	0.9992	1.2	4.1
Dicofol	0.9967	0.3	1.0	0.9972	0.1	0.3	0.9967	0.3	0.9	0.9990	0.3	0.8
Isocarbophos	0.9912	1.3	4.3	0.9924	0.3	0.9	0.9987	0.4	1.4	0.9991	0.4	1.4
Isofenphos-methyl	0.9931	0.1	0.2	0.9951	0.1	0.4	0.9963	0.1	0.2	0.9990	0.1	0.2
Pendimethalin	0.9911	0.4	1.2	0.9961	2.1	6.9	0.9969	1.7	5.5	0.9968	0.1	0.4
Fipronil	0.9929	0.3	0.9	0.9905	0.1	0.3	0.9990	3.4	11.2	0.9978	1.4	4.8
Procymidone	0.9967	0.2	0.7	0.9969	0.8	2.7	0.9950	0.2	0.6	0.9998	0.1	0.5
Profenofos	0.9988	1.1	3.6	0.9943	0.2	0.6	0.9958	0.3	1.0	0.9998	0.2	0.6
p,p'-DDE	0.9981	0.1	0.2	0.9965	0.1	0.3	0.9957	0.1	0.2	0.9998	0.1	0.2
Chlorfenapyr	0.9985	0.4	1.3	0.9952	0.8	2.6	0.9988	1.3	4.5	0.9997	0.9	2.9
p,p'-DDD	0.9985	0.1	0.3	0.9956	0.1	0.3	0.9964	0.1	0.2	0.9996	0.1	0.3
o,p'-DDT	0.9941	0.4	1.3	0.9965	0.2	0.6	0.9973	0.1	0.2	0.9997	0.1	0.4
Triazophos	0.9952	0.3	1.0	0.9940	0.4	1.3	0.9971	0.1	0.4	0.9992	0.1	0.3
p,p'-DDT	0.9932	0.2	0.8	0.9959	0.2	0.5	0.9973	0.1	0.2	0.9998	0.1	0.3
Iprodione	0.9993	1.7	5.6	0.9967	0.3	0.9	0.9969	0.3	1.0	0.9968	0.4	1.4
Phosmet	0.9967	2.3	7.7	0.9969	0.3	0.9	0.9990	1.1	3.5	0.9976	0.4	1.3
Bromopropylate	0.9983	0.1	0.3	0.9955	0.1	0.3	0.9977	0.8	2.8	0.9983	0.1	0.2

Page	23	of	35
------	----	----	----

Analytical Methods

	Bifenthrin	0.9967	0.4	1.3	0.9961	0.5	1.7	0.9973	0.2	0.8	0.9988	0.2	0.8
I	Fenpropathrin	0.9968	0.3	1.0	0.9966	0.2	0.5	0.9957	0.2	0.6	0.9979	0.1	0.4
	Phosalone	0.9958	0.1	0.4	0.9966	0.7	2.4	0.9980	0.7	2.3	0.9964	0.4	1.3
	Cyhalothrin	0.9971	0.8	2.7	0.9975	0.2	0.8	0.9968	0.2	0.6	0.9963	0.1	0.5
	Permethrin	0.9992	1.9	6.4	0.9980	2.2	7.3	0.9971	2.0	6.5	0.9944	0.8	2.6
	Pyridaben	0.9965	0.3	1.1	0.9964	0.3	1.0	0.9974	0.2	0.8	0.9963	0.2	0.8
	Cyfluthrin	0.9978	1.7	5.6	0.9987	0.2	0.7	0.9989	0.4	1.4	0.9939	0.4	1.5
(Cypermethrin	0.9964	1.3	4.3	0.9959	1.2	4.1	0.9985	1.1	3.8	0.9936	1.2	4.1
	Flucythrinate	0.9955	1.2	4.1	0.9969	0.7	2.5	0.9988	0.8	2.7	0.9936	0.4	1.5
	Phenvalerate	0.9954	0.9	3.1	0.9957	0.2	0.6	0.9977	0.4	1.4	0.9943	0.3	1.0
	Fluvalinate	0.9979	0.5	1.6	0.9978	0.1	0.4	0.9993	0.2	0.5	0.9943	0.1	0.4
D	Difenoconazole	0.9989	0.2	0.7	0.9972	0.1	0.2	0.9982	0.1	0.4	0.9915	0.3	1.2
	Deltamethrin	0.9968	2.1	6.9	0.9978	1.2	3.9	0.9978	1.8	6.1	0.9953	1.7	5.6
	Azoxystrobin	0.9993	1.3	4.3	0.9971	2.5	8.2	0.9984	3.1	10.3	0.9908	1.2	3.9

Table 3 Average recoveries and RSDs of 52 pesticides spiked in peanut at three

403

different concentration levels via GC–MS/MS analysis (n=4).

	10 ng/g spik	ked level	50 ng/g spik	ed level	200 ng/g spiked level		
Analytes	Recovery	RSD	Recovery	RSD	Recovery	RSD	
	(%)	(%)	(%)	(%)	(%)	(%)	
Dichlorvos	75.2	2.6	106.7	5.8	100.7	3.7	
Trifluralin	98.7	8.3	76.1	5.5	88.6	2.0	
Phorate	100.4	7.8	86.6	4.7	101.7	0.9	
alpha-HCH	96.0	7.0	84.2	5.0	95.8	2.9	
Dimethoate	100.4	8.6	95.3	4.2	112.6	8.0	
beta-HCH	97.8	7.8	87.3	5.1	98.8	1.9	
gamma-HCH	93.9	4.0	86.2	5.4	96.6	2.2	
Quintozine	70.4	9.4	70.2	3.5	69.6	0.9	
Pyrimethanil	105.9	4.2	86.0	4.4	95.2	1.8	
Diazinon	107.4	10.9	92.1	5.2	107.5	2.1	
delta-HCH	93.2	4.3	85.0	4.7	97.6	2.7	
Chlorothalonil	93.8	13.0	85.2	4.5	104.3	8.7	
Vinclozolin	110.3	9.6	96.3	4.2	109.1	1.3	
Parathion-methyl	111.5	6.5	93.3	4.0	112.4	2.0	
Chlorpyrifos-methyl	93.4	7.9	83.7	5.5	98.9	1.3	
Metalaxyl	120.0	6.0	100.3	2.1	119.3	4.1	
Fenitrothion	103.1	2.5	93.5	5.3	111.6	1.4	
Malathion	109.2	2.8	96.7	4.4	115.9	4.1	
Fenthion	102.3	2.5	94.7	3.3	107.8	1.5	
Clorpyrifos	106.6	12.0	76.0	2.3	87.9	1.2	
Parathion	110.7	6.4	91.8	4.8	111.2	2.1	
Triadimefon	117.5	5.9	102.3	3.1	115.2	2.8	
Dicofol	90.4	1.4	82.3	11.8	86.3	13.3	
Isocarbophos	114.1	11.5	99.3	4.8	115.3	3.4	
Isofenphos-methyl	109.8	3.0	96.7	4.3	112.9	2.2	
Pendimethalin	92.6	5.8	71.4	4.4	83.6	1.2	
Fipronil	99.8	3.3	88.7	5.5	109.5	2.6	
Procymidone	108.5	6.1	101.4	2.8	110.6	2.0	
Profenofos	86.8	2.8	94.3	2.2	96.0	0.7	
p,p'-DDE	58.1	7.9	41.1	1.8	44.3	0.6	
Chlorfenapyr	91.0	6.2	93.5	3.1	103.3	5.6	
p,p'-DDD	79.8	8.0	63.3	1.5	70.2	0.8	
o,p'-DDT	64.0	1.5	44.4	1.7	49.1	0.4	
Triazophos	103.2	4.7	100.7	3.5	115.1	3.7	
p,p'-DDT	61.9	6.8	45.7	2.0	51.0	0.9	
Iprodione	02 4	6.4	102.0	3 /	115.1	3.6	
1	92.4	0.4	102.9	5.4	11.5.1	5.0	

Analytical Methods

Bromopropylate	89.8	6.3	82.0	1.9	89.1	0.7
Bifenthrin	76.1	11.1	73.4	3.5	70.5	1.0
Fenpropathrin	102.2	15.1	79.9	4.7	89.0	1.5
Phosalone	102.9	3.9	95.2	4.3	108.0	3.5
Cyhalothrin	91.4	6.8	79.5	5.2	90.1	1.5
Permethrin	79.9	11.7	77.9	2.4	75.2	1.1
Pyridaben	83.1	8.1	70.7	3.2	78.8	0.9
Cyfluthrin	97.9	8.6	78.8	6.1	87.7	1.4
Cypermethrin	96.4	8.2	71.3	5.8	81.5	1.7
Flucythrinate	102.7	5.8	90.1	5.7	102.3	1.0
Phenvalerate	90.9	9.4	70.2	7.3	79.8	1.4
Fluvalinate	91.6	14.7	71.3	5.0	80.1	1.2
Difenoconazole	105.7	8.5	104.9	4.7	115.8	6.9
Deltamethrin	85.1	11.8	69.1	5.8	80.1	1.6
Azoxystrobin	111.1	15.0	106.9	4.7	116.5	12.6

 Table 4 Method precisions at three different concentrations for determination 52

pesticides in peanut samples.

A 17	Intra-day p	recision (RSE	0% , n=4)	Inter-day precision (RSD%, n=4)			
Analytes	Low	Middle	High	Low	Middle	High	
Dichlorvos	2.7	7.6	3.0	2.7	8.6	5.1	
Trifluralin	1.4	5.6	2.0	4.0	7.4	4.4	
Phorate	6.7	6.9	0.9	8.8	9.5	4.0	
alpha-HCH	2.6	4.4	1.5	2.3	5.4	4.4	
Dimethoate	11.9	13.1	9.7	9.8	14.9	6.0	
beta-HCH	3.0	3.3	1.6	1.8	5.5	3.9	
gamma-HCH	3.0	3.8	0.8	3.7	5.7	4.6	
Quintozine	4.1	4.7	0.9	6.0	6.1	4.0	
Pyrimethanil	0.3	2.3	1.9	5.5	5.2	4.7	
Diazinon	8.6	6.6	1.0	1.1	9.5	4.3	
delta-HCH	4.8	2.7	1.9	4.2	5.3	5.1	
Chlorothalonil	10.3	3.1	8.5	12.6	6.8	8.8	
Vinclozolin	7.2	2.2	0.8	12.0	4.4	5.1	
Parathion-methyl	5.2	9.4	2.4	6.1	12.7	4.9	
Chlorpyrifos-methyl	5.5	4.7	1.3	7.0	7.2	4.5	
Metalaxyl	3.3	5.4	1.5	5.4	5.6	3.7	
Fenitrothion	2.1	10.1	0.6	3.1	13.4	5.6	
Malathion	2.4	10.7	3.9	2.4	13.6	5.4	
Fenthion	0.7	4.4	0.4	2.3	6.4	4.4	
Clorpyrifos	8.1	3.4	1.5	6.9	4.5	4.7	
Parathion	6.8	7.4	1.8	8.6	10.4	7.0	
Triadimefon	3.7	2.0	2.9	3.6	4.1	3.8	
Dicofol	3.2	3.0	14.7	1.9	12.5	10.7	
Isocarbophos	12.1	11.7	3.4	10.2	14.5	5.8	
Isofenphos-methyl	1.2	7.5	0.5	2.9	9.9	4.9	
Pendimethalin	5.2	4.9	1.2	3.0	6.8	6.0	
Fipronil	2.1	9.6	3.1	6.4	13.9	2.9	
Procymidone	2.7	4.0	1.1	4.0	4.1	4.4	
Profenofos	3.8	2.9	0.1	3.9	3.8	4.6	
p,p'-DDE	0.9	2.0	0.4	2.4	3.1	4.3	
Chlorfenapyr	7.4	4.5	2.0	8.5	4.7	8.4	
p,p'-DDD	1.1	3.2	0.5	2.9	3.8	4.9	
o,p'-DDT	0.7	2.1	0.4	2.1	3.1	4.0	
Triazophos	4.6	6.7	3.6	5.6	9.5	5.2	
p,p'-DDT	1.6	2.1	0.4	1.0	3.3	5.0	
Iprodione	14.0	1.6	4.2	12.3	2.8	5.7	
Phosmet	6.1	8.2	12.0	6.6	11.2	9.3	
				-			

Analytical Methods

D (A)			- -	- -		
Bifenthrin	0.2	1.9	0.7	0.7	3.4	4.5
Fenpropathrin	3.3	6.0	2.0	5.2	6.7	4.7
Phosalone	4.4	4.6	3.5	4.2	7.5	5.7
Cyhalothrin	1.8	6.5	1.5	4.2	8.6	4.8
Permethrin	0.6	2.0	0.7	1.2	4.0	3.7
Pyridaben	3.3	3.0	1.2	3.5	4.1	5.4
Cyfluthrin	6.6	7.4	0.9	9.8	8.7	4.3
Cypermethrin	8.1	6.6	2.3	6.5	8.5	4.7
Flucythrinate	1.6	10.7	0.2	1.8	10.7	4.4
Phenvalerate	10.3	10.2	1.5	5.8	12.2	5.2
Fluvalinate	4.8	6.1	0.5	0.7	7.8	4.8
Difenoconazole	1.5	8.9	7.4	7.1	9.1	6.2
Deltamethrin	9.0	7.2	1.9	2.6	8.5	4.8
Azoxystrobin	10.6	7.6	14.6	4.6	8.3	9.3

Tables 5 Average recoveries and RSDs of 52 pesticides spiked in other three oil crops

411

(sesame, soybean, rapeseed) via GC–MS/MS analysis (n=4).

	Sesame		Soybean		Rapeseed	
Analytes	Recovery	RSD	Recovery	RSD	Recovery	RSD
	(%)	(%)	(%)	(%)	(%)	(%)
Dichlorvos	107.6	9.4	108.0	4.4	100.1	0.7
Trifluralin	73.2	11.9	83.3	1.1	101.9	9.5
Phorate	74.0	0.8	96.3	1.9	101.0	3.7
alpha-HCH	78.6	8.5	91.8	2.3	97.7	2.2
Dimethoate	95.7	14.3	104.1	7.4	113.2	5.8
beta-HCH	84.7	3.5	94.1	4.6	99.2	4.9
gamma-HCH	86.6	5.3	93.7	3.1	97.3	2.7
Quintozine	74.8	10.2	71.5	3.1	96.7	6.0
Pyrimethanil	83.9	11.4	111.2	0.7	101.5	7.7
Diazinon	93.7	7.4	104.4	1.9	99.8	3.7
delta-HCH	88.2	3.7	98.4	3.7	101.3	4.4
Chlorothalonil	100.7	8.8	102.2	7.2	85.6	0.1
Vinclozolin	93.6	9.5	110.7	2.0	102.6	6.0
Parathion-methyl	81.1	0.9	111.6	5.3	104.7	11.8
Chlorpyrifos-methyl	80.7	6.2	98.0	2.3	100.0	3.1
Metalaxyl	110.7	6.6	114.3	3.6	102.1	6.5
Fenitrothion	88.6	13.6	115.5	4.3	104.4	4.7
Malathion	109.8	6.0	117.9	3.2	99.2	6.7
Fenthion	93.1	1.3	107.3	2.9	101.0	4.4
Clorpyrifos	81.1	1.5	94.8	1.2	97.5	3.4
Parathion	90.6	11.7	112.1	1.1	100.7	5.0
Triadimefon	109.2	1.7	117.3	2.4	100.9	3.0
Dicofol	94.5	5.2	96.4	4.5	99.3	7.7
Isocarbophos	100.5	9.4	110.0	6.1	100.6	2.4
Isofenphos-methyl	95.8	6.8	110.0	2.4	100.1	4.4
Pendimethalin	69.8	11.8	83.4	1.3	100.6	7.9
Fipronil	107.6	9.0	113.4	2.7	97.7	10.3
Procymidone	97.3	3.0	118.5	3.3	101.8	6.9
Profenofos	92.0	4.1	106.0	0.9	99.0	0.4
p,p'-DDE	48.6	1.6	41.1	0.6	58.8	4.1
Chlorfenapyr	92.9	2.1	106.7	11.6	95.0	5.0
p,p'-DDD	64.6	2.1	63.4	1.5	67.1	9.8
o,p'-DDT	52.5	0.6	49.7	1.4	45.9	10.6
Triazophos	95.5	9.5	101.4	3.1	103.6	5.1
p,p'-DDT	55.3	0.6	50.8	2.3	94.9	5.8
Iprodione	105.2	3.7	116.8	3.7	100.7	12.9
Phosmet	97.8	7.0	104.0	6.3	91.9	1.1

Analytical Methods

Bromopropylate	72.9	2.5	84.5	1.5	99.2	7.7
Bifenthrin	70.3	2.2	77.7	0.9	96.4	11.0
Fenpropathrin	74.8	3.4	84.2	2.7	98.5	9.6
Phosalone	85.5	7.2	117.2	2.8	105.1	12.9
Cyhalothrin	76.4	11.4	78.5	1.1	95.9	7.4
Permethrin	80.1	4.1	78.0	1.9	95.0	9.5
Pyridaben	83.2	6.2	78.3	1.1	96.4	9.0
Cyfluthrin	83.8	8.6	84.8	3.4	96.6	6.3
Cypermethrin	72.6	8.3	96.2	1.7	97.0	5.1
Flucythrinate	69.6	5.8	95.1	4.4	93.7	6.9
Phenvalerate	88.2	5.3	71.3	3.3	106.2	11.9
Fluvalinate	86.2	5.7	76.3	3.3	94.4	6.8
Difenoconazole	87.8	9.4	116.7	5.6	90.0	2.0
Deltamethrin	88.3	6.1	80.2	6.4	91.9	8.0
Azoxystrobin	97.5	3.2	116.6	8.1	84.7	1.8

Table 6 Comparison of method performance and the time with the previous method

for detection of pesticides in oil crops samples

Technique	Commodity	Cleanup process	Determination method	Analytes and LODs	Recoveries (%)	RSD (%)	Time required (min)	Reference
	flaxseeds, peanut	d-SPE with 150 mg PSA and 50 mg C-18	GC-TOF-MS	34 pesticides: 5-300 μg/kg	22–113	<26	>5 min	24
QuEChERS	avocado, almond	d-SPE cleanups (Z-Sep, Z-Sep+, PSA + C18 and silica)	LC-MS/MS	113 pesticides: 3-15 μg/kg	70-120	<20	>15 min	7
	avocado, almond	d-SPE cleanups (Z-Sep, Z-Sep+)	GC-MS/MS	166 pesticides: 3-15 μg/kg	28-159	<20	>15 min	10
low	rapeseed, rapeseed oil	12 h freezing	LC-MS/MS	27 pesticides: 0.1–6.0 μg/kg	70–118	<27	12 h	13
temperature fat precipitation	peanut oil	24 h freezing following by d-SPE with 100 mg MWCNTs and 1 g neutral alumina	GC-MS	9 pesticides: 0.7–1.6 μg/kg	85.9–114.3	< 8.84	>24 h	14
ASE+LLE+ GPC+SPE	soybean	A combined method including LLE, GPC and SPE	Capillary electrophoresi sUV	6 herbicides 5.2–36 μg/kg	72-88.6	<11	>15 min	30
GPC	olive oil	Gel permeation chromatography (GPC) with ethyl acetate-ciclohexane (1:1) as mobile phase	GC-MS/MS	32 pesticides: 0.5-20 μg/kg	89-105	<20	> 35 min	17
SPE	sesame seeds	MAE+SPE (florisil column)	GC/MS	16 pesticides: 1.5-3 μg/kg	86–103	<12	> 20 min	20
Modified QuEChERS	rapeseed, peanut, soybean and sesame seeds	d-SPE with 35 mg m-ZrO ₂ @Fe ₃ O ₄ and 40 mg C_{18}	GC-MS/MS	52 pesticides: 0.1-4.1 μg/kg	69.1-120.0 (except p,p'-DDE, p,p'-DDD, o,p'-DDT and p,p'-DDT range from 41.1% to	< 14.9	<3min	This work

The photo of m-ZrO2@Fe3O4 and Fe3O4-OPA dispersed in peanut extract (a) and collected by a magnet (b) 37x22mm (300 x 300 DPI)

Effect of the amount of m-ZrO2@Fe3O4 on the cleanup performance 35x15mm (300 x 300 DPI)

GC-MS/MS chromatograms of a blank peanut sample spiked with 52 pesticides at 100 μ g/kg level 30x14mm (300 x 300 DPI)

A modified QuEChERS method based on magnetic zirconium dioxide microspheres for the determination of 52 pesticides in oil crops by gas chromatography tandem mass spectrometry was demonstrated 39x22mm (300 x 300 DPI)