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Cardiovascular biodiagnosis by infrared spectroscopy through 

choline determination 

M. Khanmohammadi†, F. Mozaffari, A. Bagheri Garmarudi, M. Babaei Rouchi 
 

In this work a green analytical method has been proposed for diagnosis of heart disease. In this method infrared 
spectroscopy has been employed for quantitative determination of choline as an important correlated biochemical in blood 
samples. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has been used for analysis of 
blood serum samples while the spectrometric data was processed by partial least squares (PLS). In the experimental step 82 
blood serum samples were studied at 4000–600 cm−1 spectral region. Preprocessing methods such as standard normal 
variate (SNV) and multiplicative scatter correction (MSC) were utilized with no evidence on the analytical output, while 
orthogonal signal correction (OSC) could affect the accuracy of the method severely. The RMSEP for the OSC-PLS model 
was 0.39%, thus it could be considered as an appropriate data processing strategy for ATR-FTIR spectrometric 
determination choline in serum blood samples. It is rapid, reliable, non-destructive and free of sample preparation or 
chemical reagent consumption and it is called as a green diagnostic approach. 

Introduction 

The main text of the article should appear here with headings as 
appropriate. Cardiovascular diseases are the leading cause of 
deaths worldwide. According to available statistics, about 40 
percent of the deaths are caused by cardiovascular diseases in 
the developing countries e.g.  Iran. One of the main criteria for 
health monitoring is to evaluate the performance function of 
human heart. There are several experimental methods for 
diagnosis of cardiovascular defects while some of these 
methods are invasive and expensive [1]. Thus there is a serious 
demand for development of fast and accurate methods which 
provide efficient approaches for diagnosis of cardiovascular 
related health problems. Early diagnosis of heart disease and 
cardiovascular defects may help in prevention of heart attack. 
Thus there is a serious demand for development of reliable 
approaches which would help in early and robust diagnosis of 
cardiovascular related health problems.  
Efforts in development of diagnostic methods of heart disease 
have been powerfully aimed to introduce the reliable techniques 
with more figures of merit. Over the years, there have been 
several reports dealing with biochemical variations as a sign of 
heart defects. Increment in serum glutamate oxaloacetate 
transaminase of patients with acute myocardial infarction 
(AMI) [2,3], quantitative amount of serum lactate 
dehydrogenase (LDH) and serum creatine kinase(CK) [4,5], 
cardiac troponins [6], cardiac natriuretic peptides [7] have 
become as some of the available biomarker related symptoms 
for diagnosis of cardiac diseases. 
Choline (CHO) is an essential nutrient that is usually grouped 
within the vitamin B complex. Choline and its metabolite 

betaine are methyl donors, along with folate, and are 
metabolically linked to transmethylation pathways including 
synthesis of the cardiovascular disease (CVD) risk factor 
homocysteine. A high plasma homocysteine concentration is 
associated with increased risk of CVD (Figure 1) [8]. 

 
Figure 1- Schematic representation of homocysteine metabolism 
 
Quantitative range of choline in plasma is between 7.0 and 12.3 
µmol L-1 in healthy cases. Plasma choline levels are elevated in 
patients with acute coronary syndrome (ACS). Levels above 25 
µmol L -1 have been shown to be strong predictors of cardiac 
events in ACS [9]. 
Several analytical methods have been used for quantitative 
determination of CHO including radioenzymatic analysis, GC-
MS, LC-MS, Matrix-assisted laser desorption/ionization  time 
of flight mass spectrometry (MALDI-TOF-MS) [10], capillary 
electrophoresis with electrochemical detection [11], rapid 
HPLC [12], HPLC with fluorescence detection [13] and 
normal-phase chromatography-tandem mass spectrometry [14].  
Infrared (IR) spectroscopy has also been nominated as a 
powerful tool and green analytical technique in biology for 
studying the structure of different bio-related structures and 
their conformation. Analytical output of such studies can be 
translated in practical medical diagnosis methods [15,16]. The 
increasing role of mid-IR spectroscopy in biomedical research 
has been widely reported [17,18], for different media such as 
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blood cells [19], proteins [20], cancer research [21,22] by 
different routes such as evaluation of information on metabolic 
biochemical via their IR finger print spectral features. These 
spectral data would be associated with different illness patterns, 
their stages and progression. Blood [23], blood serum [24-25], 
plasma and urine [26, 27] have been investigated as ideal 
candidates for biomedical diagnostics. 
Diagnosis of disease patterns via IR spectral analysis of body 
fluids consists of some data processing steps. Chemometric 
efforts appeared to be very useful in solving many analytical 
problems. Multivariate chemometric data processing techniques 
are the main approach, applied while a research is performed to 
combine the statistical skills with chemical ones and obtain 
reliable results [28]. IR spectra are often pre-processed in order 
to remove systematic errors e.g. noise and base-line variation 
and multiplicative scatter effects.  
Pre-processing is an important part of data analysis which 
would help in better development of robust models. There are 
several pre-processing approaches, employed for data 
treatment. Some of the most common ones are multiplicative 
scatter correction (MSC) which removes the scattering from 
spectral data, standard normal variate (SNV) which performs 
the scaling and centering based on standard deviation of the 
dataset and orthogonal signal correction (OSC) which removes 
unrelated or orthogonal systematic variation from the spectral 
data. Among these techniques, OSC has been reported to 
provide several benefits in thee removal and investigation of 
non-correlated variation contained within spectral data in 
spectrometric investigations [29,30]. 
In the present study, the ATR-FTIR spectra of serum samples 
obtained from normal people and those patients suffering from 
heart disease were evaluated to determine choline 
quantitatively. Role of some pre-processing techniques was 
investigated in development of more reliable quantitative 
model. 
 

Experimental 
 

Materials and methods 

 

Blood samples for quantitative determination of choline were 
collected in 9 mL tubes containing 1 mg/mL lithium-heparin and 
potassium fluoride (BD, India). Whole blood samples were 
immediately frozen after collection at −20 °C. In order to prepare the 
samples for determination of choline samples, they were hemolyzed 
by freezing and thawing and finally centrifuged over a pre-rinsed 
filter (molecular mass cut-off: 10000 Da, Millipore, Germany) being 
de-proteinized. Plasma choline was determined from centrifuged 
plasma using standard sample for calibration model (Sigma, 
Germany). A total number of 82 samples were obtained to be 
investigated. The standard method for determination of choline in 
the prepared serum samples was based on LC-MS (Agilent 
Technologies, USA) with electrospray ionization in positive mode, 
using an ODS reversed-phase column (analytical grade, 250×3.0 
mm, particle size 5µm). The mobile phase consisted of monobasic 
sodium phosphate (10 mmol/L), dibasic sodium phosphate (10 
mmol/L), n-octylsulfate (50 mg/L) and acetonitrile (5 %v/v). The 
LC-MS method, validated by previously reported standard protocol 
[31] demonstrates the limit of quantification 0.05 µmol/L, linearity 
0.5–1000.0 µmol/L, mean analytical recovery 100% and standard 
error of 1.4%. Attenuated total reflectance infrared (ATR-FTIR) 
spectroscopy analyses were carried out at room temperature by a 
Tensor-27 Bruker FT-IR spectrometer equipped with a Ge–KBr 
beam splitter, a DTGS detector and Beer–Norton apodization with a 

horizontal, fixed path ATR device (ZnSe, 45°), single reflection. 
About 0.5 ml of serum sample was placed in ATR cell. The spectral 
resolution was 8 cm−1 and 64 scans were accumulated over the 
range from 600 to 4000 cm−1 for each spectrum. Avoiding the 
significant role of water as the main component of samples, it was 
set as the spectral analysis background. The spectrum of each sample 
was recorded 3 times and the average was used to be processed. 
Wavelength penetration and baseline corrections were utilized. Data 
manipulation was by OPUS and the obtained spectra were treated by 
polynomial baseline correction. Chemometric data processing was 
performed by using MATLAB Ver. 8.0 (The MathWorks Inc., MA, 
USA). 

Chemometric data processing 

In order to extract the most informative features of the spectral data 
set, a pre-processing strategy was considered in this work. In the first 
step, data set was mean centered to remove the constant error. Mean 
centering would subtract the data set mean from each data entity. As 
the output quantitative analysis of choline in serum samples by the 
chemometric techniques is influenced by the magnitude of the 
spectral expressions, mean centering is helpful due to removal of the 
dependence on magnitude, providing a mean expression of zero for 
the data set. This would enable the model to consider the relative 
changes, instead of the absolute magnitudes. In the next step, 
standard normal variate transformation was performed to reduce the 
baseline shift and collinearity. Multiplicative scatter correction 
(MSC) was the other employed transformation to compensate for 
additive and multiplicative effects in spectral data. Orthogonal signal 
correction (OSC) was also utilized to remove the information 
unrelated to the target variables based on constrained principal 
component analysis. Detection of outliers based on principal 
component analysis (PCA) and data splitting by Kennard-Stone 
algorithm were performed and the prepared spectral data set was 
introduced to the partial least squares (PLS) calibration model to 
investigate the role of initial pre-processing on the reliability of final 
quantitative model. 

 

Results and discussion  
 

Informative assignment of IR spectra 

 
Assigning the IR signals in a typical serum spectrum, there are 
several informative spectral features in the investigated spectral 
region correlated to different functional groups. Some of the 
most important assigned bands in this spectral region (600–
4000 cm−1) are detailed in figure 2 and table 1 [32-34]. 
Choline is (2-Hydroxyethyl)trimethylammonium and as a 
quaternary ammonium salt, its cation is a phospholipid. Its 
main correlated spectral characteristics have been shown in 
figure 2 and table 1 in grey colour. 
 

 
Figure 2- Typical ATR-FTIR spectrum of serum sample in which the main 
spectral features have been assigned (top) and spectrum of choline (bottom) 
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Table 1- Assignment of common ATR-FTIR spectral features in their related 
functional groups in serum samples (those correlated with choline structure 
have been shown by grey shade) 
 

 vibration Spectral 
region (cm-1) 

bio chemical structure 

a N-H stretching 3300 amide A 
b C–N stretch., N–H def. 1550 amide II, protein 

c CH2 sym. def. 1470 lipid 
d coupled C–H/N–H def. 1290 amide III, protein 
e O–P=O anti-sym. stretch. 1235 DNA, RNA, phospholipids 
f C–O stretch, C–O–H bend 1150 carbohydrates, mucin 
g O–P=O sym. stretch. 1120 DNA, RNA, phospholipids 
h –C–O–P stretch 1070 phophodiester group, DNA, RNA 
i S-S bending 650 disulfide bond 

 
Detection of outliers 

 
Outlier detection is an important task in data analysis. Outlier 
detection is to detect objects which do not resemble the bulk of 
the dataset. In the field of fraud detection, network intrusion 
detection, etc., outlier detection is a very critical task as outliers 
usually indicate a threat to the integrity of the system. And 
because of the insufficient knowledge and inaccurate 
representative of the outlying objects in a given system, outlier 
detection is also interpreted as one-class classification problem, 
where a one-class classifier tries to model a representation of 
the normal data so as to identify outliers which do not fit the 
model. The most common procedure for this aim is to assign 
atypical objects before modelling. In this regard, the original set 
of sample spectra, the vector of responses and score plots on the 
first principal components (PC) must be considered. The 
leverage of each sample is recommended to be examined in the 
X space (spectral data space), to detect possible outliers. 
Leverage is a measure of a sample’s spatial distance to the main 
body of the samples in the data space. Special attention must be 
paid to those data points with high leverage because of their 
strong influence on parameter estimation which may alter the 
model severely in case of being an outlier. Considering the first 
3 PCs up on implementation of leverage method, 13 samples 
were flagged as outliers and thus the models were built by the 
remaining 69 samples. The assigned 3 PCs (Figure 3) would 
cover 99.97% of total variance of data set. Performing PCA to 
dataset, the first 3 PCs explained 99.08, 0.16 and 0.02% of 
variance respectively. 

 
Figure 3- Score plot of PCA on spectral data set for serum samples 
 
Quantitative determination of choline by Partial least 

squares (PLS) regression 

 

PLS is a linear modelling technique, successfully adopted in 
many quantitative assays. Variables are factors, calculated 
during the processing procedure and describe the maximum 
amount of information for concentration matrix. Decomposition 

of latent variables is the basis for development of regression 
models while the number of latent variables would influence 
the predictive capability of the model. The developed model is 
used to predict the concentration of unknown samples. Leave 
one out cross validation is the route to evaluate the built model. 
PLSR has been extensively used in modelling of infrared 
spectra. Near infrared spectroscopy (NIRs) in combination with  
partial least squares is an effective, expeditious and non-
destructive technique to analyse various parameters of interest 
to the pharmaceutical industry [35], compounds in injection 
[36], human serum samples[37], food industry [38] and many 
other titles.  
Using Kennard-Stone algorithm a set of 48 samples was 
selected for calibration by PLS and the remaining 21 samples 
formed the prediction set. MSC, SNV and OSC were conducted 
on the data set separately and the role of pre-processing on 
predictive capabilities of PLS model was investigated. In order 
to validate the model and realize the optimum number of 
factors (ONF), the cross validation was repeated, leaving out 
one of the samples in each round until each calibration sample 
left out once. The predicted concentration of choline in each 
sample was compared with its known concentration and the 
root mean square of cross validation (RMSECV) was 
calculated. The number of factor which yields minimum 
RMSECV is a reasonable choice for optimizing the model. 
Various PLS calibration models have been calculated for the 
samples of the training set using different “number of factors”. 
RMSEP values estimate the absolute errors of prediction and 
the model's reliability for the analyte and by this strategy, ONF 
equal to 4 was considered for the whole dataset.  
RMSEP=( √(∑(Ci-Ĉi))2/ N)(1) 
where N is the number of samples, Ci is the real concentration 
of the component and Ĉi is the estimated concentration. 
 
Role of multiplicative scatter correction (MSC) on PLS 

 

MSC is a mathematical treatment to correct the scattering effect 
in the spectral data. The light scattering or change in path 
length for each sample is estimated relative to that of an ideal 
sample. In principle this estimation should be done on a part of 
the spectrum which does not contain chemical information, i.e. 
influenced only by the light scattering. However the areas in the 
spectrum that hold no chemical information often contain the 
spectral background where the SNR (signal-to-noise ratio) may 
be poor. This correction would make the same scatter level for 
all spectra as the ideal. The theoretical expression of MSC is to 
perform the best if an offset correction is carried out first, as: 
xi = a + b xij + ex (2) 
where xi is the IR spectrum of the sample, and x̅j is the desired 
spectrum of the ideal sample (the mean spectrum of the 
calibration set). For each sample, a and b are estimated by  
ordinary least-squares regression of spectrum xi vs. spectrum x̅j 
over the available wavelengths. Each value xij of the corrected 
spectrum xi (MSC) is calculated as: 
Xij (MSC) =  (Xij-a)/b ; j=1,2,…,p     (3) 
The mean spectra must be stored in order to transform in the 
same way future spectra. Performing the MSC on the data set, 
R2 and root mean squared error of prediction (RMSEP) for the 
MSC-PLS model were 0.7631 and 62.89% respectively. Thus 
more exclusive pre-processing must be considered. 
   
Role of standard normal variate (SNV) on PLS output 

 
SNV is a pre-treatment used quite often in infrared 
spectrometry on individual spectra instead of each wavenumber 
to centre and scale data by their own standard deviation. During 
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the SNV transformation, average and standard deviation of all 
the data points for a spectrum is calculated and the average 
value is subtracted from the magnitude (e.g. absorbance 
intensity in the IR spectra) for every data point and the result is 
divided by the standard deviation. "R" has a function to centre 
and scale every vector which we can use to get the SNV 
spectrum. Performing the SNV transformation prior to PLS 
regression R2 and root mean squared error of prediction 
(RMSEP) for the MSC-PLS model were 0.9069 and 47.27% 
respectively. SNV seems more effective than MSC in case of 
linear regression, however the error in the prediction set is not 
reasonable at all. 
 
Orthogonal signal correction (OSC) 

 
OSC is a pre-treatment to remove systematic variation from the 
spectral data matrix that is unrelated, or orthogonal, to the 
choline concentration matrix based on constrained principal 
component analysis. This may enhance the predictive power 
and lower the complexity of the resulting PLS model, and 
obtain a great simplification in terms of model interpretation. It 
is important to be assured that the analyte is retained. In this 
work, OSC algorithm was utilized in an attempt to reduce 
quantitative model complexity by removing orthogonal 
compounds from the signal. It was used as a pre-processing 
step prior to latent variable regression modelling in PLS to 
remove the structured noise in X (spectral data matrix). OSC 
model is expressed as: 
X = tosc pTosc + X’       (4) 
where tosc = Xwosc and Y T tosc = 0. Here, tosc, posc, and wosc 
represent the single OSC component. X’ is the OSC-filtered 
matrix subsequently used in the PLS latent variable regression 
model. Several OSC components may be identified and 
removed from spectral data matrix. Identified OSC components 
possess 2 sets of loading vectors, being similar to the PLS 
components, but the score vector tosc is orthogonal to Y. 
Different OSC filters are usually compared based on number of 
OSC components removed. It is difficult to make an assured 
comparison because one OSC component can be derived from 
different multicomponent prediction models [39-40]. The 
model developed on OSC pre-processed data was by single 
latent variable, compared to three latent variables for the 
models fitted to the SNV and MSC pre-processed data. 
In case of the calibration set for PLS regression, OSC 
components were used for filtering. Statistical evaluation of the 
prediction errors of the validation set in quantitative 
determination of choline reveals that the OSC treated data 
provide substantially higher reliability of prediction values than 
the original data, MSC-PLS and SNV-PLS. Statistical 
parameters for all three models are detailed in table 2. 
 
Table 2- Comparison between different pre-processing strategies in 
quantitative determination of choline (outliers removed prediction set) 

 SSE R2 adjusted R2 RMSE 
(%) 

SNV 4.25 ×10-4 0.907 0.902 47.27 
MSC 7.52 ×10-4 0.763 0.751 62.89 
OSC 0.012 0.996 0.995 0.25 

 
Sum of square error measures the total deviation of the 
predicted choline concentration values from the fit to the 
predicted values. It is also called the summed square of 
residuals and is calculated as: 
SSE = Sum(i=1 … n){wi (yi - fi)2}       (5) 
where yi is the observed value and fi is the predicted value from 
the fit. wi is the weighting applied to each data point, usually wi 
= 1. Adjusted R2 is a statistical parameter indicating the fit 

quality when the predicted data and standard concentration data 
are compared. Root mean square error (RMSE) is the fit 
standard error and the standard error of the regression. It is an 
estimate of the standard deviation of the random component in 
the data: 
RMSE = s = (MSE)½    (6)  
where MSE is the mean square error or the residual mean 
square  
MSE=SSE/v       (7) 
As mentioned previously, 13 samples had been flagged as the 
atypical cases, called outlier and thus, they had been removed 
from the data set. However, in case of medical evaluation tests, 
it is necessary to obtain a determination procedure which has 
the most compatibility with all types of samples, even the 
outliers. In the other words, for a medical examination, it is not 
favourable and convenient to leave some of the obtained data 
from medically collected samples with no response. In order to 
evaluate the capabilities of the proposed model in evaluation of 
all serum samples, the remaining 13 outliers where also added 
to the prediction test set.  The comparative demonstration of 
statistical parameters for the quantitative determination 
methods (Table 3), verifies the powerful prediction ability of 
the proposed technique. Presence of outliers labelled samples in 
the data set would slightly increase the errors, which is 
negligible. Figure 4 shows the actual vs. predicted values for all 
3 models. 
 
Table 3- Comparison between different pre-processing strategies in 
quantitative determination of choline in whole data set (outliers added to 
prediction set) 

 SSE R2 adjusted R2 RMSE 
(%) 

SNV 4.28 ×10-4 0.769 0.759 43.17 
MSC 7.82 ×10-4 0.630 0.614 45.77 
OSC 0.018 0.994 0.990 0.39 

 

Dealing with medical diagnostic approaches, sensitivity and 
specificity are two important statistical parameters, determined to 
measure the performance of the diagnostic classification model. 
Trying to differentiate between healthy and patient cases, sensitivity 
measures the proportion of actual positives which are correctly 
identified while specificity measures the proportion of negatives 
which are correctly identified. These two parameters determine how 
useful the test is to detect a disease or characteristic in the given 
population. In the other words, sensitivity relates to the test's ability 
to identify positive results: 
Sensitivity = number of true positives / (number of true positives + 
number of false negatives) 
And specificity relates to the test's ability to identify negative results: 
 
Specificity = number of true negatives / (number of true negatives + 
number of false positives) 
Predicting the choline concentration in 82 samples (11 patients and 
71 healthy samples) for diagnostic aims, all the patient cases were 
predicted correctly while 3 healthy samples were misclassified. Thus 
sensitivity and specificity were 100% and 95.77% respectively.  
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Figure 4- Actual vs. predicted values of choline for (A) MSC, (B) SNV and 

(C) OSC methods 
 
Green Approaches 

 

FTIR Spectroscopy is known as a rapid reliable analytical 
instrument which could provide robust qualitative and 
quantitative outputs for different analytical goals. There are 12 
principles for green analytical chemistry and in order to call a 
method as a part “Green Analytical Chemistry, it is necessary 
to explain its compatibility with these principles. The ATR-
FTIR based approach proposed in this work is: 
- a direct analytical procedure which could be employed, 
avoiding any sample treatment. 
- possible to be performed on minimal sample size while the 
robust chemometrics model allows the analysis to be conducted 
by minimal number of samples 
- one step analysis which saves time and energy 
- reagent free analysis 
- capable of automization by different routes e.g. FIA 
- free of analytical waste  
- possible to be employed for evaluation of different 
biochemical analyses with in the serum sample and  called 
multi-parameter methods 
- free of any toxic reagent or intermediate 
- safe and hazardless for  the analyst 
 
 
 
 

 

 

Analysis of the error 

 

The boundary phase of choline concentration in serum samples 
for diagnosis of cardiovascular defects is 25 µmol.lit-1 and this 
has been considered as the borderline in the quantitative 
analysis. One of the major concerns in biodiagnosis via 
quantitative determination is the rate of prediction error and its 
distribution along the concentration evolution. As observed in 
figure 5 the proposed OSC-PLS model for quantitative 
determination of choline is independent of the analyte 
concentration and the prediction error is distributed normally 
across the sample concentration. 

 
Figure 5- Distribution of prediction error in quantitative determination of 
choline 
 

Conclusions 
 
In this paper combination IR spectrometry and chemometrics 
approaches as green analytical techniques could help in 
development of a rapid, simple and non-invasive diagnosis 
method for cardiovascular defects. Three processing methods 
were compared in PLS based calibration model for quantitative 
determination of choline in spectral data: SNV, MSC and OSC. 
Considering the RMSE and coefficient of determination in the 
calibration model, in case of OSC-PLS the reliability is more 
than two are techniques. The results demonstrate that ATR-
FTIR is feasible as a useful green analytical tool for rapid and 
simple preliminary diagnosis for heart disease. The results of 
this study clearly show the OSC method would remove the 
information unrelated to the target variables based on 
constrained principal component analysis. 
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