Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

P.R. China

*Correspondence to:

Prof. Yiyang Hu

Prof. Chenggang Huang

A practical method for the rapid detection and

structural characterization of major constituents

from traditional Chinese medical formulas: Analysis

^a Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Shanghai, 201203,

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Shanghai, 201203

Department of Clinical Pharmacology, Shuguang hospital affiliated to Shanghai University of

^b Department of Clinical Pharmacology, Shuguang hospital affiliated to Shanghai University of

Traditional Chinese Medicine, 528 Zhangheng Rd., Shanghai, 201203, China

Tel: 86-21-20231963; Fax: 86-21-20231963; E-mail: cghsimm2309@126.com.

Traditional Chinese Medicine, E-mail: yyhuliver@163.com

Multiple Constituents in Yinchenhao Decoction

Zhiwen Fu^{a, b}, Zhixiong Li^a, Pei Hu^a, Qin Feng^b, Rui Xue^a, Yiyang Hu^{b*}, Chenggang Huang^{a*}

Analytical Methods Accepted Manuscript

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
20	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	

Analytical Methods Accepted Manuscript

21 Abstract:

22	The components of traditional Chinese medical formulas (TCMFs) are usually extremely complex,
23	belonging to hundreds of compound classes with diverse chemical and physical properties. Rapid and
24	effective characterization of TCMFs is imperative in order to provide a first step toward determining
25	which components are responsible for the therapeutic effects of a particular medical plant. A practical
26	method based on Find by Formula (FBF) algorithms is described which provides the rapid detection and
27	structural characterization of major constituents from TCMFs. Results are presented by analysis a
28	classical TCMFs of Yinchenhao Decoction (YCHD). The data of the YCHD extract was acquired using
29	high performance liquid chromatography/quadrupole time-of-flight mass spectrometry
30	(HPLC-Q/TOF-MS/MS) system which features high resolution, mass accuracy, and sensitivity. Based on
31	a prepared simple database file and requisite filter template, the FBF approach was developed and
32	employed to rapidly pick out the peaks of target compounds from mass chromatograms and the particular
33	FBF spectrum with its MS/MS information were listed simultaneously. By this approach, 77 compounds
34	from YCHD were rapidly characterized. The present results demonstrate that this strategy possesses the
35	enormous advantage. This approach is adaptable to analyze complex components from TCMFs and
36	even available to investigate all potential metabolites of one compound with specific molecular
37	formula.

39 Keywords: Structural characterization; Yinchenhao Decoction; FBF approach; HPLC-Q/TOF-MS/MS

41 Introduction

42	The rapid detection and structural characterization of the major constituents have become an integral part
43	of quality control and research on active principles of traditional Chinese medical formulas (TCMFs) in
44	order to promote the modernization that move toward internationalization [1-3]. TCMFs consisting of
45	multiple herbal medicines have complicated chemical combinations, making the detection and
46	identification a huge challenge, due to significant interference from other ingredients. Although we have
47	acquired sufficient compounds information after decades of phytochemical efforts, we currently need a
48	rapid and effective instrument or method to characterizing of these compounds.
49	Up to now, a large number of detection and technique methods have been reported for characterizing
50	the chemical profiling of TCMFs, including the liquid chromatography-diode array detection
51	(LC-DAD), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-nuclear magnetic
52	resonance (LC-NMR), electrophoresis chromatography-mass spectrometry (EC-MS), and LC-MS [4-7].
53	The LC-MS technique, especially high performance liquid chromatography-electrospray
54	ionization-quadrupole-time of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS), offering rapid and
55	efficient separation and detection methods with accurate mass measurement and tandem mass
56	spectrometry (MS/MS), has been the most widely applied [8, 9]. However, in most previous reports, the
57	inspection of the MS or MS/MS chromatograms was usually performed manually one by one to screen
58	the components from TCMFs. Obviously, the manual action is labor-intensive, low-effective and
59	error-prone. Moreover, it was often difficult to distinguish the relatively small signals from the complex
60	chemical background in full-scan mass chromatograms.
61	Find by Formula (FBF) is a targeted feature finding algorithm using a simple imported database,

Analytical Methods Accepted Manuscript

62 enabling lower detection levels with higher accuracy. It can find compounds by extracting ions that are

Analytical Methods

Analytical Methods Accepted Manuscript

2
З
4
4
5
6
7
2
8
9
10
44
11
12
13
11
14
15
16
17
10
18
19
20
24
21
22
23
24
24
25
26
27
21
28
29
30
21
51
32
33
34
25
35
36
37
20
30
39
40
41
10
42
43
44
45
40
40
47
48
10
49
50
51
52
52
23
54
55
56
50
57
58
59
~~~
60

1

63	calculated from a formula in a database of compounds, including user-specified charge carriers (such as
64	$[M+Na]^+$ , $[M+Cl]^-$ and $[M+HCOO]^-$ etc) and multimers (such as $[2M-H]^-$ ). Furthermore, the
65	corresponding MS/MS spectrums can be shown simultaneously so that we confirm the structural
66	rationality of compounds. Following this idea, a strategy involving the establishment of a database of
67	analogous TCMFs constituents was developed in the present study. The resulting simplified data could
68	facilitate the identification of structural analogues in TCMFs.
69	Therefore, the main objective of the present study was to apply the FBF algorithms to the detection and
70	characterization of major constituents from TCMFs. The effectiveness, rapidity and rationality of the
71	FBF approach was evaluated by analyzing a typical TCMF, Yinchenhao Decoction (YCHD). As
72	described in the Shanghanlun [10], a classic traditional Chinese medicine publication, YCHD is a
73	famous prescription which consists of Artemisia capillaries, Fructus Gardeniae, and Rhizoma et Radix
74	Rhei, and it is used clinically in China and Japan for the treatment of dampness-heat and jaundice [11,
75	12]. We highlighted the practical and reliable qualities of the FBF approach in the rapid analysis of major
76	constituents from YCHD. Importantly, we supposed that this methodology could be envisioned to exhibit
77	a wide application for the identification of complicated components from various complex mixtures and
78	even screening the possible metabolites of a compound with specific molecular formula in vivo or in
79	vitro.

## 80 Experimental

#### 81 Chemicals and materials

HPLC-MS grade acetonitrile was purchased from Dikma Technologies Inc. (Dikma, CA, USA) and
MS grade formic acid was supplied by Sigma-Aldrich (Steinheim, Germany). All other solvents and

#### **Analytical Methods**

Z
3
4
5
5
6
7
8
à
40
10
11
12
13
10
14
15
16
17
40
IQ
19
20
21
∠ I 00
22
23
24
25
20
26
27
28
20
29
30
31
22
32
33
34
35
26
30
37
38
30
40
40
41
42
<u></u> 4२
-TJ 11
44
45
46
<u>4</u> 7
-T/
48
49
50
51
51
52
53
54
57
00
56
57
58
50
59

chemicals were of analytical grade and were purchased from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China). Ultra-pure water was prepared using a Milli-Q system (Millipore, Billerica, MA,
USA).

87 The reference compounds geniposidic acid (no. 111828-201102), caffeic acid (no. 110885-200102), 88 chlorogenic acid (no. 110753-201314), geniposide (no. 110749-201115), quercetin (100081-200907), 89 rutin (100080-201408), crocin-II (no. 121009-200502), rhein (no. 110757-200206) and emodin (no. 90 110756-200110) were purchased from the National Institutes for Food and Drug Control (Beijing, 91 China). The genipin gentiobioside was isolated previously from Fructus Gardeniae in our laboratory. 92 Their structures were confirmed by HRMS, 1D and 2D NMR comparison of these data with those 93 reported in the literature [13]. The purity of all reference compounds were determined to be over 98% 94 by HPLC analysis.

The crude herbs of Artemisia capillaries, Fructus Gardeniae and Rhizoma et Radix Rhei were purchased from Shanghai Kangqiao Traditional Chinese Medicine Co. Ltd. (Shanghai, China), and identified by Professor Jingui Shen, Shanghai Institute of Meteria Medica, Chinese Academy of Sciences.

#### 99 HPLC conditions

HPLC analysis was performed on a Agilent 1260 Series (Agilent, Santa Clara, CA, USA) LC system, equipped with a binary pump, an online degasser, an auto plate-sampler, a thermostatically controlled column compartment and a DAD. Samples were eluted on an Agilent poroshell 120 EC-C₁₈ column (100 mm × 2.1 mm, 2.7  $\mu$ m; Agilent, CA, USA). The column and auto-sampler temperature were maintained at 35 °C and 4 °C, respectively. A mobile phase consisting of 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B) was applied with the optimized gradient

2	
3	
4	
5	
6	
7	
8	
ğ	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
20	
20	
20	
21	
31 22	
ა <u>∠</u>	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	

1

106	program as follows: 3-15%l	3 (0–12 min), 15–18% l	B (12-15 min), 18-20%	6 B (15-18 min), 20-40% B
-----	----------------------------	------------------------	-----------------------	---------------------------

107 (18–28 min) and 40–90% B (28–45 min). The flow rate was set at 0.35 mL $\cdot$ min⁻¹.

#### 108 Mass spectrometry conditions

109	Mass spectrometry was performed on an Agilent 6530 Q-TOF mass spectrometer (Agilent, Santa Clara,
110	CA, USA) equipped with an electrospray ionization (ESI) interface, and was operated in negative ion
111	mode with parameters set as follows: capillary voltage, 3500 V; fragmentor, 150 V; skimmer, 65 V;
112	OCT 1 RF Vpp, 750 V; pressure of nebulizer, 35 psi; drying gas temperature, 300 °C; sheath gas
113	temperature, 350 °C. Nitrogen was used as sheath and drying gas at a flow rate of 8.0 $L$ ·min ⁻¹ and 11.0
114	$L \cdot min^{-1}$ , respectively. The collision energy (CE) set values of 12 V and 26 V. An external calibration
115	solution (Agilent calibration solution A) was continuously sprayed in the ESI source of the Q-TOF
116	system, employing the ions with m/z 112.9855 (TFA anion) and 1033.9881 [HP-0921(TFA adduct)] to
117	recalibrate the mass axis ensuring mass accuracy and reproducibility throughout the chromatographic
118	run.

### 119 Sample preparation

#### 120 Reference compound solutions

121 Known amounts of reference compounds were dissolved in methanol to obtain ten stock solutions
122 (about 1.0 mg/mL) and stored at 4 °C. All the working solutions were prepared by serial dilution of the
123 stock solutions with methanol. A mixture containing all ten references compounds was also prepared in
124 methanol.

125 YCHD samples

126 Artemisia capillaries (18 g) was boiled in 1.2 L distilled water until the volume of water reduced to

#### **Analytical Methods**

2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
39
40
41
40 1
42 12
40 44
44
45
46
47
48
49
50
51
52
53
54
55
55
30
5/
58
59

60

about 600 mL, then 15 g Fructus Gardeniae and 6 g Rhizoma et Radix Rhei were added, and kept it boiling for concentrating to 300 mL. The extracted solution was centrifuged at 12,000 rpm for 10 min at 4 °C and the supernatant was concentrated under reduced pressure to afford 30 mL residue, and 1 mL of the residue was filtered through a 0.22  $\mu$ m microporous membrane before use. An aliquot of 1.0  $\mu$ L sample was injected into the LC-MS instrument for analysis.

#### 132 Establishment of FBF approach to detect the characteristic components

Before processing, the following limits were applied to collect the data: the acquisition type set as Auto MS/MS and the mass range was m/z 50-1200 for both MS and MS/MS while the acquisition rates were 2 spectra per second and 1 spectra per second, respectively. Besides, the reference ions of m/z 112.9855 and 1033.9881 as well as the inherent interference ions in mobile phase were excluded in the acquisition lists all the time.

The strategy for complex constituents identification was implemented using the following threesteps:

140 Step 1. Establish a specialized *.csv file (See YCHD.csv in the supplemental data) as the database of 141 chemical constituents of Artemisia capillaries, Fructus Gardeniae and Rhizoma et Radix Rhei according 142 to the previous reported literatures. The reported compounds that were isolated from the plants in the 143 formulae were searched for in the following databases: PubMed of the U.S. National Library of 144 Medicine, SciFinder Scholar of the American Chemical Society and the Chinese National Knowledge 145 Infrastructure (CNKI) of Tsinghua University. The database should contain the molecular formula, the 146 exact molecular weight, and the compound name. Without doubt, it would be better if we could acquire 147 the retention time.

148 Step 2. Open the acquired mass spectrometry data file of YCHD on the software of Agilent MassHunter

**Analytical Methods Accepted Manuscript** 

3
4
5
6
7
, ,
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
20
28
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
42
43
44
44
45
46
47
48
٠. ۸٥
+3 50
50
51
52
53
51
54
55
56
57
58
50
29
60

1 2

149	Qualitative Analysis (Version B 06.01), and import the database of YCHD.csv file in the Method
150	Editor. Then set up the important requisite filter templates: a. match tolerance, masses for $\pm 5$ ppm and
151	retention time for $\pm 0.1$ min (if available); b. charge carriers, $[M-H]^{-}/[M+Cl]^{-}/[M-H+HCOOH]^{-}$ and
152	activate the aggregates of [2M-H] ⁻ ; .c. results, automatically extract EIC, FBF spectrum and separate
153	MS/MS spectrum per CE.

154 Step 3. Click the Run button in the toolbar, and then we can get all the candidates which met the set 155 conditions in the compound list. Importantly, the MS/MS information of candidates and the processed 156 extract ion chromatography (p-EIC) could be acquired simultaneously.

#### **Results and discussion** 157

#### 158 **Optimization of LC and MS conditions**

159 Although MS can distinguish overlapping peaks through extracted ion chromatography (EIC), the 160 isomers have to be identified by their retention behaviors if the co-eluting components have the same 161 m/z values. Considering the complex constituents of the sample, a Poroshell 120-EC18 column was 162 selected here to get better separation. Its packing has a solid core of 1.7 µm in size with a 0.5 µm thick 163 porous outer layer and a total particle size of 2.7 µm providing high efficiency at lower column 164 pressures [14]. In addition, appropriate concentration of formic acid (0.1%) was introduced into the 165 mobile phase during HPLC to alleviate the peak tailing and increase the ionization effect. In order to 166 obtain the most sensitive ionization method for analytes, positive and negative ion modes were investigated with the same HPLC mobile phase at a flow rate of 0.35 mL·min⁻¹. As can be seen in 167 168 Supplement Information of Fig. S1, more representative fragmentation ions information of the structures 169 were obtained in the negative ion mode.

#### **Analytical Methods**

On-line characterization of major constituents from YCHD

171	The optimal HPLC-Q/TOF-MS/MS method was applied to analysis the YCHD. The total ion
172	chromatograms (TIC) in negative ESI mode was shown in Fig. 1 (a). After being optimized, FBF
173	approach was used to analysis the full-scan chromatogram of YCHD, the p-EIC was shown in Fig. 1
174	(b). In order to detect the low abundance peak, the p-EIC was scaled to largest for each chromatogram
175	as shown in Fig. 1(c). It was used for clear labeling and it exhibited that the FBF approach could
176	perform rapid and effective analysis of major constituents in YCHD in comparison with manual
177	inspection. As a result, a total of 77 peaks with information on accurate molecular weight were
178	extracted from the full-scan chromatogram and assigned rapidly to the major constituents in YCHD.
179	In the p-EIC of YCHD samples, the peaks of compounds 5, 19, 20, 23, 25, 32, 51, 53, 71 and 73
180	could be unambiguously identified as geniposidic acid, chlorogenic acid, caffeic acid, genipin
181	gentiobioside, geniposide, rutin, quercetin, crocin-II, rhein and emodin by comparing their retention
182	times, molecular weights and fragment ions with standards. The retention times, molecular weights,
183	fragment ions of the 77 compounds plausibly identified are presented in Table 1.
184	The constituents of YCHD could be mainly classified into five types: organic acid, anthraquinones,
185	iridoid glycosides, crocin glycosides and flavonoids. Some representative characteristic fragmentation
186	behaviors of these five categories of compounds were discussed below. These results would be helpful
187	to give chemical information for later research of any combination of these herbs or other herbs which
188	contain these constituents.
189	Characterization of organic acid
190	Peaks 8, 10 and 21 in the first-order mass spectrum yielded the same $[M-H]^-$ ions at $m/z$ 353.0878
191	$(C_{16}H_{17}O_{9}^{-})$ with the reference compound of 3-O-caffeoylquinic acid (3-CQA), revealing that these

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
39
40
+ i ∕10
4Z
43
44
45
46
47
48
49
50
51
52
52
55
04 5-
55
56
57
58
59
60

192	three compounds were isomers of 3-CQA. However, it was possible to distinguish them according to
193	the clear differences of their fragmentation ions. As described in the literatures [15, 16], peak 21
194	afforded the product ion of $m/z$ 173, a unique fragmentation ion to 4-CQA, as its base peak, thus peak
195	21 could be identified as 4-CQA. In addition, unlike peak 19, the relatively intense product ions at
196	m/z 179 (51.1% base peak) and 135 (62.5% base peak) of peak 10 could indicate it was a 5-CQA
197	(Incidentally, as shown in SciFinder Scholar, some serial numbers in literature were incorrect, authors
198	treated 3-CQA and 5-CQA opposite). The MS/MS information were not possible to reliably distinguish
199	between peaks 8 and 19. Fortunately, peak 19 of 3-CQA, namely chlorogenic acid, was readily
200	available from commercial source, so, in practice, the discrimination was straightforward. The related
201	MS/MS spectra were shown in Fig. 2.
202	Similarly, peaks 35, 36, 37 and 42 showed the same $[M-H]^-$ ion at $m/z$ 515.1207 in line with the
203	$C_{25}H_{24}O_{12}$ formula, indicating that these four compounds were isomers of dicaffeoylquinic acid
204	(di-CQA). ESI-MS/MS spectra provided considerably more structural information; the MS/MS spectra
205	data of these four peaks are displayed in Table 1. Based on these fragmentation behaviors and the
206	literature, peaks 35, 36, 37 and 42 were tentatively identified as 1,4-diCQA, 4,5-diCQA, 3,5-diCQA
207	and 3,4-diCQA, respectively [15, 16]. First, the characteristic diagnostic product ion at $m/z$ 173,
208	presented in the MS/MS ion spectra, is indicative of acylation at 4-position. Thus, peak 37 was
209	tentatively identified as 3,5-diCQA. Besides, 1,4-diCQA was also easily distinguished by its unique
210	MS/MS fragments including comparatively intense ions at $m/z$ 203 (57.5% base peak) and 299 (21.1%
211	base peak) supported by less intense fragments at $m/z$ 255 and 317. As for 3,4-diCQA and 4,5-diCQA,
212	4,5-diCQA had an intense product ion at $m/z$ 335 (25.3% base peak) while it was almost not seen in
213	MS/MS spectrum of 3,4-diCQA. The related MS/MS spectra were shown in Fig. 3.

Characterization of anthraquinones

#### **Analytical Methods**

215	Anthraquinones, as the major bioactive constituents of rhubarb, include free anthraquinones,
216	anthraquinone glycosides, and sennosides. The MS/MS spectra of five representative free
217	anthraquinones were shown in Fig. 4. In the MS/MS spectrum of chrysophnol, a product ion at $m/z$
218	225.0556 was observed as the base peak, which generating from the direct neutral loss of CO (28 Da)
219	from $m/z$ 253. Due to the carbonyl group at C-9 position was prone to produce the intramolecular
220	hydrogen bonding with the $\alpha$ -OH at C-1 and C-8, we believed the CO elimination might occur at C-10
221	firstly [17]. Next, the ion at $m/z$ 225 further lost a CH ₃ · (15 Da) and a CO (28 Da), affording the ions at
222	<i>m/z</i> 210.0365 and 182.0393, respectively.
223	Emodin and aloe-emodin, along with rhein and physcion, could be differentiated by their high
224	resolution mass data and MS/MS information. In particularly, rhein and physcion, with the distinct
225	precursor ions of $m/z$ 283.0247 and 283.0610, respectively, thus, were facile to identify. In addition,
226	rhein gave the product ions at $m/z$ 239, 211 and 183 in its MS/MS spectrum, obviously indicating the
227	existence of carboxyl group, while physcion afforded the ions at $m/z$ 240 and 212. As for emodin and
228	aloe-emodin, emodin was initiated by the elimination a carbonyl group to produce the ion at $m/z$ 241
229	and followed by loss of a hydroxyl group to give the ion at $m/z$ 225. However, the $[M-H]^-$ ion of
230	aloe-emodin, produced the ions at $m/z$ 240.0416, 211.0401, and 183.0437 [17]. Therefore, the distinct

232 valuable for subsequent identification of their corresponding glycosides.

233 Characterization of iridoid glycosides

Iridoid glycosides are the bioactive components in Fructus Gardeniae which usually give [M+Cl]⁻ ion as their precursor ions in negative ESI mode. As described in our group previous study, the

difference of MS/MS information between these isomers sufficed their differentiation, and even were

2
3
3
4
5
6
7
6
8
9
10
11
40
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
71 40
42
43
44
45
16
40
47
48
49
50
50 E1
21
52
53
54
55
00
56
57
58
50
09
60

1

236	fragment patterns were shown that the glycosidic bond of iridoid glycosides was prone to break with
237	neutral losses of 162 Da and always further lost a $H_2O$ . Subsequently, it yielded the characteristic
238	fragment ion at $m/z$ 123.0452 (C ₇ H ₇ O ₂ ⁻ ) by the retro-Diels–Alder (RDA) reaction. When the C-4
239	position of iridoid glycosides was connected with the carboxyl group, it was easy to lose a molecule of
240	carbon dioxide (CO ₂ ) with neutral losses of 44 Da following deglycosylation, while the C-4 position
241	was connected with the carbomethoxy, it always produced the characteristic fragment ion at $m/z$
242	101.0244 ( $C_4H_5O_3^-$ ) via the bond cleavage between $C_1$ - $O_2$ and $C_4$ - $C_5$ . Furthermore, if any groups were
243	substituted at chains of glucose, it was prone to obtain $[M_s + glucosyl - H - H_2O]^-$ and $[M_s - H]^-$ of the
244	substituent [18].
245	For instance, as shown in Fig. 5, peak 44 at the retention time of 20.784 min (exact molecular weight
246	696.2265) gave the precursor ion of $[M+Cl]^-$ at $m/z$ 731.1947 and afforded the typical product ions at
247	m/z 469.1347 ([coumaroyl+gentiobiosyl-H-H ₂ O] ⁻ ), 225.0769 (C ₁₁ H ₁₃ O ₅ ⁻ ), 163.0397
248	$([coumaroyl-H]^{-}), 145.0294  ([coumaroyl-H-H_2O]^{-}), 123.0451  (C_7H_7O_2^{-}) \text{ and } 101.0246  (C_4H_5O_3^{-}), 123.0451  (C_7H_7O_2^{-})  (C_$
249	which was confirmed as 6"-O-trans-coumaroylgenipin gentiobioside [19].
250	Characterization of crocin glycosides
251	Crocin glycosides was the diester formed from the disaccharide gentiobiose and the dicarboxylic acid
252	crocetin. Therefore, they showed the product ions of $[M-162*n]^-$ , $[crocetin-H]^-$ and
253	$[crocetin-H-CO_2]^-$ in the MS/MS spectra according to the successive losses of glycosides and
254	carboxyl group. Besides, the crocin glycosides in YCHD seemed to have a cis-trans isomer of
255	13-position. They exhibited the identical MS/MS data except for distinct retention time. Based on the
256	conclusions summarized, it would be possible to consider that the 13-cis isomers took a longer

retention time on the reverse phase packing. For crocin-I (retention time of 22.892 min) and

#### **Analytical Methods**

258	13-cis-crocin I (retention time of 28.035 min), the $[M+C1]^-$ ion at $m/z$ 1011.3479 with the formula
259	$[(C_{38}H_{54}O_{19})+Cl]^{-}$ was selected as the precursor ion in the MS/MS experiment to give fragmentation
260	information (Fig. 6). The ions at $m/z$ 651.2650 ( $C_{32}H_{43}O_{14}^{-}$ ) and 327.1596 ( $C_{20}H_{23}O_{4}^{-}$ ) corresponded to
261	the successive losses of 324 Da (disaccharide) from the deprotonated molecule. In addition, for the ior
262	at $m/z$ 283.1696 (C ₁₉ H ₂₃ O ₂ ⁻ ), the loss of 44Da could be assigned as CO ₂ originating from $m/z$ 327 [20].
263	Characterization of flavonoids
264	Flavonoids, The mass spectrum of quercetin (peak 51), which was detected at retention time 23.566
265	min, gave an $[M-H]^-$ ion at $m/z$ 301.0347 ( $C_{15}H_9O_7^-$ ). As shown in Table 1, its fragmentation patterns
266	were quite clear as a flavonoid. Characteristic product ions at $m/z$ 151.0028 (C ₇ H ₃ O ₄ ) and 107.0135
267	( $C_6H_3O_2$ ), originating from two pathways of the RDA reaction, could be found in MS/MS spectra. In
268	addition, ions at $m/z$ 83.0144 (C ₄ H ₃ O ₂ ⁻ ), 65.0039 (C ₄ HO ⁻ ) and 178.9974 (C ₈ H ₃ O ₅ ⁻ ) were also
269	observed.
270	Peaks 31 and 34 both exhibited $[M-H]^-$ ions at $m/z$ 463.0876 ( $C_{21}H_{19}O_{12}^-$ ). Moreover, they had the
271	similar fragment ions of $m/z$ 301 and 151 in MS/MS spectra, but different retention times even without
272	regular retention behavior. They could be identified as hyperoside or isoquercitrin, but not precisely
273	identified by the method above, and need isolation and identification by NMR in the future.
274	The discussion of FBF algorithms
275	Although the limitations of mass spectrum for identifying exact structures, it is a convenient way to
276	rapidly analyze mass spectrum character to speculate tentative structures. And it is very imperative to
277	apply to TCMFs without isolation and purification each compound. The HPLC-Q/TOF-MS/MS

**Analytical Methods Accepted Manuscript** 

- 278 method combine with FBF algorithms requires only a simple *csv* file and the rapid and effective
- 279 characterization will be performed facilely. However, the deficiency of FBF algorithms should be noted,

**Analytical Methods Accepted Manuscript** 

we can just characterize the known compounds reported previously using FBF algorithms. As a famous traditional Chinese medicinal materials, the previous phytochemical isolations have been accomplished maturely and the related compounds information are also acquired sufficiently, hence, the compounds in csv file will be counted comprehensively. More importantly, based on the principles of FBF approach, we can not only apply it conveniently to analyze the major constituents in TCMFs like YCHD in this work, but also utilize it as important tools to investigate all potential metabolites of one compound with specific molecular formula. We can list all possible forms of metabolites, their molecular formula and exact molecular weight in the *csv* file. Once the database file is established, it will be a major breakthrough to avoid the matrix interference when we performed a qualitative analysis metabolic process in biological sample.

## 290 Conclusions

A primary challenge in herbal analysis was to enable global qualitative performance rapidly and accurately. In the present study, a practical method based on the FBF algorithms was developed for rapid detection and structural characterization of major constituents from YCHD. As a result, a total of 77 compounds were structural characterized. Compared with the conventional manual inspection and fragmentation-based method, the FBF approach enabled the original data to be analyzed much faster and more accurately by reducing the potential interferences of matrix ions. More importantly, according to the principle of FBF, this method can also be used for the rapid analysis the possible metabolites of a compound with specific molecular formula. Meanwhile, it should be noted that the major limitation of this study was that only the known chemical composition was used to validate the characterizing results.

## 301 Acknowledgement

- 302 This work was supported by the Program of National Natural Science Foundation of China (NO.
- 303 81173404, 81374031) and the Program of Science and Technology Commission of Shanghai
- 304 Municipality (NO. 13401900303).

## **References**

- 306 [1] M. Holcapek, R. Jirasko, M. Lisa, J. Chromatogr. A, 2012, 1259, 3-15.
- 307 [2] J.L. Zhou, L.W. Qi, P. Li, J. Chromatogr. A, 2009, 1216, 7582-7594.
- 308 [3] M. Yang, J.H. Sun, Z.Q. Lu, G.T. Chen, S.H. Guan, X. Liu, B.H. Jiang, M. Ye, D.A. Guo, J.
- *Chromatogr. A*, 2009, **1216**, 2045-2062.
- 310 [4] S.L. Li, S.F. Lai, J.Z. Song, C.F. Qiao, X. Liu, Y. Zhou, H. Cai, B.C. Cai, H.X. Xu, J. Pharm.
- 311 Biomed. Anal., 2010, 53, 946-957.
- 312 [5] Y.Q. Wang, Z.M. Guo, Y. Jin, X.L. Zhang, L. Wang, X.Y. Xue, X.M. Liang, J. Pharm. Biomed.
- 313 Anal., 2010, **51**, 606-616.
- 314 [6] G.L. Yan, H. Sun, W.J. Sun, L. Zhao, X.C. Meng, X.J. Wang, J. Pharm. Biomed. Anal., 2010, 53,
  315 421-431.
- 316 [7] T. Xie, Y. Liang, H. Hao, J. A, L. Xie, P. Gong, C. Dai, L. Liu, A. Kang, X. Zheng, G. Wang, J.
- *Chromatogr. A*, 2012, **1227**, 234-244.
- 318 [8] X.L. Zhang, L.F. Liu, L.Y. Zhu, Y.J. Bai, Q. Mao, S.L. Li, S.L. Chen, H.X. Xu, J. Pharm. Biomed.
- 319 Anal., 2014, **88**, 391-400.
- 320 [9] I.M. Abu-Reidah, D. Arráez-Román, R. Quirantes-Piné, S. Fernández-Arroyo, A. Segura-Carretero,
- 321 A. Fernández-Gutiérrez, Food Research International, 2012, 46, 108-117.
- 322 [10] Z.J. Zhang, Shanhanlun, 2013, ch.3, 69.

- 323 [11] T.Y. Lee, H.H. Chang, J.H. Chen, M.L. Hsueh, J.J. Kuo, J. Ethnopharmacol., 2007, 109, 318-324.
  - 324 [12] T.Y. Lee, H.H. Chang, J.J. Kuo, J.J. Shen, International Journal of Molecular Medicine, 2009, 23,
  - 325 477-484.

- 326 [13] H. Inouye, Y. Takeda, H. Nishimura, *Phytochemistry*, 1974, **13**, 2219-2224.
- 327 [14] F. Gritti, G. Guiochon, J. Chromatogr. A, 2011, **1218**, 907-921.
- 328 [15] M.N. Clifford, K.L. Johnston, S. Knight, N. Kuhnert, J. Agric. Food Chem., 2003, 51, 2900-2911.
- 329 [16] M.N. Clifford, S. Knight, B. Surucu, N. Kuhnert, J. Agric. Food Chem., 2006, 54, 1957-1969.
- 330 [17] M. Ye, J. Han, H.B. Chen, J.H. Zheng, D.A. Guo, J. Am. Soc. Mass. Spectrom., 2007, 18, 82-91.
- 331 [18] Z.W. Fu, R. Xue, Z.X. Li, M.C. Chen, Z.L. Sun, Y.Y. Hu, C.G. Huang, Biomed. Chromatogr., 2014,
- , 1795-1807.
- 333 [19] Z.W. Fu, Y. Ling, Z.X. Li, M.C. Chen, Z.L. Sun, C.G. Huang, *Biomed. Chromatogr.*, 2014, 28,
  334 475-485.
- 335 [20] X. Zhao, Z.M. Long, J.N. Dai, K.S. Bi, X.H. Chen, Rapid Commun. Mass Spectrom., 2012, 26,
- 336 2443-2453.

1

2	
3	
4	
5	
6	
1	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
57	
52	
54	
55	
56	
57	
58	
59	
60	

**Figure captions** 338 339 Fig. 1. The extract ion chromatogram (EIC) of YCHD in negative ion mode (a); the processed extract 340 ion chromatogram (p-EIC) of YCHD in negative ion mode (b); the scaled to largest for each 341 chromatogram of p-EIC (c). 342 **Fig. 2.** The MS/MS spectra of the  $[M-H]^-$  ions at m/z 353.0878 for 1-CQA (a); 5-CQA (b); 3-CQA (c) 343 and 4-CQA (d). 344 Fig. 3. The MS/MS spectra of the  $[M-H]^-$  ions at m/z 515.1207 for 1,4-dicaffeoylquinic acid (a); 345 4,5-dicaffeoylquinic acid (b); 3,5-dicaffeoylquinic acid (c) and 3,4-dicaffeoylquinic acid (d). 346 Fig. 4. The MS/MS spectra of the  $[M-H]^-$  ions at m/z 253.0500 for chrysophanol (a); m/z 283.0610 for 347 physcion (b); *m/z* 283.0247 for rhein (c); *m/z* 269.0450 for emodin (d) and *m/z* 269.0450 for 348 aloe-emodin (e).

349 Fig. 5. The FBF spectrum for 6"-O-trans-coumaroyl genipin gentiobioside (a) and its MS/MS spectrum

350 of the  $[M+C1]^-$  ion at m/z 731.1947 (b).

351 Fig. 6. The EIC of *m/z* 1011 in negative ion mode (a), the FBF spectrum for crocin-I (b); the MS/MS

352 spectra of the  $[M+C1]^{-1}$  ion at m/z 1011.3468 for crocin-I (c) and m/z 1011.3475 for 13-*cis*-crocin-I (d).

# Table 1. Chemical constituents identified in an extract of YCHD by HPLC-Q/TOF-MS/MS in negative ion mode

Peak	t (min)	Molecular	Theoretical	Measured	Error ^a	Characteristic MS/MS fragmentation ions (% base	Dron cood common do
No.	$t_{\rm R}$ (min)	formula	$[M-H]^-$	$[M-H]^-$	(ppm)	peak) $(m/z)$	Proposed compounds
1	0.803	CILO	277 0856 ^b	277 0957	0.27	341 (100), 215 (11.1), 179 (20.5), 119 (18.1), 89	antichica
1	0.805	$C_{12}\Pi_{22}O_{11}$	577.0830	577.0857	11.0837 0.27	(49.6), 59 (34.1)	gentioolose
2	0.972	$C_5H_7NO_3$	128.0353	128.0364	8.59	101.0257 (17.8), 88.0426 (54.1), 85.0308 (100)	pyroglutamic acid
3	1.309	$C_7H_6O_5$	169.0137	169.0136	-0.59	125.0238 (100), 107.0133 (2.2), 79.0193 (12.2)	gallic acid
4	1.646	СЧО	402 1100	402 1180	2.02	313.0564 (63.2), 271.0455 (66.2), 211.0240 (21.9),	6 O Calleylayarasa
4	1.046	$C_{19}\Pi_{26}O_{15}$	493.1199	495.1169	-2.05	169.0137 (100), 125.0237 (30.7)	0-0-Galloyisuclose
5	1 0 1 5	СИО	272 1140	272 1146	1 6 1	211.0612 (27.4), 193.0502 (5.8), 167.0712 (13.6),	cominacidio agid
5	1.815	$C_{16}\Pi_{22}O_{10}$	5/5.1140	5/5.1140	1.01	149.0604 (78.9), 123.0453 (100)	gempositic actu
6	2.068	C H O	215 0722	215 0722	0.00	153.0190 (32.4), 152.0115 (47.9), 109.0291 (34.4),	protocatechuic
0	2.008	$C_{13}II_{16}O_{9}$	313.0722	515.0722	0.00	108.0227 (100)	acid-3-glucoside
7	2 237	C H O	307 1271 ^b	307 1265	1.51	361.1496 (100), 317.1589 (1.9), 181.0862 (31.7),	villosolside
/	2.237	$C_{16}\Pi_{26}O_{9}$	397.1271	397.1203	-1.51	137.0964 (11.2), 89.0245 (12.4), 59.0144 (20.6)	VIIIOSOISIde
8	2.405	$C_{16}H_{18}O_9$	353.0878	353.0878	0.00	191.0538 (100), 85.0284 (7.9)	1-CQA
						229.0713 (24.5), 211.0611 (17.1), 185.0823 (75.2),	
9	2.405	$C_{16}H_{24}O_{11}$	391.1246	391.1250	1.02	167.0712 (93.1), 149.0616 (100), 141.0549 (42.5),	shanzhiside
						123.0449 (57.9)	
10	3.401	$C_{16}H_{18}O_9$	353.0878	353.0878	0.00	191.0538 (100), 179.0326 (51.1), 135.0429 (62.5)	neochlorogenic acid (5-COA)
11	2.67	СНО	420 1012 ^b	420 1007	1 27	403.1247 (8.9), 241.0719 (100), 223.0610 (12.3),	candogida mathul actor
11	5.07	$C_{17}I_{24}O_{11}$	439.1013	439.1007	-1.57	139.0397 (43.7), 101.0239 (31.8)	scandoside metriyi ester
12	2 751	СНО	281 1222 ^b	281 1210	0.70	345.1548 (50.6), 179.0547 (15.9), 165.0913 (100),	niaroaroainina aaid
12	5.754	$C_{16} H_{26} O_8$	301.1322	301.1319	-0.79	121.1017 (12.9), 119.0345 (19.0), 89.0245 (56.9)	
13	3.754	$C_{16}H_{22}O_{11}$	389.1089	389.1088	-0.26	227.0566 (24.3), 209.0450 (48.9), 183.0667 (51.1),	deacetylasperulosidic acid

						165.0551 (100), 139.0395 (53.9),	
14	4.344	$C_{16}H_{24}O_9$	395.1114 ^b	395.1111	-0.76	359.1346 (95.4), 197.0813 (100), 125.0612 (62.4), 107.0492 (28.9)	ixoroside
15	4.85	$C_{17}H_{26}O_{11}$	405.1402	405.1395	-1.73	225.0766 (29.3), 179.0566 (57.6), 141.0555 (82.2), 123.0447 (48.5), 119.0349 (30.4), 101.0239 (100)	shanzhiside methyl ester
16	4.934	$C_{17}H_{24}O_{11}$	439.1013 ^b	439.1015	0.46	403.1249 (30.5), 241.0714 (100), 223.0615 (14.1), 139.0399 (87.3), 121.0299 (46.8), 101.0242 (24.1)	gardenoside
17	5.778	$C_{17}H_{24}O_{11}$	439.1013 ^b	439.1005	-1.82	403.1246 (12.6), 241.0710 (100), 223.0617 (40.8), 139.0394 (71.9), 101.0248 ( 52.6)	deacetylasperulosidic aci methyl ester
18	6.368	$C_{15}H_{14}O_{6}$	289.0718	289.0710	-2.77	245.0816 (45.1), 203.0706 (35.3), 137.0242 (30.25), 123.0450 (78.6), 109.0294 (100),	catechin
19	6.436	$C_{16}H_{18}O_{9}$	353.0878	353.0878	0.00	191.0547 (100), 85.0294 (6.1)	chlorogenic acid (3-CQA)
20	6.874	$C_9H_8O_4$	179.0350	179.0350	0.00	135.0437 (100), 89.0395 (5.7)	caffeic acid
21	7.632	$C_{16}H_{18}O_9$	353.0878	353.0878	0.00	191.0535 (60.7), 179.0324 (70.3), 173.0426 (100), 135.0431 (80.9), 93.0335 (27.6)	cryptochlorogenic ac (4-CQA)
22	7.885	$C_{16}H_{24}O_{10}$	375.1297	375.1303	1.60	213.0764 (39.1), 195.0660 (38.4), 169.0877 (47.9), 151.0770 (95.2), 125.0605 (80.7), 107.0510 (100)	mussaenosidic acid
23	8.307	$C_{23}H_{34}O_{15}$	585.1592 ^b	585.1584	-1.37	549.1815 (12.3), 225.0769 (69.3), 207.0657 (13.4), 123.0449 (100), 101.0243 (64.9)	genipin gentiobioside
24	8.56	$C_8H_8O_2$	135.0452	135.0453	0.74	120.0244 (5.5), 108.0206 (10.8), 92.0279 (100)	4'-hydroxyacetophenone
25	9.487	$C_{17}H_{24}O_{10}$	423.1063 ^b	423.1070	1.65	387.1282 (5.5), 225.0762 (100), 207.0653 (13.5), 123.0447 (85.3), 101.0243 (74.5)	geniposide
26	10.161	$C_{16}H_{26}O_8$	381.1322 ^b	381.1309	-3.41	345.1464 (11.9), 183.1020 (86.1), 165.0908 (100), 109.0290 (46.7), 89.0231 (58.9)	jasminoside B
27	11.173	$C_{27}H_{30}O_{15}$	593.1512	593.1520	1.35	549.1610 (52.4), 343.1053 (11.6), 265.0722 (19.1), 207.0295 (100), 163.0397 (21.6)	rheinoside D/rheinoside C

28	11.763	$C_{27}H_{30}O_{15}$	593.1512	593.1522	1.69	549.1606 (45.2), 343.1052 (13.9), 265.0719 (14.8), 207.0299 (100), 163.0401 (12.7)	rheinoside C/rheinoside D
29	12.606	$C_{22}H_{22}O_{12}$	477.1038	477.1020	-3.77	313.0554 (40.3), 169.0133 (100), 163.0388 (29.33), 125.0237 (13.77)	<i>p</i> -coumaroyl-O-galloyl-gluco
30	13.454	$C_{25}H_{28}O_{12}$	519.1508	519.1511	0.58	355.1029 (8.9), 307.0824 (2.3), 211.0606 (18.2), 193.0504 (22.4), 167.0716 (27.8), 163.0397 (84.3), 149.0601(33.2), 145.0299 (100), 123.0445 (52.2)	6'-O- <i>trans</i> -coumaroyl geniposidic acid
31	15.562	$C_{21}H_{20}O_{12}$	463.0882	463.0876	-1.30	301.0330 (64.82), 300.0265 (100), 283.0252 (1.3), 271.0240 (37.85), 255.0293 (16.3), 151.0022 (8.6)	hyperoside/isoquercitrin
32	15.726	$C_{27}H_{30}O_{16}$	609.1461	609.1457	-0.66	301.0357 (95.9), 300.0274 (100), 151.0028 (5.3)	rutin
33	15.894	$C_{21}H_{18}O_{11}$	445.0776	445.0773	-0.67	283.0238 (80.8), 239.0347 (100), 211.0413 (18.7)	rhein monoglucoside
34	16.068	$C_{21}H_{20}O_{12}$	463.0882	463.0874	-1.73	301.0331 (49.3), 300.0271 (100), 271.0244 (36.2), 255.0297 (17.2), 151.0034 (8.5)	isoquercitrin/hyperoside
35	17.417	$C_{25}H_{24}O_{12}$	515.1195	515.1207	2.33	353.0878 (100), 317.0665 (18.7), 299.0552 (21.1), 255. 0658 (15.6), 203.0349 (57.5), 191.0558 (12.9), 179.0354 (49.5), 173.0456 (57.6), 135.0467 (7.4)	1,4-dicaffeoylquinic acid
36	17.923	$C_{25}H_{24}O_{12}$	515.1195	515.1207	2.33	353.0872 (100), 335.0766 (25.3), 191.0561 (47.6), 179.0354 (58.3), 173.0460 (71.9), 135.0452 (10.3)	4,5-dicaffeoylquinic acid
37	18.26	$C_{25}H_{24}O_{12}$	515.1195	515.1207	2.33	353.0874 (100), 191.0551 (78.8), 179.0349 (29.3), 135.0445 (8.5)	3,5-dicaffeoylquinic acid
38	18.424	$C_{27}H_{34}O_{13}$	601.1693 ^b	601.1695	0.33	565.1893 (14.6), 385.1127 (24.8), 325.0924 (100), 295.0824 (54.1), 265.0727 (79.7), 223.0604 (55.7), 205.0507 (25.3)	11-(6-O- <i>trans</i> -sinapoyl glucopyranosyl) gardendiol
39	18.424	C ₂₂ H ₃₆ O ₁₂	527.1901 ^b	527.1897	-0.76	491.2130 (13.7), 167.1064 (100), 89.0238 (23.6)	jasminoside H/jasminoside I
40	18.929	$C_{22}H_{22}O_{12}$	477.1038	477.1037	-0.21	357.0598 (14.1), 314.0421 (100), 285.0438 (42.9), 271.0237 (36.9), 243.0325 (50.3)	isorhamnetin-3-glucoside

41	19.908	$C_{22}H_{36}O_{12}$	527.1901 ^b	527.1899	-0.38	491.2130 (25.5), 167.1066 (100), 89.0234 (31.9)	jasminoside I/jasminoside H
42	20.031	$C_{25}H_{24}O_{12}$	515.1195	515.1207	2.33	353.0880 (100), 191.0569 (11.43), 179.0354 (34.4), 173.0458 (50.8), 135.0455 (5.1)	3,4-dicaffeoylquinic acid
43	20.278	$C_{27}H_{34}O_{13}$	601.1693 ^b	601.1697	0.67	565.1907 (28.9), 385.1119 (25.1), 325.0927 (100), 295.0815 (62.2), 265.0711 (91.3), 223.0609 (64.4), 205.0504 (25.2)	10-(6-O- <i>trans</i> -sinapoyl glucopyranosyl) gardendiol
44	20.784	$C_{32}H_{40}O_{17}$	731.1960 ^b	731.1947	-1.78	695.2186 (100), 469.1347 (10.1), 367.1018 (3.4),225.0769 (12.7), 163.0397 (9.6), 145.0294 (9.4),123.0451 (20.6), 101.0246 (13.4)	6"-O- <i>trans</i> -coumaroyl genipin gentiobioside
45	21.121	$C_{22}H_{22}O_{11}$	461.1089	461.1082	-1.52	313.0552 (100), 169.0129 (41.4), 147.0437 (52.4), 125.0234 (8.1), 103.0544 (12.4)	2-cinnamoyl-1-galloylglucos e
46	21.374	$C_{34}H_{44}O_{19}$	791.2171	791.2168	-0.38	755.2393 (100), 529.1560 (9.6), 427.1242 (1.6), 225.0763 (16.6), 223.0607 (11.6), 207.0657 (3.1), 205.0498 (6.3), 123.0449 (21.4), 101.0252 (13.4)	6"-O- <i>trans</i> -sinapoyl genipi gentiobioside
47	22.217	$C_{31}H_{32}O_{16}$	659.1618	659.1618	0.00	497.1291 (100), 353.0863 (40.2), 335.0829 (69.3), 273.0965 (10.5), 233.0653 (14.9), 191.0548 (82.9), 161.0440 (62.8)	3,5-di-O-caffeoyl-4-O-(3-hy droxy-3-methyl)-glutaroylqu nic acid
48	22.639	$C_{27}H_{28}O_{13}$	559.1457	559.1453	-0.72	397.1131 (100), 223.0602 (11.2), 173.0446 (71.6)	5-O-caffeoyl-4-O-sinapoylo inic acid
49	22.892	$C_{44}H_{64}O_{24}$	1011.3482 ^b	1011.3479	-0.30	651.2650 (100), 327.1596 (39.9), 283.1696 (8.6), 179.0556(3.5)	crocin-I
50	23.061	C ₂₈ H ₃₄ O ₁₄	629.1643 ^b	629.1640	-0.48	593.1878 (100), 367.1036 (9.7), 225.0766 (23.8), 223.0609 (27.5), 207.0659 (10.3), 205.0507 (64.3), 123.0451 (46.8), 101.0249 (31.7)	6'-O- <i>trans</i> -sinapoyl geniposide
51	23.566	$C_{15}H_{10}O_{7}$	301.0354	301.0347	-2.33	178.9974 (40.2), 151.0028 (100), 121.0293 (31.9), 107.0135 (35.7), 65.0039 (46.7)	quercetin

52	23.735	$C_{22}H_{22}O_{11}$	461.1089	461.1091	0.43	313.0561 (100), 169.0138 (40.8), 147.0446 (53.2),	6-cinnamoyl-1-galloylglucos
						125.0243 (8.1), 103.0555 (13.6)	e
53	24.325	$C_{38}H_{54}O_{19}$	849.2959 ^b	849.2951	-0.94	651.2651 (100), 489.2115 (25.5), 327.1587 (74.5),	crocin-II
						283.1711 (23.7)	
54	24.41	$C_{26}H_{30}O_{12}$	533.1664	533.1659	-0.94	325.0926 (56.2), 307.0819 (37.7), 225.0767 (81.9),	6'-O- <i>trans</i> -coumaroyl geniposide
						207.0669 (27.3), 163.0406 (100), 145.0287 (33.6),	
						123.0455 (64.1), 101.0241 (58.7)	
55	24.41	C29H26O15	613.1199	613.1209	1.63	465.0664 (100), 313.0564 (33.8), 271.0458 (28.2),	cinnamoyl-di-O-galloyl-gluc
		27 20 10				169.0142 (41.6)	ose
56	24.747	$C_{16}H_{10}O_7$	313.0354	313.0354	0.00	269 (100), 241 (10.1), 225 (11.2)	laccaic acid D
57	25.084	$C_{21}H_{20}O_{10}$	431.0989	431.0987	-0.46	269 (100), 240 (54.1), 223 (17.4)	aloe-emodin monoglucoside
58	25 506	$C_{32}H_{40}O_{16}$	715.2010 ^b	715.2002	-1.12	679 (100), 531 (20.9), 453 (11.2), 225 (82.2), 207	6"-O-trans-cinnamoyl
	25.500					(22.6), 147 (28.7), 123 (35.1), 101 (16.5)	genipin gentiobioside
59	26.433	$C_{24}H_{22}O_{13}$	517.0988	517.0978	-1.93	473 (20.2), 269 (100)	emodin-8-O-(6'-O-malonyl)-
							glucoside
60	26.601	$C_{48}H_{64}O_{23}$	1007.3766	1007.3761	-0.50	683 (100), 327 (6.9), 283 (6.4)	crocin-I-acid
61	27 023	$C_{15}H_{10}O_4$	253.0506	253.0509	1.19	225 (100), 210 (17.1), 195 (16.8), 182 (28.8), 154	chrysophanol
	27.025					(8.1)	
62	27.192	$C_{22}H_{22}O_{10}$	481.0907 ^b	481.0911	0.83	283 (100), 240 (30.3)	physcion monoglucoside
63	27.445	$C_{21}H_{20}O_{10}$	431.0984	431.0989	1.16	269 (100), 225 (12.5)	emodin monoglucoside
64	27.866	$C_{32}H_{44}O_{14}$	687.2425 ^b	687.2415	-1.46	651 (13.9), 327 (100), 283 (70.6), 239 (20.3)	crocin-III
65	28.035	$C_{44}H_{64}O_{24}$	1011.3482 ^b	1011.3479	-0.30	651 (100), 327 (39.4), 283 (8.3), 179 (3.1)	13-cis-crocin-I
66	28.288	$C_{16}H_{10}O_{6}$	297.0405	297.0408	1.01	253 (100), 225 (58.16), 182 (15.6)	3-(1,8-Dihydroxy-6-methyl)a
							nthraquinonecarboxylic acid
67	28.541	$C_{19}H_{24}O_4$	315.1607	315.1599	-2.54	297 (43.2), 271 (33.7), 241 (100), 186 (15.6)	Capillartemisin A
68	28.878	$C_{16}H_{12}O_5$	283.0617	283.0610	-2.47	240 (100), 212 (12.5), 184 (7.3)	physcion

69	29.215	$C_{15}H_{10}O_5$	269.0455	269.0450	-1.86	240 (100), 223 (20.2), 211 (78.1), 195 (14.5), 183 (61.7), 167 (26.4)	aloe-emodin
70	29.384	$C_{38}H_{54}O_{19}$	849.2953 ^b	849.2954	0.12	651 (85.5), 489 (29.7), 327. (100), 283 (19.6)	13-cis-crocin-II
71	30.395	$C_{15}H_8O_6$	283.0248	283.0247	-0.35	239 (100), 211 (44.1), 183 (91.5)	rhein
72	31.829	$C_{32}H_{44}O_{14}$	687.2425 ^b	687.2422	-0.44	651 (12.3), 489 (2.9), 327 (100), 283 (46.8), 239 (13.4)	13-cis-crocin-III
73	34.511	$C_{15}H_{10}O_5$	269.0455	269.0450	-1.86	241 (34.6), 225 (100), 210 (20.7), 195 (36.5), 105 (21.9)	emodin
74	35.628	$C_{30}H_{22}O_8$	509.1242	509.1247	0.98	254 (100)	palmidin A
75	36.808	$C_{30}H_{20}O_9$	523.1035	523.1037	0.38	485 (4.4), 254 (100), 224 (9.84)	rheidin
76	38.916	$C_{30}H_{22}O_7$	493.1293	493.1290	-0.61	476 (20.1), 462 (52.5), 254 (100), 238 (88.9), 152 (24.6)	palmidin B
77	40.602	$C_{30}H_{22}O_7$	493.1293	493.1294	0.20	254 (100), 152 (5.68)	palmidin C

^a Differences between the measured and theoretical values, ppm.

^d gave [M+Cl]⁻ as precursor ions

* identified with the reference compounds



254x190mm (96 x 96 DPI)



The extract ion chromatogram (EIC) of YCHD in negative ion mode (a); the processed extract ion chromatogram (p-EIC) of YCHD in negative ion mode (b); the scaled to largest for each chromatogram of p-EIC (c). 225x187mm (300 x 300 DPI)



The MS/MS spectra of the [M-H]- ions at m/z 353.0878 for 1-CQA (a); 5-CQA (b); 3-CQA (c) and 4-CQA (d). 273x239mm (300 x 300 DPI)





The MS/MS spectra of the [M-H]- ions at m/z 515.1207 for 1,4-dicaffeoylquinic acid (a); 4,5-dicaffeoylquinic acid (b); 3,5-dicaffeoylquinic acid (c) and 3,4-dicaffeoylquinic acid (d). 273x201mm (300 x 300 DPI)

-ESI Product Ion (27.132 min) Frag=150.0V CID@26.0 (253.0500[z=1] -> **) YCHT1.d

154.0369

-ESI Product Ion (28.920 min) Frag=150.0V CID@12.0 (283.0610[z=1] -> **) YCHT1.d

ESI Product Ion (30.437 min) Frag=150.0V CID@12.0 (283.0247[z=1] -> **) YCHT1.d

139.0568 167.0494

ESI Product Ion (34.552 min) Frag=150.0V CID@26.0 (269.0450[z=1] -> **) YCHT1.d

157,0646

ESI Product Ion (29.240 min) Frag=150.0V CID@26.0 (269.0450[z=1] -> **) YCHT1.d

160

The MS/MS spectra of the [M-H]- ions at m/z 253.0500 for chrysophanol (a); m/z 283.0610 for physcion

(b); m/z 283.0247 for rhein (c); m/z 269.0450 for emodin (d) and m/z 269.0450 for aloe-emodin (e).

184x245mm (300 x 300 DPI)

180

Counts vs. Mass-to-Charge (m/z)

253.0523

225.0556

240.0433

239.0349

241.0488

240.0416

240

283.0619

255.0294 283.0246

269.0441

269.0435

280

260

٠

182.0393 210.0365

156.0628 184.0528 212.0489

183.0452

195.0437

211.0401 183.0437

200

220

211.0399

225.0543

x10³

3- (а) ОН О ОН

2

1

0

2- (b)

1 H₃CO

(c) OH

O OH

ö

Rhein Exact Mass: 284.0321

ö

Emodin Mass: 270.0528

OH

Aloe-emodin ct Mass: 254.0579

100

80

OH

120

139.0550

140

OH

x10⁴

1.5

0.5

0

4

3

2

1

0

8

6

2

0

3

2

1

0

x10³

(d)

4 - HC

4- (e)

60

OH

x10⁴

x10⁴

Chrysophanol F×act Mass: 254.0579

> Physcion Exact Mass: 284.0685

OH

СООН

OH

Analytical Methods Accepted Manuscript





The FBF spectrum for 6"-O-trans-coumaroyl genipin gentiobioside (a) and its MS/MS spectrum of the [M+Cl]- ion at m/z 731.1947 (b). 191x139mm (300 x 300 DPI)



The EIC of m/z 1011 in negative ion mode (a), the FBF spectrum for crocin-I (b); the MS/MS spectra of the [M+CI]- ion at m/z 1011.3468 for crocin-I (c) and m/z 1011.3475 for 13-cis-crocin-I (d). 188x233mm (300 x 300 DPI)