Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

LICHENS AROUND THE WORLD: A COMPREHENSIVE STUDY OF LICHEN SURVIVAL BIOSTRATEGIES DETECTED BY RAMAN SPECTROSCOPY

I. Miralles^{1,2}; H.G.M. Edwards³; F. Domingo¹; S.E. Jorge-Villar^{4,5*}

¹ Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas,

² Georges Lemaître Centre for Earth and Climate Research, Université Catholique de Louvain-La-Neuve, Belgium.

³ Department of Chemical and Forensic Sciences, School of Life Sciences, University of Bradford, UK

⁴Area de Geodinámica Interna, Facultad de Humanidades y Educacion, Universidad de Burgos, C/ Villadiego s/n, 09001-Burgos (Spain). E-mails: <u>susanajorgevillar@hotmail.com</u>; <u>seju@ubu.es</u>; phone +34 947 258 772; Fax: +34 947 258 723

⁵National Research Center on Human Evolution (CENIEH), Burgos (Spain).

Analytical Methods Accepted Manuscript

ABSTRACT

A list of the lichen biomolecules detected by Raman spectroscopy has been compiled and their appearance related with the environmental conditions operating in the lichen habitat over the world. The adaptative climatic strategies of lichens have been analysed as a whole and some interesting and contradictory conclusions arise with regard to other research conclusions reported in the literature, such as the presence of hydrated calcium oxalates and their relationship with desiccated environments or the correlation between climatic conditions and protective pigments or pigment mixtures. The results of this exercise will be useful for our understanding of the biochemical synthetic strategies being employed for the survival of the lichen colonies in hostile terrestrial environments and the prediction of Raman spectral data for extremophiles in a range of novel hot and cold desert conditions. Additionally, a database of all key lichen biomolecules identified by Raman spectroscopy and their characteristic Raman wavenumbers are given for further unambiguos identification.

Keywords: Adaptative strategies, climate, biomolecule, extremophile, calcium oxalate

Analytical Methods

INTRODUCTION

Lichens are formed by a symbiotic relationship between micro-algae and fungi; the first of these provides chlorophyll and permits a photosynthetic function whereas the fungus provides shelter and humidity. Lichens have colonized most terrestrial environments, even the most hostile cold and hot deserts or high altitude habitats and appear on most substrata, such as rocks, soil, wood, brick, leaves, roofing, paint, walls, etc.¹⁻⁸ They are, after microorganisms, pioneer colonizers of sterile areas through physical and chemical mineral substratum degradation and by the addition of organic matter to new soil production.

The capability of lichens to survive under harsh climatic factors and on different substrata has been ascribed to the development of different types of adaptive strategies: Charles Darwin⁹ emphasised this in his identification that adaptation of species to a changing environment was the key to its successful survival. Although some endolithic colonisations have been described as lichens¹⁰, most lichens are epilithic and live on the substratum surface and then their survival strategies are necessarily related to the availability of food and water and protection from hazardous external features, such as high or low temperature, desiccation, chemical toxicity or low wavelength, high energy UV-radiation by producing different chemical compounds.^{1,3,4,11-15} Dormant and active stages have been described as phases of the life of lichen species, related to the environmental conditions, and can be evaluated by the measurement of their photosynthetic activity.¹⁶⁻¹⁷

There is a wide range of biomolecules, either organic pigments and oxalates, produced

Analytical Methods Accepted Manuscript

Analytical Methods Accepted Manuscript

by lichens from different metabolic pathways.^{4,8,18-19} Some of these carry out a protective role and, at the same time, act as pigments, giving a characteristic colour to the lichen.^{7,8,14,20-22} Oxalates are described as wasted products as a result of methabolic activity; they can play a dual role.¹ By one hand, as water storage under low humidity levels; by the other hand, the calcium oxalate formation process can also help lichens to rock disintegration and to grow into the rock. Although there is a wide range of pigments which often occur in admixture, it has already been reported that there is not a direct relationship between pigments and species in the way that different species use the same protective pigments⁴; also, there is no correlation between the lichen genus and the pigment mixture since different genera can produce the same pigment composition and different species from the same genus could produce different pigment mixtures.⁴⁻⁵ This means that naturally there will be inherent difficulties in using spectral pigment data for taxonomic purposes. In a similar way, protective biomolecules are not specific for climatic parameters, that is: lichens living under analogous environmental conditions can adopt a different pigment patronage.^{1,5} This means that pigment mixtures per se cannot be used for lichen species identification or for environmental parameter characterization.

Lichen pigments have been used from ancient times for the manufacture of inks, medicines and perfumes, and for dyeing textiles and garments.²³⁻²⁷ Lichens play also an essential role in ecosystems by improving biogeochemical soil cycles and increasing the carbon stocks in the soils.²⁸⁻³¹ Nowadays, lichens have a renewed research interest as extremophilic organisms in life and space sciences³²⁻³⁷ which has itself directed the adoption of new analytical techniques in lichenology. One of these novel analytical techniques is Raman spectroscopy, which has been applied to lichenological studies along with the older infrared and mass spectroscopic techniques. Raman spectroscopy is a non-destructive

Analytical Methods

technique based on the use of laser radiation in the visible or near infrared region of the electromagnetic spectrum for analysing the vibrational spectra in molecules; the basis of this technique relies upon the probing of the chemical bonds in organic molecules and inorganic molecular ions whose Raman spectral signatures are characteristic of each compound or molecular ion. Hence each chemical compound, either organic or inorganic, displays a specific Raman spectral pattern related with its composition and molecular structure and in a particularly advantageous way micro- and macro- analysis can be carried out directly on the sample without the necessity for any physical or chemical pretreatment or manipulation to be carried out on the specimen.³³⁻³⁴ Because the Raman spectra are obtained using a microscope or lens illuminator then the characteristic molecular information is also derived with a surface spatial resolution of the order of several microns, which gives Raman spectroscopic analysis an added advantage for the examination of heterogeneous lichen encrustations on mineral substrates without chemical extraction or separation being effected from the substrate.

Although obtaining a Raman spectrum is intrinsically not difficult, the characterization of each compound in a mixture from its characteristic Raman bands is complex because of several problems, such as the weakness of the Raman signal, fluorescence background emission, band overlapping, wavenumber shifts, etc.^{33,38} Furthermore, several technical parameters can affect the observed spectrum, such as laser wavelength, which can influence the onset of fluorescence or resonance effects; spectral resolution, related to changes in band width caused by molecular or ionic environmental effects and so result in band overlapping or asymmetry; laser power, since high laser irradiance at the specimen in Watts per square cm can burn the sample or result in chemical degradation or the induction of molecular or structural changes.³⁸⁻⁴⁰

Analytical Methods Accepted Manuscript

Organic compounds give a multi-band Raman spectrum, from which three or four bands, usually the strongest, are used as characteristic Raman signatures; however, the relative intensity of the observed peaks can change with regard to the wavelength of the laser used for exciting the Raman effect.^{33,39} This means that sometimes, what seems to be a major feature important could exhibit a significantly reduced intensity using a different laser wavelength other than that reported in the literature database; the actual interpretation of the spectral data and consequent identification of the biomolecules present becomes difficult especially in a complex biological system such as that of a lichen colony and its attendant mineral encrustation.

In this work, we make a summary of the main chemicals produced by lichens over the world detected by Raman spectroscopy with the goal of connecting lichen species, climate and lichen protective biomolecules. From our compendium, the relationship between oxalates and lichens in dry and wet environments will be examined and the production of protective pigment admixtures in different climates discussed.

There are many articles in which studies of lichen pigments have been carried out using different analytical techniques but the focus of this paper is where Raman spectroscopy has been used for the molecular characterization. The focus on Raman spectroscopy is owing to the increasing interest in using a nondestructive technique. Despite the increased adoption of this technique for lichenological systems analysis the resulting spectrum is often complex to interpret for nonspecialists. This will be the first time that a data compendium of lichen pigments and calcium oxalates related with climate parameters has been published and hence

Analytical Methods

will provide a good Raman spectral database for the interpretation of lichen behaviour, especially for lichenologists using Raman spectroscopy for the first time for chemical identification in lichen systems.

MATERIAL AND METHODS

Because of the change in relative intensity of the spectral signatures observed under different operational experimental conditions, we have selected for our database (Table 1) only the most significant spectral features observed using either 1064 or 785 nm laser excitation as fluorescence or resonance Raman effects generally become more significant in the visible region of the electromagnetic spectrum, such as that found using 532 or 514 nm laser radiation. Although the wavenumber region between 1700-1000 cm⁻¹ is, normally, the most representative area in a Raman spectrum for biomolecular identification, in our experience, we have seen that, for some compounds, characteristic bands are detected in the 700-200 cm⁻¹ region and these too can be quite definitive for molecular or molecular ion identification.

Lichens have been grouped under six different climates (Table 1 and Table 2a, 2b, 2c, 2d; see references in table 1): Polar (cold and dry), Oceanic (temperate and wet), Mediterranean (temperate but with wet and dry seasons), Sub-desert (hot and dry), High mountain+desert (high diurnal temperature variation but very dry in the case of the analyzed specimens) and, finally, Tropical (warm and wet).

Analytical Methods Accepted Manuscript

From all literature references analysed for this study, we have included in our table eighty-eight lichen specimens, comprising sixty-six different species belonging to thirty-seven different genera. Each species cited in the revised papers has been given a different number; additionally, for clarity when one particular species appears in different papers with clearly identified different pigment mixtures, we have assigned to it the same number but we have added a suffix letter (one species, several specimens). For a genus sp, we have assigned different identifying numbers each time it appears, in the absence of any further literature taxonomic clarification.

In some of the studies analyzed for this work, authors have characterized only the most common compounds, such as carotene, chlorophyll, cellulose or oxalates; this could be explained because a) occasionally, no other molecule gives Raman bands in a lichen analysis owing to particular lichen environmental protective strategies; b) because of the analytical parameters chosen for the study or c) because of the analytical spectrometer limitations. Sometimes, weak Raman spectral signatures remain unassigned, as can be seen in some figures in the original articles. When wavenumbers do not appear in the text or tables and no spectral assignments have been forthcoming it is impossible to assess what compounds have then been detected by Raman spectroscopy - in this case, sometimes they are shown as an "unknown compound"; here we have not attempted to reassign the work of others in our analysis and "unknown compounds" remain as such, although they are discussed further later in an appropriate section in this paper.

For this work, we do not distinguish spatially where a compound was found, i.e in the lichen thallus, apothecia, encrustation etc. All pigments were detected using Raman spectroscopy, although from other studies, using different and destructive analytical

Analytical Methods

techniques, more pigments may have been reported, the goal of this review is to compare those bio-molecules identified non-destructively using Raman spectroscopy.

RESULTS AND DISCUSSION

Results of the lichen specimens, climates and biomolecules found by Raman spectroscopy are shown in tables 2a, 2b, 2c and 2d.

CAROTENOIDS AND CHLOROPHYLL

Although chlorophyll is ubiquitously found in lichens, it has been only detected using Raman spectroscopy, in forty two specimens (47,7%) of those compiled for this review (Tables 2a, 2b, 2c, 2d; Table 3). It has been appreciated that chlorophyll is difficult to detect in natural samples when a green or blue laser was used for Raman analyses.³³

Contrary to the case of chlorophyll, carotenes were generally found (92%) and yet not described in only seven specimens (8%); this is perhaps surprising since the carotenoids are a group of pigments which give a strong Raman spectroscopic response, particularly when a green or blue laser was used because of the resonance Raman enhancement. An electronic absorption band for carotenoids occurs near 500 nm and when green laser excitation is used the characteristic Raman bands (centred near 1510, 1150 and 1000 cm⁻¹) are resonantly enhanced.^{33,41} Carotenes fulfil a multiple role: they act as UV-radiation screen, are antioxidants and DNA repairers. Despite the presence of this multifunctional pigment, lichens also produce other protective biomolecules (Tables 3 and 4).

Although it is tempting to suggest that the assignment of specific carotenoids in lichens and other organisms is possible from their Raman spectrum, Oliveira et al. (2010)⁴¹ have shown that the precise characterization of those compounds in natural samples is ambiguous because of the interaction of these molecules with other compounds in the cell, producing significant wavenumber shifts of the characteristic Raman bands, so the interpretation of the Raman spectrum through comparison with pure carotenoid standards must be undertaken with caution. Hence in this study, we have replaced specified "carotenoids" with the generic term in our table since in some cases authors have apparently not considered the consequence of such potential wavenumber shifts in their assignments.

CALCIUM OXALATES

 Calcium oxalates are compounds which provide a strong Raman spectrum whichever laser wavelength is used for exciting the sample. However, for 35,2% of specimens no oxalate was detected (Figure 1).

In Figure 1, the percentage of oxalates related to the environmental conditions are shown. The Polar climate is characterized by cold temperatures and low relative humidity in air; what we have called High-mountain/desert shows some similarities with this Polar climate since those lichens were collected in the Atacama desert^{4,33,39} with some of the lowest terrestrial humidities. It is interesting to note that, despite the extreme desiccation experienced by lichens in both areas, there are large numbers of specimens without oxalates detected.

Analytical Methods

Subdesert climates cannot be used for establishing conclusions here because only four specimens were analysed from these regions.

Tropical regions show similar proportions of specimens with and without oxalates to the Polar climate, despite the high rainfall. The temperate Oceanic climate shows a high ratio of specimens with oxalates in comparison with those showing an absence of the calcium oxalates. In Mediterranean areas, with a wet and cold season and another one hot and drier, all specimens showed that oxalate was present (Figure 1).

The role played by calcium oxalates in the lichen survival strategy is controversial: although they are clearly generated as secondary products by lichen metabolic processes, some authors have attributed to them a water storage function.^{1,4,5,12,20,42-46} Furthermore, weddellite, calcium oxalate dihydrate, is metastable at temperatures in excess of 5 degrees C and thermodynamically reverts in time to the more stable whewellite, calcium oxalate monohydrate. It has been proposed by some authors that the excess of water could be used by the lichen in drought periods. However, this suggestion does not appear to be supported by the observation that lichens with weddellite detected in the Oceanic and Mediterranean climates involve 47,8% and 80% respectively (Figure 1), whereas in dry climates such as High mountains/desert (14,4%) and in Polar regions (27,8%) this is lower (Figure1). In Subdesert climates 50% of lichens show the presence of weddellite but, as we have previously pointed out, the low number of lichen specimens studied makes this conclusion non representative.

Analytical Methods Accepted Manuscript

In summary, taking into account the total number of specimens; 71,7% of lichens (38/53 spcms) from Oceanic, Mediterranean and Tropical climates show the presence of either calcium oxalate monohydrate and dihydrate or both whereas only 45,7% of specimens from the more extreme desert climates (subdesert, high mountains/desert and polar, 16/35 specimens) produce the same compounds; i.e. almost three quarters of lichens living under wet climates produce oxalates, whereas less than half of the lichens living under dry climates produce those molecules; therefore, the hypothesis that oxalates could work as a water storage must be revised.

OTHER BIOMOLECULES

From the biomolecules identified by Raman spectroscopy (Table 4), the characterization of parietin as a lichen pigment is outstanding since it appears in no fewer than twenty-one specimens (18,42%). The production of this pigment is apparently unrelated with any specific climate. The next most common lichen pigments identified by Raman spectroscopy are rhizocarpic acid, which appears in 9,65% of specimens and lecanoric acid (7,89%) followed by calycin, gyrophoric acid and usnic acid (7,02% each).

Most commonly, it seems that only one pigment is identifiable if at all in any climate (Figure 2), but it is significant that the production of four or more pigments is commonly found in the oceanic climate. Again, the hypothesis that the most inhospitable environmental conditions are associated with the most complex pigment mixture synthesised by lichen systems is questionable.⁴⁷

CONCLUSIONS

Several conclusions may be made as a result of the current study.

Biomolecules produced by lichens under different climatic conditions and in a range of environments detected using Raman spectroscopy and reported in the literature have been reviewed. As a result, from this assimilation of spectral data and a comparative analysis, it is clear that some hypotheses made on the basis of more localised studies are not supportable.

Raman spectroscopy is a suitable technique for lichen biomolecule identification without sample manipulation or pretreatment. In particular, the ability to detect carotenoids alone and in admixture without extraction is valuable. The detection of chlorophyll is rather more problematic and this can be ascribed to the laser excitation wavelengths used.

Calcium oxalate, either as a mono- or dihydrate, appears more often in specimens from wet climates, such as oceanic, tropical or Mediterranean than in specimens from drier areas, such as polar, desert and subdesert regions. From this work, we conclude that the hypothesis made in the literature that whewellite and weddellite act as water reservoirs for lichens under drought conditions is not sustainable and that more studies should be carried out to understand properly their function. it is also very interesting that only calcium oxalates are detected in the spectral data and there is no evidence for the presence any other metal oxalate or oxalic acid, even under conditions of calcium deficiency, such as on granite rock substrates: it is believed this reflects the insolubility of the calcium oxalate compared with its magnesium or alkali

Analytical Methods Accepted Manuscript

metal congeners by which means the oxalic acid waste product is removed more effectively from the growth area.

From our results, there is no apparent relationship between pigments or pigment mixtures produced and climate; More specific studies should be carried out to clarify what mechanism dictates the adoption of a particular survival strategy related to stressed or temperate environmental conditions.

It has also not been observed previously that the presence of a single pigment is the most common strategy regardless of mild climate. Also, whereas it could have reasonably been thought that lichens would have produced four or more pigments in the most hostile and extreme environmental conditions, in reality this mixture is produced only in rather more gentle oceanic climates; of the literature surveyed, only one subdesert specimen produced four pigments in admixture.

The most common lichen pigment is parietin, followed by rhizocarpic acid and then lecanoric acid, calycin, gyrophoric acid and usnic acid. It doesn't seem to have any relationship between any climate and a pigment type. The most common pigments appear in different climatic conditions.

ACKNOWLEDGES

The authors are grateful for support from the Fellowships Juan de la Cierva 2008-39669 and the Marie Curie Intra-European Fellowship (FP7-PEOPLE-2013-IEF, Proposal n° 623393). The authors are also grateful for support from CARBORAD proyect (CGL2011-27493) funded by the Spanish Ministerio de Ciencia e Innovación and the proyect

Analytical Methods

"Variaciones de pigmentos y otros metabolitos causadas por el microclima en especies clave de costras biológicas del suelo" funded by the Asociación de Ecología Terrestre Española (AEET).

REFERENCES

1 I. Miralles, S.E. Jorge-Villar, Y. Canón, F. Domingo, Astrobiology 2012, 12, 743-753.

2 C.S. Cockell, J. Knowland, Biol. Rev. 1999, 74, 311-345.

3 D.L. Dickensheets, D.D. Wynn-Williams, H.G.M. Edwards, C. Crowder, E.M. Newton, *J. Raman Spec.* 31:633–635.

4 S.E. Jorge-Villar, H.G.M. Edwards, M.R.D. Seaward, Analyst, 2005, 130,730-737.

5 S.E. Jorge-Villar, H.G.M. Edwards, J. Raman Spectrosc. 2010, 41, 63-67.

6 D.D. Wynn-Williams, J.M. Holder, H.G.M. Edwards, in *New Aspects in Cryptogamic Research*, eds. B. Schroeter, M. Schlensog, T.G.A. Green, der Gebruder Borntraeger Verlagsbuchhandlung, Berlin-Stuttgart, 2000.

7 H.G.M. Edwards, L.F.C. de Oliveira, M.R.D. Seaward, Lichenol., 2005, 37, 181-189.

8 P. Ropret, S. Tavzes, K. Retko, L. Legan, T. Spec, N. Ocepek, Preservation– EUROMED2012, pp. 325–329.

9 C. Darwin, *The Origin of Species* by Means of Natural Selection: The Preservation of Favoured Races in the Struggle for Life, 1859.

10 H.G.M. Edwards, N.C. Russell, D.D. Wynn-Williams, J. Raman Spectrosc., 1997, 28, 685–690.

11 H.G.M. Edwards, Spectrochim. Acta, Part A, 2007, 68,1126–1132.

12 S.E. Jorge-Villar, H.G.M. Edwards, M.R.D. Seaward, *Spectrochim. Acta Part A*, 2004, **60**, 1229–1237.

13 H.G.M. Edwards, C.S. Cockell, E.M. Newton, D.D. Wynn-Williams, *J. Raman Spectrosc.*, 2004, **35**, 463–469.

14 H.G.M. Edwards, E.M. Newton, D.D. Wynn-Williams, R.I. Lewis-Smith, *Spectrochim. Acta Part A*, 2003, 59:2301–2309.

15 H.G.M. Edwards, J.M. Holder, M.R.D. Seaward, D.A. Robinson, *J Raman Spectrosc.*, 2002, **33**, 449–454.

16 S. Pannewitz, M. Schlensog, T.G. Allan-Green, L.G. Sancho, B. Schroeter, *Oecologia*, 2003, 135, 30–38.

17 T.G.A. Green, B. Schroeter, L.G. Sancho, *Plant life in Antarctica*. In: Functional Plant Ecology, eds. F. Pugnaire, F. Valladares, CRC Press, Boca Raton, Florida, 2007.

18 J.A. Elix, *Biochemistry and Secondary Metabolites*. In: Lichen Biology, ed. T. Nash, Cabridge University Press, Cambridge, 1996.

19 S. Huneck, I. Yoshimura, *Identification of Lichen Substances*. Springer-Verlag, Berlin, 1996.

20 J.M. Holder, D.D. Wynn-Williams, F. Rull-Perez, H.G.M. Edwards, *New Phytol.*, 2000, 145, 271–280.

21 H.G.M. Edwards, E.M. Newton, D.D. Wynn-Williams, S.R. Coombes, J. Mol. Struct., 2003, 648, 49–59.

22 K.A. Solhaug, Y. Gauslaa, L. Nybakken, W. Bilger, New Phytol., 2003, 158, 91-100.

Analytical Methods

23 L.P.	Choo-Smith,	H.G.M.	Edwards,	H.P.	Endtz,	J.M.	Kros,	F.	Heule,	H.	Barr,	J.R.
Robinson	n, H.A. Bruini	ing, G.J. 1	Puppels, <i>Bi</i>	iopoly	mers, 20	002, 6	7, 1–9.					

24 A. Caudron, C. Tfayli, M. Monnier, P. Manfait, D. Prognon, J. Pradeau, *J. Pharmaceut. Biomed. Anal.*, 2011, **54**, 866–868.

25 W.P. Findlay, D.E. Bugay, J. Pharmaceut. Biomed. Anal., 1998, 16, 921-930.

26 Y. Roggo, K. Degardin, P. Margot, Talanta, 2010, 81, 988-995.

27 E.S.B. Ferreira, A.N. Hulme, H. Mcnab, A. Quye, Chem. Soc. Rev., 2004, 33, 329-336.

28 I. Miralles, F. Domingo, Y. Cantón, C. Trasar-Cepeda, M.C. Leirós, F. Gil-Sotres, *Soil Biol. Biochem.*, 2012, **53**, 124–132.

29 I. Miralles, F. Domingo, E. García-Campos, C. Trasar-Cepeda, M.C. Leirós, F. Gil-Sotres, *Soil Biol. Biochem.*, 2012, **55**, 113–121.

30 I. Miralles, C. Trasar-Cepeda, M.C. Leirós, F. Gil-Sotres, *Soil Biol. Biochem.*, 2013, **58**, 1–8.

31 I. Miralles, B. van Wesemael, Y. Cantón, S. Chamizo, R. Ortega, F. Domingo, G. Almendros, *Geoderma*, 1012, **189–190**: 227–235.

32 H.G.M. Edwards, C.D. Moody, S.E. Jorge-Villar, D.D. Wynn-Williams, *Icarus*, 2005, **174**, 560–571.

33 S.E. Jorge-Villar, H.G.M. Edwards, Anal. Bioanal. Chem., 2006, 384, 100-113.

34 S.E. Jorge-Villar, I. Miralles, C. Capel, V. Hernández-Jolín, *Anal. Methods*, 2011, **3**, 2783–2791.

35 D.D. Wynn-Williams, H.G.M. Edwards, Icarus, 2000, 144, 486–503.

- 36 D.D. Wynn-Williams, *Antarctic as a model for ancient in Mars*. In: The Search for Life on Mars, ed. J. A. Hiscox, British Interplanetary Society, London, 1999.
 - 37 L.G. Sancho, R.T. Torre, A. Pintado, Fungal Biol. Rev., 2008, 22, 103-109.

- 38 S.E. Jorge-Villar, L.G. Benning, H.G.M. Edwards, Amase Team., *Geochem. Transac.*, 2007, **8**, 1–11.
- 39 S.E. Jorge-Villar, H.G.M. Edwards, M.R. Worland, *Origins Life Evol. Biosph.*, 2005, **35**, 489–506.

40 S.E. Jorge-Villar, H.G.M. Edwards, Int. J. Astrobiol., 2004, 3, 165-174.

- 41 V.E. de Oliveira, H.V. Castro, H.G.M. Edwards, L.F.C. de Oliveira, *J. Raman Spectrosc.*, 2010, **41**, 642–650.
- 42 H.G.M. Edwards, D.W. Farwell, M.R.D. Seaward, Lichenologist, 1997, 29, 83-90.
- 43 H.G.M. Edwards, M.R.D. Seaward, S.J. Attwood, S.J. Little, L.F.C. de Oliveira, M. Tretiach, *Analyst*, 2003, **128**, 1218–1221.
- 44 M.R.D. Seaward, H.G.M. Edwards, J. Raman Spectrosc., 1997, 28, 691-696.
- 45 S.E. Jorge-Villar, H.G.M. Edwards, L.G. Benning, Icarus, 2006, 184, 158-169.
- 46 R.L. Frost, Anal. Chim. Acta, 2004, 517, 207-214.
- 47 D. Amico, T. Collins, J.C. Marx, G. Feller, C. Gerday, *Psychrophilic microorganisms: challenges for life Salvino*, University of Liege, Liege, Belgium, 2006.
- 48 H.G.M. Edwards, E.M. Newton, D.D. Wynn-Williams, D. Dickensheets, C. Schoen, C. Crowder, *Int. J. Astrobiol.*, 2003, **1**, 333–348.

Analytical Methods

49 P. Vítek, E.M.A. Ali, H.G.M. Edwards, J. Jehlicka, R. Cox, K. Page, Spectrochim. Acta Part A, 2012, 86, 320–327.

50 H.G.M. Edwards, D.D. Wynn-Williams, S.J. Little, L.F.C. de Oliveira, C.S. Cockell, J.C. Ellis-Evans, *Spectrochim. Acta Part A*, 2004, **60**, 2029–2033.

51 H.G.M. Edwards, E.M.Newton, D.L. Dickensheets, D.D. Wynn-Williams, *Spectrochim. Acta Part A*, 2003, **59**, 2277–2290.

52 H.G.M. Edwards, J.M. Holder, D.D. Wynn-Williams, *Soil Biol. Biochem.*, 1998, **30**, 1947–1953.

53 H.R.D. Seaward, H.G.M. Edwards, D.W. Farwell, Nova Hedwigia, 1998, 66, 463-472.

54 H.G.M. Edwards, N.C. Russell, M.R.D. Seaward, D. Slark, *Spectrochim. Acta Part A*, 1995, **51**, 2091–2100.

55 H.G.M. Edwards, F. Rull-Perez, *Biospectrosc.*, 1999, 5, 47–52.

56 M.R.D. Seaward, H.G.M. Edwards, D.W. Farwell, FT-Raman microscopic studies of Haematomma ochroleucum var. porphyrium. Studies in lichenology with emphasis on chemotaxonomy, geography and phytochemistry. Festschrift Ch. Leuckert. (eds: Knoph, J.G., Schrüfer, K., and Sipman, H.J.M.)- Bibliotheca Lichenologica 57:395–407. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin-Stuttgart, 1995.

57 H.G.M. Edwards, N.C. Russel, M.R.D. Seaward, *Spectrochim. Acta Part A*, 1997, **53**, 99–105.

58 B. Prieto, H.G.M. Edwards, M.R.D. Seaward, Geomicrobiol. J., 2000, 17, 55-60.

59 B. Prieto, M.R.D. Seaward, H.G.M. Edwards, T. Rivas, B. Silva, *Biospectrosc.*, 1999, 5, 53–59.

60 H.G.M. Edwards, K.A.E. Edwards, D.W. Farwell, I.R. Lewis, M.R.D. Seaward, J. Raman Spectrosc., 1994, 25, 99–103.

61 H.G.M. Edwards, D.W. Farwell, M.R.D. Seaward, Int. Biodeterioration, 1991, 27, 1-9.

62 H.G.M. Edwards, S.E. Jorge-Villar, M.R.D. Seaward, L.L. St. Clair, *Raman Spectroscopy* of Rock Biodeterioration by the Lichen Lecidea Tessellata Flörke in a Desert Environment, Utah, USA. In: Biodeterioration of Stone Surfaces, eds. L.L. Clair, M.R.D. Seaward, 2004.

63 L.F.C. de Oliveira, H.G.M. Edwards, J.C. Feo-Manga, M.R.D. Seaward, R. Lücking, *Lichenologist*, 2002, **34**, 259–266.

64 L.F.C. de Oliveira, P.C.C. Pinto, M.P. Marcelli, H.F. Dos Santos, H.G.M. Edwards, J. Mol. Struct., **920**, 128–133.

65 F.J. Chu J, M.R.D. Seaward, H.G.M. Edwards, Spectrochim. Acta Part A, 1998, 54, 967–982.

TABLES

 Table 1. Climate, lichen genus and species, site locations and specimen numbers.

Table 2a: Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on Polar climate.

Table 2b: Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on Oceanic climate.

Table 2c: Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on Mediterranean and Subdesert climates.

Table 2d: Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on High Montain+Desert and Tropical climates.

Table 3: Lichen chemicals by specimens and climates. SPCMS: specimens; SPCS: species; Ca OX.: calcium oxalate (unspecified hydration); WEDDE. OX. DIHYDRATE: Weddellite (oxalate dihydrate); WHEWE. OX. MONOHYDRATE: Wewellite (oxalate monohydrate); PIGMENTS: other pigments than carotene and chlorophyll.Table 4: Number of times each pigment was found under different climates, by using Raman spectroscopy and total percentage of each pigment found in the total specimen number.

FIGURES

Figure 1. Representation by pie-chart of: a) Percentage of lichen specimens with and/or without oxalates; b) Type of oxalates found in different world climate regions. The world climate regions considered in this study are: Polar (18 specimens [spcms]), Oceanic (23 spcms), Mediterranean (10 spcms), Subdesert (4 spcms), High-mount/desert (13 spcms) and Tropical (20 spcms). Climate Map zones of the world: Original uploader was Waitak at en.wikipedia Later version(s) were uploaded by Splette at en.wikipedia. - Transferred from en.wikipedia; transfered to Commons by User:Legoktm using CommonsHelper.

https://en.wikipedia.org/wiki/Climate#/media/File:ClimateMap_World.png

Figure 2. Representation by pie-chart of pigments occurrence: number of pigments in each region (without carotenoids and chlorophyll). The world climate regions considered in this study are: Polar (18 speciments [spcms]), Oceanic (23 spcms), Mediterranean (10 spcms), Subdesert (4 spcms), High-mount/desert (13 spcms) and Tropical (20 spcms).

Analytical Methods Accepted Manuscript

Climate Map zones of the world: Original uploader was Waitak at en.wikipedia Later version(s) were uploaded by Splette at en.wikipedia. - Transferred from en.wikipedia; transfered to Commons by User:Legoktm using CommonsHelper.

https://en.wikipedia.org/wiki/Climate#/media/File:ClimateMap_World.png

Analytical Methods

Table 1: Climate.	lichen genus and	l species, site	locations and	specimen	numbers.	(SPEC: Specimen)
		p ,		~p		(

PolarAcarosporaAcarospora chlorophana ^{14,20,43,448} 1-Football Saddle, northern Victoria Land, Antarctica; Land Victoria Land, Antarctica; LandI aPolarAcarosporaAcarospora chlorophana ³² Victoria Land, Antarctica; Victoria Land, Antarctica;1PolarAcarosporaAcarospora chlorophana ³² Victoria Land, Antarctica; Icand (Antarctica)1PolarAcarosporaAcarospora sp. ⁴³ Signy Island in the maritime Antarctic.2PolarBuelliaBuellia sp. ⁵⁹ Mars Oasis on Alexander Island in Marguerite Bay, off the Antarctic3PolarCaloplacaCaloplaca sublobulata ^{13,14} 1-Signy 1; 2-1 conic Polar4PolarCaloplacaCaloplaca satiola ^{14,48,51} Land1-Crater Cirque, Victoria Iand5aPolarCandelariaCandelaria sp. ¹⁴ Victoria Land.6PolarCandelariellaCandelaria sp. ¹⁴ Victoria Land.7PolarLegirariaLegiraria sp. ¹⁴ Victoria Land.10PolarLegirariaLegiraria sp. ¹⁴ Signy I.11PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.12PolarUseaUnatheria antarctica ¹⁴ Signy I.12PolarViscaUnatheria antarctica ¹⁴ Signy I.12PolarViscaXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctice13PolarKantoriaXanthoria antarctica ¹⁴ Signy I.1314<	CLIMATE	GENUS	SPECIES	SITE	SPEC
Polar Acarospora Acarospora chlorophana ^{11,3,3,3,8,4} northern Victoria Land, Antarctica, 2-Harrow Peaks, Victoria Land Ia Polar Acarospora Acarospora chlorophana ¹² Football Saddle, northern Victoria Land, (Antarctica) 1c Polar Acarospora Acarospora chlorophana ¹² Victoria Land, (Antarctica) 1c Polar Acarospora Acarospora sp. ³⁹ martitue Antarctic. 2a Polar Buellia Buellia sp. ⁵⁰ Mars Oasis on Alexander Island. 3 Polar Caloplaca Caloplaca sublobulata ^{13,14} I-Signy L, 2- Leonie Island in Marguerite Bay, off the Antarctic Peninsula. 4 Polar Caloplaca Caloplaca sublobulata ^{13,14} I-Crater Cirque, Victoria 5a Polar Candelaria Candelaria sp. ¹⁴ Victoria Land. 7 Polar Lecidea Lecidea siatrapha ¹⁴ Signy I. 8 Polar Lepraria g, ¹⁴ Signy I. 9 9 Polar Ubnea Ubnea antarctica ¹⁴ Signy I. 11 Polar Lecidea Lecidea siatrapha ¹⁴				1-Football Saddle,	
PolarAcarosporaAcarospora chlorophana ^{15,000,000} Victoria Land, Antarctica, IandPolarAcarosporaAcarospora chlorophana ¹² Football Saddle, northern Victoria Land.IbPolarAcarosporaAcarospora chlorophana ¹² Victoria Land, Antarctic, Ia aratine Antarctic.IcPolarAcarosporaAcarospora sp. ¹⁹ Signy Island in the maritime Antarctic.IcPolarBuelliaBuellia sp. ⁵⁰ Mars Oasis on Alexander Island.I-Signy I; 2-Leonie Island.I-Signy I; 2-Leonie Island.PolarCaloplacaCaloplaca saxicola ^{14,48,51} I-Crater Cirque, Victoria Land.SaPolarCandelarialCandelaria sp. ¹⁴ Victoria Land.6PolarCandelarialCandelaria sp. ¹⁴ Victoria Land.7PolarCandelariellaCandelaria sp. ¹⁴ Victoria Land.7PolarLeprariaLepraria sp. ¹⁴ Victoria Land.10PolarRhicocarponRhicocarpon geographicum ¹⁴ Victoria Land.10PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.11PolarXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctic.13PolarXanthoriaXanthoria mavsonit ⁸² Harrow Peaks, Victoria Land, Antarctic.144PolarXanthoriaXanthoria mavsonit ⁸² Harrow Peaks, Victoria Land, Antarctic.13PolarXanthoriaXanthoria mavsonit ⁸² Harrow Peaks, Victoria Land, Antarctic.144 <td></td> <td></td> <td>14 20 43 48</td> <td>northern</td> <td>_</td>			14 20 43 48	northern	_
PolarLand.PolarLand.IbPolarAcarosporaAcarospora chlorophana ³² Football Saddle, nothern Victoria Land.1bPolarAcarosporaAcarospora sp. ³⁹ Signy Island in the maritime Antaretic.2aPolarBuelliaBuellia sp. ⁵⁰ Island.1:PolarBuelliaBuellia sp. ⁵⁰ Island.3PolarCaloplacaCaloplaca sublobulata ^{13,14} Island in Marguerite Bay, off the Antaretic4PolarCaloplacaCaloplaca saxicola ^{14,48,51} I-Crater Crape, Victoria Land.5aPolarCaloplacaCaloplaca saxicola ^{14,48,51} I-Crater Crape, Victoria Land.6PolarCandelariaCandelariella sp. ¹⁴ Victoria Land.7PolarLeprariaLepraria sp. ¹⁴ Victoria Land.7PolarLepraria sp. ¹⁴ Victoria Land.10PolarUmbilicaria on starcetica ¹⁴ Signy I.9PolarUmbilicaria antarctica ¹⁴ Signy I.12PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.11PolarVanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans ^{13,14,52} Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria anaxonit ⁴³ Rothera, Graham Land, 14bPolarXanthoriaXanthoria anaxonit ⁴³ Rothera, Graham Land, 14bPolarXanthoriaCalop	Polar	Acarospora	Acarospora chlorophana ^{14,20,43,46,}	Victoria Land, Antarctica;	la
PolarAcarosporaAcarospora chlorophana ³² Football Saddle, northern Victoria Land, enothern Victoria Land (Antarctica)IbPolarAcarosporaAcarospora chlorophana ³ Victoria Land (Antarctica)IcPolarAcarosporaAcarospora sp. ³⁹ Mars Oasis on Alexander Island.Island.3PolarBuelliaBuellia sp. ⁵⁰ Mars Oasis on Alexander Island.Island.3PolarCaloplacaCaloplaca sublobulata ^{13,14} I-Signy I; 2- Leonie Island.Island.4PolarCaloplacaCaloplaca succola ^{15,48,51} I-Crater Cirque, Victoria Land.5aPolarCandelariaCandelaria sp. ¹⁴ Victoria Land.6PolarCandelarialLeorater as sp. ¹⁴ Victoria Land.7PolarLeoraterLeorate as catarapha ¹⁴ Signy I.8PolarLeorataLeorata gp. ¹⁴ Victoria Land.10PolarLeorataUmbilicaria antarctica ¹⁴ Signy I.11PolarUsneaUsnea antarctica ¹⁴ Signy I.12PolarVanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, 2-Leonie Island in Marguerite Bay, off the Antarctic.13PolarXanthoriaXanthoria alegans ⁵² Harrow Peaks, Victoria Land, Antarctica.13PolarXanthoriaXanthoria alegans ⁵² Harrow Peaks, Victoria Land, Antarctica.14PolarXanthoriaKanthoria mavsonil ⁴ Rothera, Graham Land.14bOceanic<				2- Harrow Peaks, Victoria	
PolarAcarosporaAcarospora chlorophana ²² Coolan Isada, andIbPolarAcarosporaAcarospora chlorophana ³ Victoria Land, andIcPolarAcarosporaAcarospora sp. ⁴⁹ Signy Island in the maritime Antarctic.2aPolarBuelliaBuellia sp. ⁵⁰ Mars Oasis on Alexander Island.3PolarCaloplacaCaloplaca sublobulata ^{13,14} I-Signy I: 2 - Leonie Island.Island.PolarCaloplacaCaloplaca saxicola ^{14,86,51} I-Crater Cirque, Victoria Land.5aPolarCandelariaCandelaria sp. ¹⁴ Victoria Land.6PolarCandelariaCandelaria sp. ¹⁴ Victoria Land.7PolarCandelariaLecidea scaticola ^{14,86,51} I-Crater Cirque, Victoria Land.8PolarCandelariaLecidea scatarapha ¹⁴ Signy I.8PolarLepraria sp. ¹⁴ Victoria Land.10PolarLepraria sp. ¹⁴ Signy I.11PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.11PolarUsneaUsnea antarctica ¹⁴ Signy I.12PolarVanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit ⁵² Harrow Peaks,				Eallo. Ealthall Saddle, northern	
PolarAcarosporaAcarospora chlorophana ³ Victoria Land (Antarctica)1 cPolarAcarosporaAcarospora sp. ⁹ Signy Island in the maritime Antarctic.2aPolarBuelliaBuellia sp. ⁵⁰ Mars Oasis on Alexander Island.3PolarCaloplacaCaloplaca sublobulata ^{13,14} I-Signy I, 2- Leonie Island in Marguerite Bay, 	Polar	Acarospora	Acarospora chlorophana ³²	Victoria Land	1b
PolarAcarosporaAcarospora sp. ⁴⁹ Signy Island in the maritime Antarctic. Mars Oasis on Alexander Island.2aPolarBuelliaBuellia sp. ⁵⁰ Mars Oasis on Alexander Island.3PolarCaloplacaCaloplaca sublobulata11.5Signy I; 2. Leonie Island in Marguerite Bay, off the Antarctic Peninsula.4PolarCaloplacaCaloplaca saxicola148,511-Cratter Cirque, Victoria Land.5aPolarCandelariaCandelaria sp. ¹⁴ Victoria Land.6PolarCandelariellaCandelariella sp. ¹⁴ Victoria Land.7PolarLegrariaLegraria sp. ¹⁴ Victoria Land.7PolarLegrariaLegraria sp. ¹⁴ Victoria Land.10PolarLegrariaUmbilicaria antarctica ¹⁴ Signy I.9PolarUsneaUmbilicaria antarctica ¹⁴ Signy I.11PolarUsneaUmbilicaria antarctica ¹⁴ Signy I.11PolarVanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans ^{13,1432} In-Harrow Peaks, Victoria Land, Antarctica.13bPolarXanthoriaXanthoria anosonit ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit ⁵² Tañabueyes (Spain).15OceanicCaloplacaCalop	Polar	Acarospora	Acarospora chlorophana ³	Victoria Land (Antarctica)	1c
	Dolar	laguagnaug	Acarospora sp ⁴⁹	Signy Island in the	2.0
PolarBuelliaBuellia sp.30Mars Oasis on Alexander Island.3PolarCaloplacaCaloplaca sublobulata 13,141-Signy I; 2- Leonie Island in Marguerite Bay, off the Antarctic Peninsula.4PolarCaloplacaCaloplaca saxicola 14,85,511-Crater Cirque, Victoria Land.5aPolarCandelariaCandelaria sp.14Victoria Land.6PolarCandelarialCandelaria sp.14Victoria Land.7PolarLeprariaLepraria sp.14Signy I.8PolarLeprariaLepraria sp.14Signy I.9PolarLeprariaUrbiblicaria antarctica 14Signy I.10PolarUmbilicariaUmbilicaria antarctica 14Signy I.11PolarUsneaUsnea antarctica 14Signy I.112PolarVictoriaXanthoriaXanthoria elegans 52Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria nawsonii 52Harrow Peaks, Victoria Land, Antarctica.13bPolarXanthoriaXanthoria mawsonii 52Harrow Peaks, Victoria Land, Antarctica.144PolarXanthoriaXanthoria mawsonii 14Rothera, Graham Land.14bOceanicCaloplacaCaloplaca carcea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca aciclora 12Vizcainos (Spain).16OceanicCaloplacaCaloplaca axicola 12Oilmos (Spain).56OceanicCaloplacaCaloplaca axicola 1	1 0141	Асигозроги	Acurosporu sp.	maritime Antarctic.	2a
PolarCaloplacaCaloplaca sublobulata1-Signy I; 2- Leonie Island in Marguerite Bay, off the Antarctic Peninsula.4PolarCaloplacaCaloplaca saxicola1-Crater Cirque, Victoria Land.5aPolarCandelariaCandelaria sp.14Victoria Land.6PolarCandelariellaCandelaria sp.14Victoria Land.7PolarLecideaLecidea sciatrapha14Signy I.9PolarLeprariaLepraria sp.14Victoria Land.10PolarLepraria p.14Victoria Land.10PolarLepraria sp.14Signy I.9PolarUmbilicariaUmbilicaria antarctica14Signy I.11PolarUsneaUsnea antarctica14Signy I.112PolarUsneaUsnea antarctica14Signy I.12PolarVanthoriaXanthoria elegans52Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria aegans 13, 14,32Marguerite Bay, 0f the Antarctic Peninsula, 3- Mc-Murdo Valley (Victoria Land).14aPolarXanthoriaXanthoria mawsoni152Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaAspicilia calcarea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca aecipres12Tañabueyes (Spain).17OceanicCaloplacaCaloplaca aecipres12Tañabueyes (Spain).17 <t< td=""><td>Polar</td><td>Buellia</td><td>Buellia sp.⁵⁰</td><td>Mars Oasis on Alexander</td><td>3</td></t<>	Polar	Buellia	Buellia sp. ⁵⁰	Mars Oasis on Alexander	3
PolarCaloplacaCaloplaca sublobulata 13,14 $^{1-51}_{81}$ grup 1, 2-1000 e Island in Marguerite Bay, off the Antarctic Peninsula.4PolarCaloplacaCaloplaca saxicola $^{14,85,51}_{14,85,51}$ 1-Crater Cirque, Victoria Land.5aPolarCandelariaCandelariella p.14Victoria Land.6PolarCandelariellaCandelariella p.14Victoria Land.7PolarLecideaLecidea sciatrapha ¹⁴ Signy I.8PolarLeprariaLepraria ap.14Victoria Land10PolarRhizocarponRhizocarpon geographicum ¹⁴ Victoria Land10PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.11PolarUsneaUsnea antarctica ¹⁴ Signy I.12PolarXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, 2-Leonie Island in Marguerite Bay, off the Antarctice Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonit ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit ⁵² Tañabueyes (Spain).15OceanicCaloplacaCaloplaca eleipiens ¹² Vizcainos (Spain).16OceanicCaloplacaCaloplaca accolorara ¹² Vizcainos (Spain).17OceanicCaloplacaCaloplaca axicola ¹² Villamoron (Spain).5cOceanicCaloplacaCaloplaca saxicola ¹² Olmos de Picaza (Spain).17Oceanic			1	Island.	
PolarCaloplacaCaloplaca sublobulataoff the Antarctic Peninsula.4PolarCaloplacaCaloplaca saxicola 14,88,51I-Cretter Cirque, Victoria Land.5aPolarCandelariaCandelaria sp. 14Victoria Land.7PolarCandelariellaCandelariella sp. 14Victoria Land.7PolarLeprariaLepraria sp. 14Signy I.8PolarLeprariaLepraria pp. 14Signy I.9PolarRhizocarponRhizocarpon geographicum14Victoria Land10PolarUmbilicariaUmbilicaria antarctica14Signy I.11PolarUsneaUsnea antarctica14Signy I.12PolarVanthoriaXanthoria elegans52Land, Antarctica.13aPolarXanthoriaXanthoria elegans 13, 14,32Marguerite Bay, 0f the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonit52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit4Rothera, Graham Land.14bOceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca axicola13Olmos de Picaza (Spain).5bOceanicCaloplacaCaloplaca axicola13Olmos de Picaza (Spain).5cOceanicCaloplacaCaloplaca axicola13Olmos de Picaza (Spain	D 1		<i>C L L L L L L</i> 13 14	Island in Marguerite Bay,	4
PolarCaloplacaCaloplaca saxicola 14,48,51 I-Crater Cirque, Victoria Land.PolarCandelariaCandelaria sp. 14 Victoria Land.6PolarCandelariellaCandelariella sp. 14 Victoria Land.7PolarLecideaLecidea sciatrapha 14 Signy I.9PolarLeprariaLepraria sp. 14 Signy I.9PolarRhizocarponRhizocarpon geographicum 14 Victoria Land.10PolarUbbilicariaUbbilicaria antarctica 14 Signy I.11PolarUsneaUsnea antarctica 14 Signy I.12PolarVineaUsnea antarctica 14 Signy I.11PolarXanthoriaXanthoria elegans 52 Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans 13,14,32 Mc-Murdo Valley (Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 52 Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 52 Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 52 Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 52 Vizcainos (Spain).16OceanicCaloplacaCaloplaca holocarpa 12 Vizcainos (Spain).17OceanicCaloplacaCaloplaca holocarpa 12 Vizcainos (Spain).16Oceanic <t< td=""><td>Polar</td><td>Caloplaca</td><td>Calopiaca subiobulata</td><td>off the Antarctic</td><td>4</td></t<>	Polar	Caloplaca	Calopiaca subiobulata	off the Antarctic	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Peninsula.	
PolarCandelariaCandelaria sp.14Victoria Land.6PolarCandelariellaCandelaria sp.14Victoria Land.7PolarLecideaLecidea sciatrapha ¹⁴ Signy I.8PolarLeprariaLepraria sp.14Signy I.9PolarRhizocarponRhizocarpon geographicum ¹⁴ Victoria Land10PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.11PolarUsneaUsnea antarctica ¹⁴ Signy I.12PolarVisneaUsnea antarctica ¹⁴ Signy I.12PolarXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans ^{13,14,32} Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii ⁴¹ Rothera, Graham Land.14bOceanicCaloplacaCaloplaca alolocarpa ¹² Vizcainos (Spain).15OceanicCaloplacaCaloplaca ascicola ¹² Vizcainos (Spain).17OceanicCaloplacaCaloplaca ascicola ¹² Vizcainos (Spain).18OceanicCaloplacaCaloplaca ascicola ¹² Vizcainos (Spain).5bOceanicCaloplacaCaloplaca ascicola ¹² Tanabueyes (Spain).5cOceanicCaloplacaCaloplaca ascicola ¹² New Zealand.20 <td>Polar</td> <td>Caloplaca</td> <td>Caloplaca saxicola ^{14,48,51}</td> <td>1-Crater Cirque, Victoria</td> <td>5a</td>	Polar	Caloplaca	Caloplaca saxicola ^{14,48,51}	1-Crater Cirque, Victoria	5a
PolarCandelarial CandelariellaCandelarial sp.Victoria Land.6PolarCandelariellaCandelariella p_1^{14} Victoria Land.7PolarLecideaLecidea sciatrapha ¹⁴ Signy I.9PolarLeprariaLepraria sp.14Signy I.9PolarRhizocarponRhizocarpon geographicum ¹⁴ Victoria Land10PolarUsneaUsnea antarctica ¹⁴ Signy I.11PolarUsneaUsnea antarctica ¹⁴ Signy I.12PolarXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctic Bay, off the Antarctic Penisula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii ⁵² Vizeainos (Spain).15OceanicCaloplacaCaloplaca decipiens ¹² Vizeainos (Spain).17OceanicCaloplacaCaloplaca asxicola ¹² Vizeainos (Spain).16OceanicCaloplacaCaloplaca saxicola ¹² Vilamoron (Spain).5cOceanicCaloplacaCaloplaca saxicola ¹² Vilamoron (Spain).5cOceanicCaloplacaCaloplaca saxicola ¹² Vilamoron (Spain).5cOceanicCaloplacaCaloplaca saxicola ¹² Tanabueyes (Spain).19OceanicCalopl	Dalan	Cau delania	Can delaria an ¹⁴	Land.	6
PolarCanadarieria de Canadarieria sp.Victoria Land.7PolarLecideaLecidea sciatrapha ¹⁴ Signy I.8PolarLeprariaLepraria sp. 14Signy I.9PolarRhizocarponRhizocarpon geographicum ¹⁴ Victoria Land10PolarUmbilicariaUmbilicaria antarctica ¹⁴ Signy I.11PolarUsneaUsnea antarctica ¹⁴ Signy I.12PolarXanthoriaXanthoria elegans ⁵² Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans ¹³ , 14,32I-Harrow Peaks, Victoria Land, 2-Lonie Island in Marguerite Bay, off the Antarctic Peninsula, 3-Mc-Murod Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii ⁵² Harrow Peaks, Victoria Land, 14b14aPolarXanthoriaXanthoria mawsonii ⁵² Harrow Peaks, Victoria Land, 14b14aPolarXanthoriaXanthoria mawsonii ⁵² Harrow Peaks, Victoria Land, 14b15OceanicAspicilia calcarea ¹² Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa ¹² Vizcainos (Spain).17OceanicCaloplacaCaloplaca acticholyta ¹² Vialamoron (Spain).16OceanicCaloplacaCaloplaca axicola ¹² Villamoron (Spain).5bOceanicCaloplacaCaloplaca axicola ¹² Villamoron (Spain).5cOceanicCaloplacaCaloplaca axicola ¹² New Zealand.20OceanicDiplociaDiploicia c	Polar	Candelarialla	Candelarial sp.	Victoria Land.	0
TotalLectudaLectuda StaluphaSigny 1.6PolarLeprariaLepraria sp. 14Signy 1.9PolarRhizocarponRhizocarpon geographicum14Victoria Land10PolarUmbilicariaUmbilicaria antarctica14Signy I.11PolarUsneaUsnea antarctica14Signy I.12PolarXanthoriaXanthoria elegans52Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans13,14,321-Harrow Peaks, Victoria Land, Antarctica.13bPolarXanthoriaXanthoria elegans13,14,321-Harrow Peaks, Victoria Land, Antarctica.13bPolarXanthoriaXanthoria nawsonii52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii14Rothera, Graham Land.14bOceanicAspicilia alcarea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca asxicola12Vilaramillo de a Fuente (UK)18OceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).5bOceanicCaloplacaCaloplaca saxicola12Tanabueyes (Spain).19OceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).5cOceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).22OceanicDiploiciaDiploicia canescers4Frocester, Gloucester 	Polar	Lagidag	Lagidag sejatrapha ¹⁴	Victoria Land.	/
Polar <i>LeprariaLepraria</i> 39.Signy 1.9Polar <i>RhizocarponRhizocarpon geographicum</i> ¹⁴ Victoria Land10Polar <i>UmbilicariaUmbilicaria</i> antarctica ¹⁴ Signy I.11Polar <i>UsneaUsnea</i> antarctica ¹⁴ Signy I.12Polar <i>XanthoriaXanthoria elegans</i> ⁵² Harrow Peaks, Victoria Land, Antarctica.13aPolar <i>XanthoriaXanthoria elegans</i> ⁵² Harrow Peaks, Victoria Land, Antarctica.13bPolar <i>XanthoriaXanthoria elegans</i> ^{13, 1432} Marguerite Bay, off the Antarctice Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolar <i>XanthoriaXanthoria mawsonii</i> ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolar <i>XanthoriaXanthoria mawsonii</i> ⁵² Harrow Peaks, Victoria Land, Antarctica.14aPolar <i>XanthoriaXanthoria mawsonii</i> ⁵² Harrow Peaks, Victoria Land, Antarctica.14aOceanic <i>AspiciliaAspicilia calcarea</i> ¹² Vizcainos (Spain).15Oceanic <i>CaloplacaCaloplaca holocarpa</i> ¹² Vizcainos (Spain).17Oceanic <i>CaloplacaCaloplaca saxicola</i> ¹² Villamoron (Spain).18Oceanic <i>CaloplacaCaloplaca saxicola</i> ¹² Villamoron (Spain).5cOceanic <i>CaloplacaCaloplaca saxicola</i> ¹² Villamoron (Spain).5cOceanic <i>CaloplacaChroodiscus megalophthalmus</i> ³³ New Zealand.20Oceanic <td>Polar</td> <td>Leciaea</td> <td>Lectured sciatrupha</td> <td>Signy I</td> <td>8</td>	Polar	Leciaea	Lectured sciatrupha	Signy I	8
PolarUmbilicariaUmbilicaria antarctica14Signy I.11PolarUsneaUsnea antarctica14Signy I.12PolarUsneaUsnea antarctica14Signy I.12PolarXanthoriaXanthoria elegans52Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans52Harrow Peaks, Victoria Land, 2-Leonic Island in Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii44Rothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).50OceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).19OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploiciaDiploicia canescens54Sahagún (Spain)22OceanicDirinaDirina massiliensis forma 	Polar	Lepraria Phizoagrapon	Phizocarpon accorphicum ¹⁴	Sigily I. Vietoria Land	9
PolarUsneaUsnea antarctica14Signy I.11PolarXanthoriaUsnea antarctica14Signy I.12PolarXanthoriaXanthoria elegans52Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans13, 14,32Harrow Peaks, Victoria Land; 2-Leonie Island in Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii52Harrow Peaks, Victoria 	Polar	Imbilicaria	Umbiliagria antarotiag ¹⁴	Signy I	10
PolarUshedOshed undrefiedSingy I.12PolarXanthoriaXanthoria elegans 5^2 Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans 5^2 Harrow Peaks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans $1^{3, 14, 32}$ I-Harrow Peaks, Victoria Land, 2-Leonie Island in Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsoniiHarrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsoniiRothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea 1^2 Vizcainos (Spain).15OceanicCaloplacaCaloplaca decipiens 1^2 Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta 1^2 Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca axicola 1^2 Vilamoron (Spain).5bOceanicCaloplacaCaloplaca axicola 1^2 Vilamoron (Spain).19OceanicCaloplacaChroodiscus megalophthalmus 3^3 New Zealand.20OceanicDiploiciaDiploicia canescens 5^4 Frocester, Gloucester (UK)21OceanicDiploschistesDiplochistes scruposus 5^5 Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata 4^2 Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma <td>Polar</td> <td>Unnon</td> <td>Using antarctica¹⁴</td> <td>Signy I</td> <td>11</td>	Polar	Unnon	Using antarctica ¹⁴	Signy I	11
PolarXanthoriaXanthoria elegans^{52}Harlow Acks, Victoria Land, Antarctica.13aPolarXanthoriaXanthoria elegans 13,14,32 1-Harrow Peaks, Victoria Land, 2-Leonie Island in Marguerite Bay, off the 	rolai	Osneu		Harrow Peaks Victoria	12
PolarXanthoriaXanthoria elegans 13, 14, 321-Harrow Peaks, Victoria Land; 2-Leonie Island in Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii 52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 14Rothera, Graham Land.14bOceanicAspicilia calcarea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens 12Tañabueyes (Spain).17OceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).5cOceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).19OceanicCaloplacaChroodiscus megalophthalmus ⁵³ New Zealand.20OceanicDiploiciaDiploicia canescens ⁵⁴ Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus ⁵⁵ Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata42Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Connwall and Norfolk (UK)23b	Polar	Xanthoria	Xanthoria elegans ⁵²	Land, Antarctica.	13a
PolarXanthoriaXanthoria elegans 13, 14, 32Land; 2-Leonie Island in Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii 52Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 44Rothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa 12Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens 12Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta 12Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola 12Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola 12Olmos de Picaza (Spain).19OceanicCandelariellaCandelariella medians 12Tanabueyes (Spain).19OceanicDiploiciaDiploicia canescens 34Frocester, Gloucester (UK)21OceanicDiploiciaDiploichistes scruposus 55Sahagún (Spain)22OceanicDirina massiliensis forma sorediata 44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata 44Laulivery, Cornwall and Norfolk (UK)23b				1-Harrow Peaks, Victoria	
PolarXanthoriaXanthoria elegans $^{13, 14, 32}$ Marguerite Bay, off the Antarctic Peninsula; 3- Mc-Murdo Valley (Victoria Land).13bPolarXanthoriaXanthoria mawsonii 52 Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii 14 Rothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea 12 Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa 12 Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens 12 Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta 12 Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola 12 Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola 12 Olmos de Picaza (Spain).19OceanicCandelariellaCandelariella medians 12 Tanabueyes (Spain).19OceanicDiploiciaDiploicia canescens 84 Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus 55 Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata 42 Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata 42 Laulivery, Cornwall and Norfolk (UK)23b				Land; 2-Leonie Island in	
PolarXanthoriaXanthoria mawsoniiMc-Murdo Valley (Victoria Land).PolarXanthoriaXanthoria mawsoniiHarrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsoniiRothera, Graham Land.14bOceanicAspiciliaAspicilia calcareaVizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpaVizcainos (Spain).16OceanicCaloplacaCaloplaca decipiensJaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicolaVillamoron (Spain).5bOceanicCaloplacaCaloplaca saxicolaVillamoron (Spain).5cOceanicCaloplacaCaloplaca saxicolaOmos de Picaza (Spain).19OceanicChroodiscusChroodiscus megalophthalmusNew Zealand.20OceanicDiploiciaDiploicia canescensFrocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposusSahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediataLaulivery, Cornwall and Norfolk (UK)23b	Polar	Xanthoria	<i>Xanthoria elegans</i> ^{13, 14,32}	Marguerite Bay, off the	13b
PolarXanthoriaXanthoria mawsonii(Victoria Land).PolarXanthoriaXanthoria mawsoniiHarrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsoniiRothera, Graham Land.14bOceanicAspiciliaAspicilia calcareaVizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpaVizcainos (Spain).16OceanicCaloplacaCaloplaca decipiensJaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicolaVillamoron (Spain).5bOceanicCaloplacaCaloplaca saxicolaOlmos de Picaza (Spain).19OceanicCandelariellaCandelariella mediansCalop20OceanicChroodiscusChroodiscus megalophthalmusNew Zealand.20OceanicDiploiciaDiploicia canescensFrocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposusSahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediataLaulivery, Cornwall and Norfolk (UK)23b				Antarctic Peninsula; 3-	
PolarXanthoriaXanthoria mawsonii^{52}Harrow Peaks, Victoria Land, Antarctica.14aPolarXanthoriaXanthoria mawsonii^{14}Rothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea ¹² Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa ¹² Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens ¹² Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta ¹² Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola ¹² Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola ¹² Villamoron (Spain).5cOceanicCaloplacaCaloplaca saxicola ¹² Villamoron (Spain).19OceanicCandelariellaCandelariella medians ¹² Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus ⁵³ New Zealand.20OceanicDiploiciaDiploicia canescens ⁵⁴ Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus ⁵⁵ Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata ⁴⁴ Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata ⁴² Laulivery, Cornwall and Norfolk (UK)23b				(Victoria Land)	
PolarXanthoriaXanthoria mawsonit ² Land, Antarctica.14aPolarXanthoriaXanthoria mawsonit ¹⁴ Rothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea ¹² Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa ¹² Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens ¹² Tañabueyes (Spain).17OceanicCaloplacaCaloplaca decipiens ¹² Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola ¹² Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola ¹² Olmos de Picaza (Spain).5cOceanicCaloplacaCaloplaca saxicola ¹² Olmos de Picaza (Spain).19OceanicCandelariellaCandelariella medians ¹² Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus ⁵³ New Zealand.20OceanicDiploiciaDiploicia canescens ⁵⁴ Frocester, Gloucester (UK)21OceanicDirinaDirina massiliensis forma sorediata ⁴⁴ Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata ⁴² Laulivery, Cornwall and Norfolk (UK)23b	D 1			Harrow Peaks, Victoria	
PolarXanthoriaXanthoria mawsonii14Rothera, Graham Land.14bOceanicAspiciliaAspicilia calcarea 12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens12Tañabueyes (Spain).17OceanicCaloplacaCaloplaca decipiens12Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta12Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).19OceanicCandelariellaCandelariella medians12Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus53New Zealand.20OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata42Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23b	Polar	Xanthoria	Xanthoria mawsonii ²²	Land, Antarctica.	14a
OceanicAspiciliaAspicilia calcarea12Vizcainos (Spain).15OceanicCaloplacaCaloplaca holocarpaVizcainos (Spain).16OceanicCaloplacaCaloplaca decipiensTañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholytaJaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicolaVillamoron (Spain).5bOceanicCaloplacaCaloplaca saxicolaVillamoron (Spain).5bOceanicCaloplacaCaloplaca saxicolaOlmos de Picaza (Spain).5cOceanicCandelariellaCandelariella mediansTanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmusNew Zealand.20OceanicDiploiciaDiploicia canescensFrocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposusSiSahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediataLincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediataLaulivery, Cornwall and Norfolk (UK)23b	Polar	Xanthoria	Xanthoria mawsonii ¹⁴	Rothera, Graham Land.	14b
OceanicCaloplacaCaloplaca holocarpa12Vizcainos (Spain).16OceanicCaloplacaCaloplaca decipiens12Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta12Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola12Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).5cOceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).19OceanicCandelariellaCandelariella medians12Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus53New Zealand.20OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata42Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23b	Oceanic	Aspicilia	Aspicilia calcarea ¹²	Vizcainos (Spain).	15
OceanicCaloplacaCaloplaca decipiens^{12}Tañabueyes (Spain).17OceanicCaloplacaCaloplaca teicholyta^{12}Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola^{12}Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola^{12}Olmos de Picaza (Spain).5cOceanicCandelariellaCandelariella medians^{12}Tanabueyes (Spain).19OceanicCandelariellaCandelariella medians^{12}Tanabueyes (Spain).20OceanicChroodiscusChroodiscus megalophthalmus^{53}New Zealand.20OceanicDiploiciaDiploicia canescens^{54}Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus^{55}Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata^{44}Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata^{42}Laulivery, Cornwall and Norfolk (UK)23b	Oceanic	Caloplaca	Caloplaca holocarpa ¹²	Vizcainos (Spain).	16
OceanicCaloplacaCaloplaca teicholyta ¹² Jaramillo de la Fuente (Spain).18OceanicCaloplacaCaloplaca saxicola ¹² Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola ¹² Olmos de Picaza (Spain).5cOceanicCandelariellaCandelariella medians ¹² Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus ⁵³ New Zealand.20OceanicDiploiciaDiploicia canescens ⁵⁴ Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus ⁵⁵ Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata ⁴⁴ Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata ⁴² Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata ⁴² Cape Clear Island, Co.23c	Oceanic	Caloplaca	Caloplaca decipiens ¹²	Tañabueyes (Spain).	17
OceanicCaloplacaCaloplaca saxicola^{12}Villamoron (Spain).5bOceanicCaloplacaCaloplaca saxicola^{12}Olmos de Picaza (Spain).5cOceanicCandelariellaCandelariella medians^{12}Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus ⁵³ New Zealand.20OceanicDiploiciaDiploicia canescens ⁵⁴ Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus ⁵⁵ Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata ⁴⁴ Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata ⁴² Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata ⁴² Cape Clear Island, Co.23c	Oceanic	Caloplaca	Caloplaca teicholyta ¹²	Jaramillo de la Fuente (Spain).	18
OceanicCaloplacaCaloplaca saxicola12Olmos de Picaza (Spain).5cOceanicCandelariellaCandelariella medians12Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus53New Zealand.20OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata442Laulivery, Cornwall and 	Oceanic	Caloplaca	Caloplaca saxicola ¹²	Villamoron (Spain).	5b
OceanicCandelariellaCandelariella medians12Tanabueyes (Spain).19OceanicChroodiscusChroodiscus megalophthalmus33New Zealand.20OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata44Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23b	Oceanic	Caloplaca	Caloplaca saxicola ¹²	Olmos de Picaza (Spain).	5c
OceanicChroodiscusChroodiscus megalophthalmus53New Zealand.20OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata44Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata442Cape Clear Island, Co.23c	Oceanic	Candelariella	Candelariella medians ¹²	Tanabueyes (Spain).	19
OceanicDiploiciaDiploicia canescens54Frocester, Gloucester (UK)21OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata44Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata42Cape Clear Island, Co.23c	Oceanic	Chroodiscus	<i>Chroodiscus megalophthalmus</i> ⁵³	New Zealand.	20
OceanicDiploschistesDiploschistes scruposus55Sahagún (Spain)22OceanicDirinaDirina massiliensis forma sorediata44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata42Cape Clear Island, Co.23c	Oceanic	Diploicia	Diploicia canescens ⁵⁴	Frocester, Gloucester	21
OceanicDirinaDirina massiliensis forma sorediata44Lincolnshire (UK)23aOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis forma sorediata42Cape Clear Island, Co.23c	Oceanic	Diploschistes	Diploschistes scruposus ⁵⁵	Sahagún (Spain)	22
OceanicDirinasorediata44Enconstine (OK)23aOceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis formaCape Clear Island, Co.23c	Oceania	Divina	Dirina massiliensis forma	Lincolnshire (UV)	220
OceanicDirinaDirina massiliensis forma sorediata42Laulivery, Cornwall and Norfolk (UK)23bOceanicDirinaDirina massiliensis formaCape Clear Island, Co.23c	Oceanic	Dirinu	sorediata ⁴⁴		23a
OceanicDirinaDirina massiliensis formaCape Clear Island, Co.23c	Oceanic	Dirina	Dirina massiliensis forma sorediata ⁴²	Laulivery, Cornwall and Norfolk (UK)	23b
	Oceanic	Dirina	Dirina massiliensis forma	Cape Clear Island, Co.	23c

		sorediata ⁴²	Cork, S.W. (Ireland).	
Oceanic	Haematomma	Haematomma ochroleucum var. Porphyrium ⁵⁶	Goxhill Hall, Lincolnshire (UK).	24
Oceanic	Lecanora	Lecanora muralis ⁵⁷	Menithwood, Worcestershire (UK).	25
Oceanic	Lecidea	Lecidea fuscoatra ⁵⁸	Bastavales, La Coruña (Spain).	26
Oceanic	Ochrolechia	Ochrolechia parella ⁵⁹	San Lorenzo church (Santiago de Compostela, Spain).	27a
Oceanic	Ochrolechia	Ochrolechia parella ⁵⁹	Bridge of Merza (Pontevedra, Spain), Monastery of Toxosoutos (La Coruña, Spain), Os Anxeles church (La Coruña, Spain).	27b
Oceanic	Porpidia	Porpidia cinereoatra ⁵⁸	Bastavales, La Coruña (Spain).	28
Oceanic	Porpidia	Porpidia macrocarpa ⁵⁸	Bastavales, La Coruña (Spain).	29
Oceanic	Xanthoria	<i>Xanthoria parietina</i> ⁵²	Portpatrick, SW Scotland (UK).	30a
Oceanic	Xanthoria	Xanthoria parietina ¹²	Burgos (Spain).	30b
Oceanic	Xanthoria	Xanthoria parietina ⁶⁰	S.W. Scotland and west Yorkshire (UK).	31
Mediterra nean	Acarospora	Acarospora oxytona ⁵⁷	Sierra Nevada (Spain).	32a
Mediterra nean	Acarospora	Acarospora oxytona ²⁰	Picon (Spain).	32b
Mediterra nean	Aspicilia	Aspicilia calcarea ⁴³	Sicily and Egadi Islands (Italy).	33
Mediterra nean	Caloplaca	Caloplaca aurantia ⁵⁷	Southern Spain.	34
Mediterra nean	Dirina	Dirina massiliensis forma sorediata	Palazzo Farnese, Caprarola (Italy).	23d
Mediterra nean	Dirina	Dirina massiliensis forma sorediata	Palazzo Farnese, Caprarola (Central Italy); SS. Niccolo e Cataldo near Lecce (S.E. Italy);	23e
Mediterra nean	Dirina	Dirina massiliensis forma sorediata ⁴³	Sicily and Égadi Islands (Italy).	23f
Mediterra nean	Dirina	Dirina massiliensis f. massiliensis ⁴³	Tremiti Islands, San Nicola (Italy).	23g
Mediterra nean	Lecanora	Lecanora sulfurea ⁴³	Tremiti Islands, San Nicola (Italy).	35
Mediterra nean	Tephromela	Tephromela atra ⁴³	Monte Sicily, Égadi Islands (Italy).	36
Sub-desert	Diploschistes	Diploschistes diacapsis ^{1,34}	Tabernas Desert (SE, Spain).	37
Desert	Dirina	Dirina massiliensis forma sorediata	E. of Alexandria (Egypt).	23h
Sub-desert	Lepraria	Lepraria crassissima ^{1,34}	Tabernas Desert (SE, Spain).	38
Sub-desert	Squamarina	Squamarina lentigera ^{1,34}	Tabernas Desert (SE, Spain).	39
High mountain + desert	Acarospora	Acarospora sp. ³³	Atacama Desert (Chile)	2b

Page 25 of 35

Analytical Methods

High mountain + desert	Acarospora	Acarospora sp. orange-yellow ⁴	Atacama Desert (Chile)	40
High mountain + desert	Acarospora	Acarospora sp. Brown ⁴	Atacama Desert (Chile)	41
High mountain + desert	Acarospora	Acarospora cf. Schleichera ³⁹	Atacama Desert (Chile)	42a
High mountain + desert	Acarospora	Acarospora Schleichera greenish- yellow ⁴	Atacama Desert (Chile)	42b
High mountain + desert	Aspicilia	Aspicilia caesiocinerea agg ¹⁵	High Atlas Mountains near Oukaimeden, about 48 km south of Marrakech (Morrocco).	43
High mountain + desert	Candelariella	Candelariella genus orange-yellow ⁴	Atacama Desert (Chile).	44
High mountain + desert	Lecidea	Lecidea Tessellata Florke ⁶²	Utah, Colorado Plateau (USA).	45
High mountain + desert	Rhizocarpa	Rhizocarpa sp. White ⁴	Atacama Desert (Chile)	46
High mountain + desert	Rhizoplaca	Rhizoplaca sp. White ⁴	Atacama Desert (Chile)	47
High mountain + desert	Xanthopamundia	Xanthopamundia sp. White ⁴	Atacama Desert (Chile)	48
High mountain + desert	Xanthomendoza	Xanthomendoza mendozae ³²	Atacama Desert (Chile)	49a
High mountain + desert	Xanthomendoza	Xanthomendoza mendozae red ⁴	Atacama Desert (Chile)	49b
Tropical	Buslicia	Buslicia sp. ⁵	Kilauea, Hawaii (USA).	50
Tropical	Calenia	Calenia triseptata ⁶³	Tortuguero National Park (Costa Rica).	51
Tropical	Candelariela	Candelariela concolor ⁵	Kilauea, Hawaii (USA).	52
Tropical	Caloplaca	Caloplaca crosbyae ⁵	Kilauea, Hawaii (USA).	53
Tropical	Cladonia	Cladonia coniocraea'	Kilauea, Hawaii (USA).	54a
Tropical	Cryptothecia	Ciadonia coniocraea Cryptothecia rubrocincta ⁷	Cantareira, Sao Paulo (Brazil); Pinheiros, Santuario de Caraja, Minas Caraja (Brazil)	540
Tropical	Dirinaria	Dirinaria apgialita ⁵	Kilauea Hawaji (USA)	562
Tropical	Dirinaria	Dirinaria aegialita ⁵	Kilauea, Hawaii (USA)	56h
Tropical	Dirinaria	Dirinaria applanata ⁵	Kilauea, Hawaii (USA).	57a
Tropical Dirinaria		Dirinaria applanata ⁵	Kilauea, Hawaii (USA).	57b
Tropical Dirinaria		Dirinaria sp ⁵	Kilauea, Hawaii (USA).	58
Tropical	Echinoplaca	Echinoplaca strigulacea ⁶³	Monteverde Biological Reserve, (Costa Rica).	59
Tropical	Hyperphysia	Hyperphysia adglutinata ⁵	Kilauea, Hawaii (USA).	60
		-		

1
2
3
4
5
6
7
2 Q
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
12
ער 27
11
44
40
40
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Tropical	Parmotrema	Parmotrema tinctorum Del. Ex Nyl. ⁶⁴	Campus of the Federal University of Juiz de Fora, in Juiz de Fora city, Minas Gerais State (Brazil).	62
Tropical	Ramalina	Ramalina umbilicata ⁵	Kilauea, Hawaii.	63
Tropical	Tricharia	Tricharia carnea ⁶³	Near La Selva Biological Station (Costa Rica).	64
Tropical	Xanthoparmelia	Xanthoparmelia scabrosa ⁶⁵	Hong Kong (China).	65
Tropical	Xanthoparmendia	Xanthoparmendia sp ⁵ .	Kilauea, Hawaii (USA).	66

Fumarprotocetraric acid

C2 (Glycosidic linkage)

C5 (Metabolic product)

Gyrophoric acid

Pulvinic dilactone

Rhizocarpic acid

Pulvinic acid

Usnic acid

Parietin

Analytical Methods

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

Х

									I	POL	AR							
MIXTURE	1a	1b	1c	2a	3	4	5a	6	7	8	9	10	11	12	13a	13b	14a	14b
Weddellite	Х			Х	Х					Х		Х						
Whewellite	Х		Х	Х	Х			Х			Х	Х						
Calcium oxalate															Х		Х	
Carotene	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Chlorophyll																		
Cellulose															Х		Х	
Atranorin										Х	Х							
Calycin								Х	Х	Х								

X X X

XX

Х

Х

Х

Х

Х

Х

1 Table 2a Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on Polar climate.

Table 2b Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on Oceanic climate.

												OCEA	NIC										
MIXTURE	15	16	17	18	5b	5c	19	20	21	22	23a	23b	23c	24	25	26	27a	27b	28	29	30a	30b	31
Weddellite	Х		Х		Х		Х	Х	Х		Х	Х					Х		Х			Х	
Whewellite				Х		Х		Х		Х	Х			Х	Х			Х	Х				Х
Calcium oxalate																					Х		
Carotene	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Chlorophyll				Х	Х	Х				Х						Х	Х	Х	Х	Х			
Cellulose									Х			Х	Х	Х			Х	Х	Х		Х		Χ
Anthraquinone																							Χ
Aspicilin	Х																						
Atranorin				Х						Х													
Calycin							Х																
Diploschistesic acid										Х													
Emodin			Х	Х	Х	Х																	
Erythrin	Х											Х	Х										
Fragilin	Х																						
Gyrophoric acid				Х												Х							
Lecanoric acid										Х		Х	Х										
Parietin		Х	Х		Х	Х				Х											Х	Х	Х
Parietinic acid		Х	Х		Х	Х																	
Pulvinic acid anhydride							Х																
Rhizocarpic acid							Х																
Stictaurin							Х																
Stictic acid								Х															
Teloschistin			Χ		Χ	Х																	
C1 (Polyphenolic acid)									Х														
C2 (Glycosidic linkage)																					Х		
C3 (Unknown compound)																							Χ
C5 (Metabolic product)								Х						X									Х

Analytical Methods

Table 2c: Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on Mediterranean and Subdesert climates.

			1	MED	ITED	DAN	TAN				SI		- CEI	ЭТ
			1	VIED			LAN				50	JD-DI	SEL	
MIXTURE	32a	32b	33	34	23d	23e	23f	23g	35	36	37	23h	38	39
Weddellite	Х	Х		Х	Х	Х	Х	Х		Х		Х	Х	
Whewellite	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х
Calcium oxalate														
Carotene	Х	Х	Х		Х	Х					Х	Х	Х	Х
Chlorophyll											Х		Х	Х
Cellulose					Х	Х						Х		
Anthraquinone				Χ										
Calycin													Х	
Emodin											Х			
Erythrin					Х	Х						Х		
Fumarprotocetraric acid													Х	
Lecanoric acid					Х	Х					Х	Х		Х
Parietin				Х										Х
Rhizocarpic acid	Х	Х									Х			
Usnic acid											Х			Х
C3 (Unknown compound)	Χ													
C5 (Metabolic product)			Х	Х			Х	Х	Х	Х				

Analytical Methods Accepted Manuscript

				ł	HGH I	MOU	NTAI	N + D	ESEF	RT												T	ROPIC	CAL									
MIXTURE	2b	40	41	42a	42b	43	44	45	46	47	48	49a	49b	50	51	52	53	54a	54b	55	56a	56b	57a	57b	58	59	60	61	62	63	64	65	66
Weddellite			Х					Х												Х				Х	Х						í T		_
Whewellite				Х		Х		Х						Х	Х					Х		Х				Х				Х	Х		Х
Calcium oxalate																																	
Carotene	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Chlorophyll	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Cellulose																																Х	
Atranorin																			Х				Х		Х						i T		
Calycin	Х	Х					Х																								1		
Chiodectonic acid																				Х											i I		
Confluentic acid																				Х											i I		
Gyrophoric acid																					Х	Х	Х	Х									
Lecanoric acid																													Х		i I		
Parietin				Х								Х	Х				Х														i I		
Pulvinic dilactone	Х	Х					Х									Х															I I		
Rhizocarpic acid				Х	Х																										i I		
Usnic acid										Х	Х							Х										Х			i I		Х
C1 (Polyphenolic acid)						Х		Х																								Х	
C3(Unknown compound)					Х																												
C4 (Unknown compound)												Х																			i – – – – – – – – – – – – – – – – – – –		

Table 2d: Number of lichen specimens and biochemical compounds found by using Raman spectroscopy on High Montain+Desert and Tropical climates.

Analytical Methods Accepted Manuscript

Analytical Methods

- 1 TABLE 3: Lichen chemicals by specimens and climates. SPCMS: specimens; SPCS: species;
- 2 Ca OX.: calcium oxalate (unspecified hydration); WEDDE. OX. DIHYDRATE: Weddellite
- 3 (oxalate dihydrate); WHEWE. OX. MONOHYDRATE: Wewellite (oxalate monohydrate);
- 4 PIGMENTS: other pigments than carotene and chlorophyll.

Climate	Speci men	Cellulose	Wedde. Ox.	Whewe. Ox.	Ca Ox.	Carotene and/or	Pigments
Dolor	1.0		ainyarate V	mononydrate			1
18 snems	1a 1h		Λ	Λ		1	1
14 spcs	10 1c			X		1	2
-	10 2a		X	X		1	1
	3		X	X		1	0
	4					1	1
	5a					1	1
	6			Х		1	3
	7					1	2
	8		Х			1	3
	9			Х		1	2
	10		Х	Х		1	1
	11					1	1
	12					1	2
	13a	Х			Х	1	1
	13b					1	1
	14a	Х			Х	1	1
	14b					1	1
Oceanic	15		Х			1	3
23 spcms	16					1	2
18 spcs	17		Х			1	4
	18			Х		2	3
	5b		Х			2	4
	5c			Х		2	4
	19		Х			1	4
	20		Х	Х		0	1
	21	Х	Х			1	0
	22			X		2	4
	23a		Х	X		1	0
	23b	X	Х			1	2
	23c	<u>X</u>				1	2
	24	X		<u>X</u>		1	0
	25			X		1	0
	26					2	l
	27a	X	Х	37		2	0
	27b	X	37	X		2	0
	28	Х	Х	X		2	0
	29	37			37	2	0
	30a	Х			Х	I	1

Page	32	of	35

	-		-	-		
	30b		Х		1	1
	31	Х		Х	1	2
Mediterranean	32a		Х	Х	1	1
10 spcms	32b		X	Х	1	1
6 spcs	33			Х	1	0
	34		X	X	0	2
	23d	X	X	X	1	2
	23e	X	X		1	2
	23¢	1	X	Y	0	0
	231 23g		X	X V	0	0
	25g		Λ		0	0
	26		v		0	0
C11	30		Λ	A V	0	0
Subdesert 4 snoms	3/	37	37	Λ	2	4
4 spenis 4 spes	23h	Х	X		1	2
- spes	38		X	X	2	2
	39			Х	2	3
High	2b				2	2
mount+desert	40				2	2
13 spcms	41		Х		2	0
11 spcs	42a			Х	1	2
	42b				2	1
	43			Х	2	0
	44				2	2
	45		Х	Х	2	0
	46				2	0
	47				2	1
	48				2	1
	49a				1	1
	49h				2	1
Tropical	50			Y	2	0
20 spcms	51			X	2	0
17 spcs	52				2	1
	53				2	1
	54a				2	1
	54b				2	1
	55		Х	Х	2	2
	56a				2	1
	56b			Х	2	1
	57a				2	2
	57b		X		2	1
	58		Х	37	2	1
	59			X	2	0
	60				2	<u> </u>
-	62				<u> </u>	<u> </u>
	63			V	1	1
	64				2	0
	65			<u> </u>	2	0
	66			X	2	1
			11		-	32

Analytical Methods

TABLE 4: : Number of times each pigment was found under different climates, by using Raman spectroscopy and total percentage of each p	oigment
found in the total specimen number.	

Compound	Polar	Oceanic	Mediter.	Subdesert	High mount +desert	Tropical	Total	% total pigments
Anthraquinone		1	1				2	1.75
Aspicilin		1					1	0.88
Atranorin	2	2				3	7	6.14
Calycin	3	1		1	3		8	7.02
Chiodectonic acid						1	1	0.88
Confluentic acid						1	1	0.88
Diploschistesic acid		1					1	0.88
Emodin		5		1			6	5.26
Erythrin		3	2	1			6	5.26
Fragilin		2					2	1.75
Fumarprotocetraric acid	2	1		1			4	3.51
Gyrophoric acid	2	2				4	8	7.02
Lecanoric acid		3	2	3		1	9	7.89
Parietin	7	8	1	1	3	1	21	18.42
Parietinic acid		4					4	3.51
Pulvinic acid	1						1	0.88
Pulvinic acid anhydride		1					1	0.88
Pulvinic dilactone	2				3	1	6	5.26
Rhizocarpic acid	5	1	2	1	2		11	9.65
Stictaurin		1					1	0.88
Stictic acid		1					1	0.88
Teloschistin		4					4	3.51
Usnic acid	1			2	2	3	8	7.02
TOTAL PIGMENTS	25	42	8	11	13	15	114	100.01

Analytical Methods Accepted Manuscript

Representation by pie-chart of: a) Percentage of lichen specimens with and/or without oxalates; b) Type of oxalates found in different world climate regions. The world climate regions considered in this study are: Polar (18 specimens [spcms]), Oceanic (23 spcms), Mediterranean (10 spcms), Subdesert (4 spcms), Highmount/desert (13 spcms) and Tropical (20 spcms). Climate Map zones of the world: Original uploader was Waitak at en.wikipedia Later version(s) were uploaded by Splette at en.wikipedia. - Transferred from en.wikipedia; transfered to Commons by User:Legoktm using CommonsHelper.

Representation by pie-chart of pigments occurrence: number of pigments in each region (without carotenoids and chlorophyll). The world climate regions considered in this study are: Polar (18 speciments [spcms]), Oceanic (23 spcms), Mediterranean (10 spcms), Subdesert (4 spcms), High-mount/desert (13 spcms) and Tropical (20 spcms).

Climate Map zones of the world: Original uploader was Waitak at en.wikipedia Later version(s) were uploaded by Splette at en.wikipedia. - Transferred from en.wikipedia; transfered to Commons by User:Legoktm using CommonsHelper.