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Coding method for study of intrinsic mechanism of 
spectral analysis 

Mei Zhou, a Qingli Li,*a Gang Lib and Ling Linb  

In view of many factors that influence the in-situ real-time spectral measurements, various 
correction and modeling methods have been applied on spectral analysis. However, the 
intrinsic mechanism of these methods in actual applications was not usually demonstrated, so 
chance correlations could be unavoidable. This paper presents a new method coding the 
absorbance spectrum of each component in a multi-component compound to quantize the size 
relation between different absorbance of various components. To describe the implementation 
process, spectra of the compound with three components were developed and partial least-
squares regression was used to construct calibration models. The results verify the feasibility 
of the coding method used for studying the intrinsic mechanism of spectral analysis. The new 
method provides a way to analyze the influence from different components of the object 
qualitatively and quantitatively, and it can help us to grasp the action mechanism of these 
correction and modeling methods. Based on this, we can choose and design a suitable method 
to enhance the accuracy and reliability of spectral analysis. 
 

Introduction 
Spectroscopy technology due to its advanced features of non-
invasive, high-speed, high-precision, multi-information and easy-to-
operate, has been widely applied in the fields, such as food, 
agriculture, environment, and medicine.1-3 It is usually implemented 
in laboratory analysis and has gradually been extended to the in-situ 
real-time monitoring and analysis.4 However, for the in-situ real-
time measurement, the spectrums of different components are 
overlapping so that the selectivity of the measured spectra is 
degraded, and also the spectra could vary with measurement 
conditions and different physical properties of the object (e.g., object 
surface and particle size). To reduce the influence of factors 
mentioned above and achieve more accurate results of quantitative 
spectral analysis, the reported methods mainly fall into three 
categories: spectral correction methods, wavelength (or wavelength 
region) selection methods,5,6 and linear and non-linear modeling 
methods.7,8 Spectral correction methods include multiplicative signal 
correction (MSC),9 standard normal variate (SNV),10 optical path-
length estimation and correction (OPLEC)11 and so on. Wavelength 
selection methods include stepwise regression, genetic algorithm 
(GA),12 interval partial least-squares (iPLS)13 and so on. And 
linear/non-linear modeling methods include partial least-squares 
(PLS),14,15 principal components regression (PCR), support vector 
machine (SVM)16 and so on. Most of the researches used finite 
experimental data sets to verify the feasibility of these methods, and 
they didn’t analyze the intrinsic mechanism of the used method in 
actual spectral processing. Therefore, chance correlations are 
unavoidable,17,18 which limits their extention to other applications 
simply. 

To enhance the accuracy of spectral analysis, this paper proposes 
a novel coding method which generates a simulated spectrum of a 
multi-component compound through coding the absorbance 
spectrum of each component. The coding method can quantize the 
size relation between absorbance of multi components in the object. 
Utilizing our proposed method, it is easy to analyze the influence 
from each component qualitatively and quantitatively, and also we 
can clearly understand the action mechanism of traditional correction 
and modeling methods. The principle and the implementation of the 
new method are described as follows. The spectra of a compound 
with three components were developed, and the PLS regression was 
used to construct calibration models to verify the feasibility. 

Methods 
Coding Method 

Suppose that the object to be measured is S that is made up of 
three components: a, b, c. For one of the components such as a, 
there are five kinds of size relations between absorbance A of 
another component such as b and itself at a given wavelength. 
They are shown as follows: Aa=Ab, Aa>Ab, Aa>>Ab, Aa<Ab, 
Aa<<Ab. The relations between any other two components are 
similar, and they are not listed here individually. To represent 
the size relations among absorbance of three components, we 
firstly quantize the absorbance into three numerical values: 1, 2, 
3. Therefore, two same values stand for the relation “=”, two 
adjacent values stand for “>” or “<”, and two non-adjacent 
values stand for “>>” or “<<”. We use three numerical values to 
express the absorbance of three components in the object S, and 

This journal is © The Royal Society of Chemistry 2015 Anal. Methods., 2015, 00, 1-3 | 1  

Page 1 of 5 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Analytical Methods 

there are 3×3×3 combinations in total, which are shown in 
Table 1. The process that we use the setting values to quantize 
the absorbance of multi components in the object is called the 
coding method. One combination is called a kind of coding. 
 
Table 1 All the coding for three components a, b, c based on 
the setting numerical values 1, 2, 3. 

a b c a b c a b c 
1 1 1 2 1 1 3 1 1 
1 1 2 2 1 2 3 1 2 
1 1 3 2 1 3 3 1 3 
1 2 1 2 2 1 3 2 1 
1 2 2 2 2 2 3 2 2 
1 2 3 2 2 3 3 2 3 
1 3 1 2 3 1 3 3 1 
1 3 2 2 3 2 3 3 2 
1 3 3 2 3 3 3 3 3 

 

Design of Coding Absorbance Curve 

The relations among absorbance of different components in a 
compound are complex in the ultraviolet and visible or near 
infrared spectral range. They can be usually described by most 
of the coding in Table 1. To perform a complete analysis of 
different relations, 27 coding in Table 1 were all utilized to 
construct absorbance curves of three components. The 
absorbance curve covers 270 wavelengths with a wavelength 
resolution of 1nm. The whole wavelength region is divided into 
27 segments with a step size of 10 wavelengths. The same 
segment of three components corresponds to one kind of the 
coding. The constructed absorbance curves which are also 
called coding absorbance curves are shown in Fig. 1. Moreover, 
considering the practical implication of coding absorbance 
curves, we multiplied coding absorbance curves of three 
components a, b, c by 0.3 respectively. The calculated results 
were all defined as the absorbance curves with the 
concentration of 1mol/L and the optical path length of 1cm. 

 

 
Fig. 1 Coding absorbance curves of three components, (a) component a, (b) component b, (c) component c. 

 
Construction of Simulated Spectra 

The setting concentration ranges of three components are 1-2mol/L 
(component a), 0.1-0.5mol/L (component b), and 0.001-0.01mmol/L 
(component c) respectively. In the concentration range of each 
component, 300 random concentration values were generated, so no 
correlation existed between the concentrations of any two 
components. According to additive effect of absorbance in Eq. (1), 
300 pure spectra of the compound with different concentrations of 
three components were calculated by multiplying random 
concentration values of three components and their absorbance 
curves. 
 
    Cbatotal AAAA ++=                                                            (1) 

 
 However, the measured spectra in practical situations are 
unavoidably disturbed by random noise and system noise. Therefore, 
we added white Gaussian noise, whose amplitude was the average 
absorbance value of the component c with the concentration of 
0.0001mol/L at all the wavelengths, to the simulated pure spectra. 
Any four absorbance spectra from 300 simulated ones after adding 
noise are shown in Fig. 2. We can clearly see that the spectra of the 

compound have the features of absorbance curves of components a 
and b, which is due to higher concentrations of the two components. 

Modeling Analysis 

Partial least-squares regression was used to build calibration 
models to verify the feasibility of the coding method for 
spectral analysis. The component c which has the minimum 
concentration was chosen as the component to be measured. 
The simulated spectra were sorted according to numerical order 
of the concentration values of the component c, with 
consideration of the effect of the concentration distribution. For 
every three continuous spectra, the middle one was chosen for 
the prediction set. And 200 spectra were for the calibration set 
and 100 for the prediction. Then the calibration models were 
built with the number of loading vectors changing from 1 to 6. 
The number of loading vectors which provides the minimum 
the root-mean-square of prediction (RMSEP) was lastly 
determined. And loading vectors with the optimal number were 
extracted to compare with absorbance curves of three 
components respectively. Moreover, the PLS regression 
coefficients of the model by using the optimal number of 
loading vectors were compared with the absorbance curves of 
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three components. 
 

 
Fig. 2 Any four absorbance spectra after adding noise. 
 

Results and Discussion 
For the PLS calibration models based on the simulated spectra, the 
changing relationship between RMSEP values and the number of 
loading vectors is shown in Fig. 3. When the number of loading 
vectors is equal to 3, the RMSEP reaches its minimum value. 
However, when the number of loading vectors gets greater than 3, 
the RMSEP value gradually increases. When the number of loading 
vectors is equal to 1 or 2, the calibration models have hardly any 
prediction performance for the component c. The results show that 
the calibration model achieves the best performance when the 
number of loading vectors is equal to the number of components in 
the object S, and the third loading vector determines the performance 
of the calibration model. 
 Three loading vectors used at last in the PLS calibration model 
are shown in Fig. 4. Compared with the changing trend of 

absorbance curves of three components, the first loading vector has 
positive correlation with both absorbance curves of components a 
and b, the second loading vector has a positive correlation with the 
component a and a negative correlation with the component b; and 
the third loading vector has a positive correlation with the 
component c and negative correlation with both components a and b. 
Therefore, the third loading vector includes the information of the 
component c and determines the model performance, which is 
consistent with the above result (the changing relationship between 
the number of loading vectors and RMSEP values). On the other 
hand, the first loading vector is dependent to some degree on relative 
intensities of spectral bands, and the information in the first loading 
vector is less useful if the component of interest only has relatively 
small spectral features. 
 

 
Fig. 3 The changing relationship between RMSEP values and 
the number of loading vectors for the PLS calibration models 
based on simulated spectra. 

 

 
Fig. 4 Three loading vectors used in the PLS calibration model, (a) the first loading vector, (b) the second loading vector, (c) the third 

loading vector. 
 

The regression coefficients of the PLS calibration model 
with three loading vectors are shown in Fig. 5. The changing 
trend of regression coefficients is positively correlated with the 
absorbance curve of the component c, but negatively correlated 
with components a and b. Further, we calculated the average 
regression coefficient in every wavelength segment (the 
difference between regression coefficients in each wavelength 
segment was due to the noise), and then sorted 27 average 

regression coefficients. The number of wavelength segments 
from short wavelength to long wavelength is 1-27. The number 
of wavelength segments, the average regression coefficients 
and the corresponding coding are shown in order in Table 2. 
According to the sequence and the number of wavelength 
segments in Table 2, we can clearly understand the relations 
between regression coefficients and absorbance of multi 
components. We come to conclusions as follows: (1) when the 
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absorbance of the component of interest is far greater than the 
other two components (“>>”), the regression coefficient can 
reach a positive maximum; (2) when it is equal to the other two 
(the boxed coding in Table 2) (“=”), the greater the absorbance 
value is, the greater the regression coefficient is; (3) when it is 
less than the other two (“<”) or is less than the other one and 
equal to another one (“<”, “=”), the regression coefficient is 
negative; (4) when it is far less than the other two (“<<”), the 
coefficient is a negative minimum. In a word, if the absorbance 
of the component to be measured is greatly different from other 
components, the corresponding regression coefficient is 
absolute maximum. 
 

 
Fig. 5 Regression coefficients of the PLS calibration model with 
three loading vectors. 
 

There are many reports about wavelength selection based on the 
regression coefficient vector of PLS.19,20 The wavelengths with 
relatively large regression coefficients were selected to build a 
calibration model. The practical experimental results demonstrated 
that the method can be used to improve the model performance. Base 

on existing conclusions and above analysis results, we can infer that 
the spectra in the wavelength range where the absolute values of 
regression coefficients are relatively larger (namely the absorbance 
of the component of interest is greatly different from the others) 
have more effective information. The analysis result also shows that 
the coding method can be used to select wavelength variables and 
further design better wavelength selection methods. 
 Meanwhile, the analysis process clearly accounts for the action 
mechanism of PLS regression, including loading vectors and 
selection of loading vectors. We could use the coding method to 
study other modeling methods. We believe the new method can help 
other researchers study the principle of various modeling methods 
and provide the reference for choosing a better one. 

It is worth noting that we didn’t consider nonlinear effects 
when constructing the coding spectra. In practical situations, 
there are various nonlinear effects, such as scattering influence 
from the object itself, temperature changes, and interaction 
between different components. We can highlight influence of 
these nonlinear factors in the coding spectra for further study, 
for example, by adding the square of the coding. Moreover, the 
discrete steps which don’t conform to the smoothness of the 
spectra in visible and near-infrared range are the biggest 
drawback in the coding absorbance curve. They will weaken 
the relationship between adjacent wavelengths. Therefore, it is 
very difficult for the coding method to evaluate the 
performance of some spectral preprocessing methods such as 
smoothing methods and the first and second order derivatives. 
Although most of modeling methods such as PLS also neglect 
the relationship between adjacent wavelengths and take spectra 
as a matrix, there is no denying that the changing trend of 
adjacent wavelengths includes a lot of information. Maybe we 
can change the code expression to simulate the adjacent 
relationship in the future research. 

 
Table 2 The number of wavelength segments, the average regression coefficients and the corresponding coding. 

Sequence Number of 
wavelength 

segment 

Average 
regression 
coefficient 

coding (a, b, c) 

1 3 0.0263 (1, 1, 3) 
2 6, 12 0.0205 (1, 2, 3) (2, 1, 3) 
3 9, 15, 21 0.0146 (1, 3, 3) (2, 2, 3) (3, 1, 3) 
4 2 0.0137 (1, 1, 2) 
5 18, 24 0.0088 (2, 3, 3) (3, 2, 3) 
6 5, 11 0.0078 (1, 2, 2) (2, 1, 2) 
7 27 0.0029 (3, 3, 3) 
8 8, 14, 20 0.0019 (1, 3, 2) (2, 2, 2) (3, 1, 2) 
9 1 0.0010 (1, 1, 1) 

10 17, 23 -0.0039 (2, 3, 2) (3, 2, 2) 
11 4, 10 -0.0048 (1, 2, 1) (2, 1, 1) 
12 26 -0.0098 (3, 3, 2) 
13 7, 13, 19 -0.0107 (1, 3, 1) (2, 2, 1) (3, 1, 1) 
14 16, 22 -0.0166 (2, 3, 1) (3, 2, 1) 
15 25 -0.0224 (3, 3, 1) 

 

Conclusions The coding method used to analyze the internal mechanism of 
spectral analysis has been presented in this paper. Simulated spectra 
of the compound with three components were constructed based on 
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the coding absorbance curves of three components, and the 
calibration models were built using PLS regression. The results 
demonstrate that the new method is effective in qualitative and 
quantitative analysis of influence from absorbance of three 
components, and can clearly show the relationships among loading 
vectors, the number of loading vectors, regression coefficients of 
PLS and the spectra. The results verify the feasibility of the 
coding method. And we believe the coding method would also 
be a promising method in wavelength selection, analysis of 
other modeling methods and influence from non-linear factors, 
which are also the focus of our future research. 
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