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Accurate peak detection is essential for analyzing high-throughput dataset generated by analytical instruments. Derivative 

with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise 

and deviations in peak shape. Continuous wavelet transform (CWT)-based method is more practical and popular in this 

situation, which can increase accuracy and reliability by identifying peaks across scales in wavelet space and implicit 

removal of noise as well as baseline. However, its computational load is relatively high and the estimated features of peak 

may not be accurate in the case of peaks such as overlapping, dense and weak peaks. In this study, we present multi-scale 

peak detection (MSPD) for peak detection by taking full advantage of additional information in wavelet space including 

ridges, valleys, zero-crossings. It can achieve high accuracy by thresholding each detected peak with maximum of its ridge. 

It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, CAMDA 2006 SELDI dataset as well as 

Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical 

signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping false 

discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that 

MSPD seems a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python 

and cython. It is available as open source package at https://github.com/zmzhang/libPeak. 

 

Introduction 

Rapidly extracting quantitative information from high-

throughput spectral profiles is crucial for providing insight of 

large, complex sample sets. Commonly, concentration of 

compound of scientific interest is often associated with height 

or area of peak(s) in profile of sample. Therefore, peak 

detection is a fundamental step in analysing dataset generated 

by various analytical instruments including chromatograph, 

mass spectrometry (MS), Raman spectrometer and Nuclear 

magnetic resonance spectroscopy (NMR). Therefore, it is a 

common requirement to detect peaks and calculate their 

positions, heights, widths and areas for signals of these 

analytical instruments. After obtaining large-scale organized 

data matrices such as peak area or height through peak 

detection across samples, further investigation for complex 

samples can be conducted with multivariate methods from 

statistics and chemometrics. However, there are random noises, 

alternating baselines, differing peak shapes, sample impurities, 

artefacts and overlapped peaks in real experimental signals. 

Due to adverse effect of these problems, it is complex and 

difficult to design an automatic and accurate peak detection 

method. Meanwhile, the acquired data become increasingly 

large with rapid advancements in analytical instruments. 

Therefore, automatic and accurate peak detection is still a 

significant challenge, particularly for high-throughput data 

processing in analytical chemistry. 

Various peak detection methods have been developed, and most 

of them identify peaks by searching local maxima with SNR 

threshold to avoid false positives. However, simple derivative 

method (numerical differentiation) works poorly for signals 

with noise. In order to improve its poor result and recognize 

spectral features of Infrared (IR) spectra untouched by human 

hands, Savitzky and Golay provided sets of first- and second-

derivative convoluting integers for noise reduction during 

derivative calculation. 1 Gaussian second derivative filtering 

has been presented by Danielsson, 2 which has the advantages 

of matched filters, derivatives and Gaussian function such as 

background subtracting, peak sharpening effects, SNR 

improvement and generating enhanced chromatograms for peak 

detection. The matched filtration with experimental noise 

determination (MEND) method can suppress chemical and 

random noise and baseline fluctuations, as well as filter out 

false peaks. 3  Recently, automatic chromatographic peak 

detection and background drift correction (ACPD-BDC) has 

been developed for chromatographic data analysis with robust 

noise estimation, first-order derivative and local curve-fitting. 4 

Field Code

Field Code

Field Code

Page 1 of 10 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Analyst 

2 | Analyst, 2015, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

However, height and width of peaks may vary a great deal in 

one signal. Therefore, fixed size matched filtering and 

derivative methods usually fail in this situation. Wavelet can 

exploit the multiscale nature of the measured signal. Lange 

applied CWT to matrix-assisted laser desorption/ionization 

time-of-flight (MALDI-TOF) mass spectra using Marr wavelet 

with different dilation values. 5 By transforming the spectrum 

into wavelet space with Mexican hat wavelet, 2D CWT 

coefficients can provide additional information for identifying 

and separating the signal from noise and baseline. 6,7 Nguyen 

applied zero-crossing lines in multi-scale of Gaussian 

derivative wavelet for peak detection. 8,9 Haar wavelet has been 

introduced for both position identify and width estimation in 

alignDE 10 , MSPA 11 and CAMS 12 for chromatography 

dataset. 

Peak detection methods based on above mentioned criteria have 

been applied in analysing various datasets, mainly including 

chromatography (particularly LC-MS), mass spectrometry 

(particularly MALDI-TOF and SELDI)  and Raman 

spectroscopy. Second-derivative Gaussian filter has been used 

for de-noising and computing derivative of LC-MS dataset, and 

the filtered chromatogram will cross the x-axis roughly at the 

peak inflection points for feature extraction. 13 The centWave 

algorithm detects feature of LC-MS dataset with CWT and 

Gauss-fitting in the collected regions of interest, and it has been 

integrated into the XCMS package because of the higher recall 

and precision over the original matchedFilter of XCMS. 14 

MZmine software has been developed by Orešič’s group for 

mining LC-MS dataset, and recursive threshold peak detection 

method can reduce the false positives by avoiding detection of 

noise peaks. 15 Wavelet transform algorithm with Mexican hat 

wavelet has been integrated into MZmine 2 because of it is 

particularly suitable for noisy data. 16 Marc Sturm 17 presented 

the open source software framework OpenMS for rapid 

application development in mass spectrometry with an efficient 

peak picking algorithm 5. eMZed 18 provides an flexible 

framework to process LC-MS data based XCMS, OpenMS and 

Python programming language. Peak detector based on CWT 

has also been applied to peak-to-peak matching for identifying 

unknown Raman spectra from reference spectral library. 19–21 

In summary, derivative with noise reduction, matched filtration 

and CWT are three major and popular peak detection methods 

for signals of analytical instruments. Meanwhile, one can 

observe that peak detection methods are of extremely important 

for analysing datasets of various analytical instruments. We can 

also see another significant trend that traditional peak detection 

methods have been substituted by CWT-based methods 

gradually because of its accuracy, performance and multiscale 

nature. However, peak detection by CWT is still less than 

satisfactory, especially for overlapping, dense and weak peaks. 

New approach is urgent in need to ensure high-quality peak 

detection, quantification, alignment across profiles for 

subsequent multivariate analysis. 

In this study, we propose multiscale peak detection (MSPD) to 

achieve satisfactory results for signals of various analytical 

instruments. It is based upon CWT because of the multiscale, 

noise reduction and baseline removal properties. Therefore, it 

has all the advantages of CWT-based method. By taking full 

advantage of ridges, valleys and zero-crossings in wavelet 

space, MSPD can estimate features of peaks more accurate than 

MassSpecWavelet which is only using ridges in wavelet space. 

Furthermore, MassSpecWavelet is implemented in R 

programming language, which is not efficient enough. In order 

to process high-throughput and hyphenated datasets in 

metabolomics and proteomics efficiently, our approach has 

been designed and implemented in Python and cython, and it is 

significantly faster than MassSpecWavelet. It is particularly 

suitable for analysing high-throughput datasets. 

This paper is organized as following. Firstly, relevant algorithm 

concepts of MSPD method are presented and investigated in 

theory section. Then MSPD method is applied to MALDI-TOF 

spectra in proteomics, CAMDA 2006 SELDI dataset as well as 

Romanian database of Raman spectra to demonstrate its 

accuracy and effectiveness. Results of above applications will 

be presented accompanying with discussions about the 

proposed algorithm. Finally, some conclusions and perspectives 

are given in conclusion section. 

Theory 

In this section, CWT will be introduced firstly as well as how to 

select the most suitable wavelet for peak detection. With CWT 

and wavelet, signal can be transformed into wavelet space. 

Then, strategy for locating ridges, valleys and zero-crossings in 

wavelet space will be elucidated as clear as possible. The 

position of peak can be detected accurately using its ridge, 

valley and zero-crossing information. The maximum of ridge 

has been used to threshold and eliminate false positive peak in 

peak-dense region. Finally, features of peak will be estimated 

from analytical signals for further statistical and chemometric 

analysis. 

 

Wavelet 

Wavelet used by CWT can be defined by analytical 

expressions, and dozens of wavelets have been invented for 

various applications in chemistry 22–24, including baseline 

correction 25–27, noise filtering 28–31, peak detection 6,7,10,12,32 

derivative calculation 33–35 as well as compression 36–39. Signal 

of analytical instrument has highly localized features; for 

instance, Gaussian peaks of chromatograms and Lorentzian 

peaks of Raman spectra. Therefore, wavelet should be 

purposefully chosen with specific properties. Therefore, it can 

extract information from analytical signal more effectively. Due 

to the features of Gaussian and Lorentzian peaks, the selected 

wavelet should have the basic features of these peak including 

approximate symmetry and one major positive peak. Mexican 

hat wavelet (Ricker wavelet) has been chosen in this study, 

which can be defined by following expression: 
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Figure. 1. Selection of Wavelet. (a) difference of Gaussians; (b) similarity between 

difference of Gaussians and Mexican hat wavelet. 
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In practice, Mexican hat wavelet can be approximated by the 

difference of Gaussians (DoG). DoG is equivalent to a band-

pass filter, which is believed to mimic how neural processing in 

the retina of the eye extracts details from images. 40,41 In figure 

1, one can see the comparison of DoG with Mexican hat 

wavelet. In order to fit DoG best to Mexican hat wavelet, 

standard deviations of Gaussian functions and ratio constant 

between DoG and Mexican hat wavelet are optimized by least 

square fitting. One can observe from figure 1(a) that DoG is 

generated by Gaussian function with σ=0.7477 and σ=1.3383. 

Then, DoG is multiplied by 3.8128 and plotted with Mexican 

hat wavelet together in figure 1(b), and the root mean square 

error (RMSE) between them is only 0.0189. DoG for feature 

extraction has biological interpretation, and it has been applied 

extensively in computer vision. The scale-invariant feature 

transform (SIFT) 42 based on DoG is one of the most popular 

algorithms to detect and describe local features in images. The 

Mexican hat wavelet can be approximated by DoG. Therefore, 

Mexican hat wavelet is a reasonable choice as the mother 

wavelet for peak detection. 

 

Ridge, Valley and Zero-Crossing in Wavelet Space 

MassSpecWavelet by Du identifies ridges in 2D CWT 

coefficient matrix for peak detection. With the additional 

information from ridges, it can obtain more accurate and robust 

results than methods directly detecting peaks in raw signal. 

According to their results, this additional information can 

increase the accuracy of peak detection. However, only the 

ridges in wavelet space have been adopted in MassSpecWavelet 

package. Besides the ridges, there are also valleys and zero-

crossings in the wavelet space, which are also critical for the 

accuracy of peak detection. Therefore, the ridges, valleys and 

zero-crossings should be fully used to extract important features 

(position and width) of peaks accurately and effectively. The 

concepts of ridge, valley and zero-crossing will be elucidated in 

the following paragraphs. 

Mathematically, ridges of a function f of N variables are a set of 

curves whose points are local maxima in N-1 dimensions. In 

this respect, the notion of ridge extends the concept of local 

maximum. 

In this study, the 2D CWT coefficients can be regarded as a 

function of the dilation and translation parameters. According 

to its definition, ridge in wavelet space can be defined as curve 

of local maxima in the dilation dimension. Correspondingly, the 

notion of valley can be defined by replacing the condition of a 

local maximum with local minimum. The zero-crossing can be 

also defined similarly by replacing the condition of a local 

maximum with the condition of the sign changes (e.g. from 

positive to negative or vice versa).  

Technically, these important features including ridges, valleys 

and zero-crossings can be located in wavelet space easily 

because of there are only two dimensions in the wavelet space. 

The rows and columns of CWT coefficients (denoted by C) are 

dilation and translation respectively. One can take columns k, 

k+1, …, n+(k-1), n+k  and –k, -(k-1),…, n-k from matrix C as 

new matrix kC and -kC respectively. Indices that are too large 

are replaced by the last column of C, and too small by the first 

column. The ridges, valleys and zero-crossings can be located 

in the Boolean matrices generated by following Boolean 

algebra equations: 

[ ]

( 1) 1

( 1) 1

1 0 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

sgn( ) sgn( ), , sgn( ) sgn( )

k k k k

k k k k

n n

− − − −

− − − −

−

= > ∧ > > ∧ >

= < ∧ < < ∧ <

= ⊕ ⊕

R C C C C C C C C

V C C C C C C C C

Z c c c c

L

L

L

       (2) 

Where ∧  and ⊕  are AND and XOR Boolean operations 

respectively. The sgn is a function, which can extract the sign 

of a real number. ci is the ith column of matrix C. R, V and Z 

are matrices containing the ridges, valleys and zero-crossings 

information respectively.  
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Figure. 2 CWT coefficients, ridges, valleys and zero-crossings of simulated signal with noise and baseline. (S) signal with noise and baseline; (C) CWT coefficients; (R) ridges; (Z) 

zero-crossings; (V) valleys.

Here is a simple example: consider a signal with four Gaussian 

peaks (one overlapped peak and two separated peaks) as well 

as noise and baseline (figure 2-S). By transforming the signal 

into wavelet space by CWT (figure 2-C), ridges (figure 2-R), 

valleys (figure 2-V) and zero-crossings (figure 2-Z) can be 

located in wavelet space with equation (2)(2) and illustrated as 

images of different colours. One can observe from figure 2 that 

CWT procedure can generate wavelet coefficient C, which can 

provide additional information for peak detection in multiscale 

manner. And it also resists to noise and baseline of the signal. 

The ridges are accurate estimations of the peak positions, and 

the zero-crossing and valleys are extremely useful for locating 

the width, start and end points of the peaks. Please refer the 

local_extreme, ridge_detection, peaks_position and other 

functions of libPeak package at github for the details on 

computing and utilizing ridges, valleys and zero-crossings. 
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Figure. 3 Visualizing of the maximum of ridge and detection result by MSPD on MALDI-TOF  proteomics spectra.

 

Peak Position Estimation 

The ridges, valleys and zero-crossings are hidden in the 

matrices R, V and Z respectively. We should extract them from 

the matrices for further peak detection. However, the peak of 

analytical signals is not ideally Gaussian, and the other peaks 

affect wavelet coefficients when the dilation parameters are 

large. Consequently, the ridges of real signal are not a straight 

line in wavelet space. Therefore, an effective method should be 

developed to extract ridges from matrix R. 

Firstly, several rows of R have been taken out to compute the 

sum of elements in each column. If the sum of one column is 

zero, there is no ridge at this column. If the sum of one column 

is larger than zero, there might be a ridge at this column. For 

each column with possible ridge, the first non-zero element at 

this column is chosen as the initial position. Then we scan 

matrix R from the initial position by increasing the row value 

from the small dilation to large dilation. Let’s assume the 

current position of current element of ridge is ith row and jth 

column. For the next possible element of one ridge, we should 

consider the (i+1, j-1), (i+1, j) and (i+1, j+1) elements in matrix 

R. If any value of these elements is one, position of the element 

should be appended into the ridge. This procedure is repeated 

until reaching the end row of matrix R or the values of the next 

possible elements are all zero, and the ridge at this column has 

been extracted successfully. There may exist duplicated ridges 

in the ridges list, and the ridges will be merged if they have the 

same start element, end element and length. 

The ridge line is not straight especially when the dilation 

parameter is large, so it can be only regarded as a rough 

estimation of position of peak. In order to estimate the accurate 

position of each peak, one should take full advantage of 

existing information including its ridge, valley, zero-crossing, 

wavelet coefficients as well as original signal. Firstly, peaks 

can be divided into two categories according to their wavelet 

coefficients. If some wavelet coefficients are larger than zero, 

this peak is a normal peak. If all wavelet coefficients are 

smaller than zero, this peak may be a small peak overlapped 

with a large peak. For a normal peak, the optimal ridge element 

are chosen, whose column appears most often in the ridge with 

wavelet coefficients larger than zero. Assume the optimal ridge 

element is (i,j), search the matrices V and Z with (i, j) as the 

starting point along the ith row bi-directionally. When meeting 

nonzero value, save its column. Then we have two column m 

and n, and they are start and end point of one peak respectively. 

The column of the maximum value of the original signal 

between mth and nth columns is chosen as position of the peak. 

For overlapped small peak, the minimum and maximum 
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columns of the first half of its ridge are used for estimating 

position of the peak. The position is determined as the column 

of the maximum value of the original signal between minimum 

and maximum columns. The start and end points of this peak 

should be calculated and optimized by a deconvolution 

procedure. 

Quantitative information including peak height and area should 

be obtained for further data analysis. In previous steps, position 

and width of the peak has been estimated. Therefore, both the 

height and area can be calculated with them easily. The 

intensity at peak position is a good estimation of peak height, 

and the trapezoidal numerical integration between start and end 

points of the peak is a good estimation of peak area. The 

accuracy of height and area are seriously influenced by 

baseline, and it should be fitted and corrected from the original 

signal with a proper baseline correction method 43–49. 

 

Thresholding by Maximum of Ridge 

Analytical dataset basically consist of signal of target 

compound(s), baseline and random noise. When removing false 

peaks, one needs to consider the issue of baseline and noise. 

Since the wavelet function is symmetric and satisfies zero 

mean, the slowly changing and locally monotonic baseline will 

be automatically removed during calculating CWT coefficients. 

CWT can be regarded as convolution of the signal with dilated 

and translated wavelets. Therefore, noises will be suppressed to 

a certain extent in wavelet space. Intensity of a peak in wavelet 

space can be defined as the maximum CWT coefficient on the 

ridge line within a certain scale range according to 

MassSpecWavelet 6. In this study, we use the maximum CWT 

coefficient on the ridge line to remove false peaks, which can 

avoid the issue of baseline and noise. MALDI-TOF spectra 

have been selected to illustrate the advantages of thresholding 

by maximum of ridge. The circles in figure 3(a) are peak 

detection results from MSPD method, and the triangles are the 

ground-truth peaks. The good matching between detection 

result and ground-truth means that MSPD has good 

performance in peak detection. Each vertical line represents 

maximum of ridge of the peak. One can observe from figure 

3(b) that maximum of ridge is proportional to height or area of 

the peak. It is also robust to noise and baseline. Therefore, it 

can be used as threshold to remove false peaks. 

Experimental 

Simulated MALDI–TOF Spectra 

Mass spectrometry profiling combining with bioinformatic 

tools is a promising solution to identify novel disease-

associated biomarkers, and peak detection algorithms are 

essential in the analysis pipeline.  

Morris has developed a physics-based computer model of mass 

spectrometry to generate virtual MALDI–TOF spectra for 

method development and comparison, where the truth is known 

about what peaks are in each spectrum. 50 They provide a 

publicly available dataset, which can be downloaded at 

http://bioinformatics.mdanderson.org/. In this study, this dataset 

has been used to test the performance of MSPD method on 

MALDI-TOF spectra. 

 

SELDI Spectra of CAMDA 2006 

The international conference for the Critical Assessment of 

Massive Data Analysis (CAMDA) offer a forum for the 

researchers from computer science, statistics, molecular biology, 

and other areas to exchange ideas, and critical evaluation of 

various techniques of analysing massive dataset generated by 

instruments. In CAMDA 2006, there is a SELDI proteomics 

dataset, which is a real dataset of all–in-1 protein standard 

(Ciphergen Cat. # C100–007). There are seven polypeptides 

which create seven true peaks at 7034, 12230, 16951, 29023, 

46671, 66433 and 147300 of the m/z values respectively. This 

dataset can be used to benchmark MSPD on real SELDI dataset 

by comparing the detected peaks with these true peaks. 

Romanian Database of Raman Spectroscopy 

Raman spectroscopy can be regarded as a “fingerprint” 

technique for compounds and mixtures identification non-

invasively under ambient conditions without special sample 

preparation. This structural-rich information are often 

represented as peaks in Rama spectra, and peak detection is 

important for extracting information hidden in Raman spectra 

composed of thousands points. In this study, spectra from 

Romanian Database of Raman Spectra (RDRS) have been used 

to evaluate and validate MSPD method. It contains Raman 

spectra of mineral species with the description of crystal 

structure, sample image, origin of the sample, vibrations, which 

can be downloaded from http://rdrs.uaic.ro/. Peaks of each 

spectrum have been annotated and interpreted manually by 

experts in Raman spectroscopy. Therefore, it can be used to 

evaluate the peak detection method by comparing the manually 

annotated position and detected position by algorithms. 

Results and Discussion 

Comparison analyses were conducted to evaluate the 

performance of MSPD algorithm. The results mainly focus on 

the false positives, false negatives and reproducibility. The 

criteria for selection packages for comparison are widely used 

and freely available. The MassSpecWavelet is one of the most 

classical and popular peak detection method based on 

continuous wavelet transform. The MALDIquant is a recently 

proposed package, which was published at 2012 in 

bioinformatics. Therefore, MassSpecWavelet and MALDIquant 

were chosen finally for comparison in this study. Both of them 

were downloaded from their official site and ran locally.  

Evaluation Criteria 

The ground truth is known for MALDI-TOF, SELDI and 

Raman spectra. Therefore, a detected peak can be labelled as a 

false peak if its position is not within the given error range of 

the ground truth. With these detection results, false discovery 

rate (FDR) and sensitivity (true positive rate, TPR) can be 

calculated to measure the performance of algorithms: 
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Figure. 4 ROC curves of three methods (MSPD, MassSpecWavelet and MALDIquant). (a) 

Average ROC curves of simulated proteomics dataset; (b) ROC curves of the 19
th

 

spectra of CAMDA 2006 SELDI dataset; (c) Average ROC curves of Romanian database 

of Raman spectroscopy. 

 

TP TP
TPR = =

TP+ FN P

FP
FDR =

FP+TP

 (3) 

TP is number of detected peaks within the ground truth. FN is 

number of peaks in the ground truth but not detected by 

algorithms. P is the total number of ground true peaks. FP is 

number of falsely detected peaks, which is not in the ground 

truth. For peak detection methods with the same FDR, one with 

larger TPR has better performance. The thresholding values of 

methods can be adjusted gradually to calculate a series of TPR 

and FDR. The ROC curves of different peak detection methods 

can be obtained by plotting the TPR against FDR at these 

thresholding settings, which is an informative measure for 

evaluation of different peak detection methods.   

 

Peak detection results and comparisons  

The MSPD is developed in Python language. But 

MassSpecWavelet and MALDIquant are developed in R 

language. In order to unify the code-base, rpy2 package is used 

as a communication interface between Python and R language. 

With the assistance from rpy2, peak detection functions of both 

MassSpecWavelet and MALDIquant can be accessed from 

Python easily. 

The simulated MALDI-TOF spectra proposed by Morris are 

generated specifically for method development and 

comparison. There are hundreds of mean spectrum samples 

with hundreds of proteomics datasets in this data. In this study, 

32nd dataset with 100 MALDI-TOF spectra have been chosen, 

and analysed by MSPD, MassSpecWavelet and MALDIquant. 

The performances of above methods have been evaluated by 

the ROC curve. Firstly, TPR and FDR of three methods are 

calculated for 100 simulated MALDI-TOF spectra. Then SNR 

parameters are adjusted gradually to create the ROC curves for 

MSPD, MassSpecWavelet and MALDIquant respectively. The 

SNR values are chosen from 0 to 12 for MassSpecWavelet 

method and 0 to 80 for MALDIquant method respectively. The 

threshold values of MSPD are chosen from 0.001 to 1, and 

spectra have been smoothed slightly by Whittaker smoother and 

normalized by its maximum before peak detection for MSPD 

method. The ROC curves have been plotted in figure 4(a). One 

can observe from figure 4(a) that FDR of MassSpecWavelet is 

limited to a small range because of its robust. But its TPR is 

significantly smaller than MSPD at the same FDR. TPR of 

MALDIquant varies greatly when FDR increasing, which 

means that peak detection of MALDIquant is not stable enough. 

TPR of MALDIquant is also significantly smaller than MSPD 

at the same FDR. It is clear that MSPD can achieve better 

performance than MassSpecWavelet and MALDIquant at all 

FDR. Utilizing ridge, zero-crossing and valley made significant 

contributions to accuracy and robust of MSPD method. 

Furthermore, our approach has been designed and implemented 

efficiently in cython, which is significantly faster than 

MassSpecWavelet. 

 Field Code
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Figure 5. Advantage of MSPD on overlapped peaks when comparing to MassSpecWavelet 

 

 

The 19th sample of CAMDA 2006 from GDWavelet package 

has been used to illustrate the performance of MSPD on SELDI 

spectra. The same performance test has been applied to this 

dataset. The SNR values have been varied from 0.5 to 80 for 

MassSpecWavelet method and from 0 to 80 for MALDIquant 

method respectively. For MSPD method, each spectrum has 

been normalized by its maximum and smoothed by Whittaker 

smoother. Then the threshold values are chosen from 0.001 to 

0.5. The ROC curves of this dataset can be seen from figure 

4(b). TPR of MSPD is significantly smaller than 

MassSpecWavelet and MALDIquant at every given FDR. It 

means that MSPD can also obtain better results than 

MassSpecWavelet and MALDIquant with the real SELDI 

dataset. 

Raman spectra from RDRS are more challenging for peak 

detection algorithms because of random noise, fluorescent 

baseline, overlapped peaks and peaks dense regions. There are 

66 Raman spectra, and peaks of each spectrum have been 

annotated by experts of Raman spectroscopy. The SNR values 

have been varied from 0 to 20 for MassSpecWavelet method 

and from 0 to 80 for MALDIquant method respectively. The 

threshold values are chosen from 0.001 to 0.5 for MSPD 

method. TPR and FDR of each peak detection methods can be 

calculated at these different SNR values, and ROC curves of 

RDRS dataset has been obtained by plotting TPR against FDR. 

TPR of MSPD is significantly larger than MassSpecWavelet 

and MALDIquant (figure 4(c)). MSPD is more stable than 

MassSpecWavelet and MALDIquant especially FDR is small, 

and this means that MSPD can identify more true peaks while 

keeping FDR low. The advantages of MSPD should owe to the 

ridge, valley and zero-crossing information in the wavelet space 

as well as thresholding by maximum of ridge. The superior 

results of MSPD in Raman spectra suggest that it is a more 

universal method for peak detection than its two competitors. 

 

Performance on overlapped peaks 

Peak detection in overlapped peak is more important than the 

separated peaks. In MALDI-TOF spectra, most the peaks are 

separated, and MassSpecWavelet can handle this kinds of 

dataset well. However, when there are overlapped peaks in 

dataset, the performance of MassSpecWavelet drops rapidly. 

MSPD can still achieve better performance on this kinds of 

dataset. For example, there are a lot overlapped peaks in the 

Raman spectra (RDRS dataset), and the performance (ROC 

curves) of MSPD is much better than the MassSpecWavelet 

Page 8 of 10Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



Analyst  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx Analyst, 2015, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

and MALDIquant. This is one obvious advantage of MSPD, 

and we have illustrated this advantage in figure 5. One can see 

from figure 5 that there are two overlapped peaks at around 400 

cm-1 and 1100 cm-1 respectively. Figure 5(a) is the peak 

detection result of MSPD, and it can detect each peak in the 

overlapped peaks. However, MassSpecWavelet can’t find any 

peak in the overlapped peaks, and it can be observed from 

figure 5(b). By taking full advantages of ridges, zero-crossings 

and valleys, MSPD can locate the position of each peak in the 

overlapped peaks. 

Multiscale advantage 

In 2D matrix of wavelet coefficients, each row is the results of 

convolution between wavelet of different dilation parameter a 

and raw signal, and the dilation parameter a is increased 

gradually. The weak peaks can be identified in wavelet 

coefficients with small dilation parameter, and the strong peaks 

can be also identified in wavelet coefficients with large dilation 

parameter. Therefore, MSPD method can identify both strong 

and weak peaks at high sensitivity while keeping the FDR low. 

 

Resistant to Baseline and Noise 

Through transforming analytical signal into the wavelet space, 

baseline and noise can be suppressed effectively. Smoothing 

and baseline-correction steps aren’t required to identify the 

peak position. It is the pivotal step of MSPD and 

MassSpecWavelet methods.  

According to zero mean and square norm one requirements of 

wavelet function, convolution of the wavelet function ψ  and 

the constant background C of above equation is zero. Mexican 

Hat wavelet is symmetric function, and the changing 

background is slow and monotonic. Therefore, convolution of 

ψ  and the slow changing and monotonic background B of the 

equation is also approximately zero. In summary, both constant 

and slow changing baseline will be automatically removed 

during calculating procedure CWT.  

When noises of signal are zero mean and independent 

identically distributed, it can be reduced by averaging nearby 

data points. Averaging and weighted averaging can be applied 

to signal by convolving signal with weighted function. CWT 

can be regarded as convolution of the signal with dilated and 

translated wavelets. Therefore, noises will be suppressed to a 

certain extent in wavelet space. 

Conclusions 

In this work, we present MSPD, an accurate and practical peak 

detection method for analytical signal by utilizing ridges, 

valleys and zero-crossings information in the wavelet space as 

well as thresholding by maximum of ridge. Features of each 

peak can be located and calculated precisely with its ridge, 

valley and zero-crossing in multi-scale wavelet space. 

Thresholding by maximum of ridge is an effective method to 

eliminate false peaks, which can avoid the issue of baseline and 

noise. MSPD is implemented in Python and cython, which is 

provided as an open source package. Performance tests on 

MALDI-TOF spectra in proteomics, CAMDA 2006 SELDI 

dataset as well as Romanian database of Raman spectra proved 

that MSPD method has much better performance in TPR and 

FDR than MassSpecWavelet and MALDIquant especially there 

are overlapped peaks in the dataset. Therefore, MSPD can 

achieve high TPR while keeping FDR low for a wide range of 

analytical signal, from MALDI-TOF spectra to Raman spectra, 

which makes MSPD suitable for extracting features of scientific 

interest from large, complex sample sets analysed by high-

throughput analytical instrument. In future, MSPD will be 

applied to detect peaks in LC-MS dataset from metabolomics to 

proteomics. 
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