Analyst Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/analyst

Analyst

 Table 1 Summary of bioanalytical and chemical sensors utilizing taste, olfactory, and neural cells or tissues as biological sensing elements.

Cells/tissues	Molecules/receptors	Transduction techniques	Stimuli/analytes	Performance/notes	Ref
Primary taste cells of rats	Multiple taste receptors	Electrochemical: LAPSs for	Tastant mixture (NaCl, HCl,	The responsive extracellular potential changes	[14
		extracellular recording	MgSO ₄ , sucrose, and glumate)	were recorded.	
	Multiple taste receptors		HCl, tastant mixture*, and	Distinct temporal firings and firing rates were	[15
1			exogenous ATP	related to cell types and stimulus concentrations.	
	Acid-sensing ionic		HCI	Two types of acid-sensitive taste cells were	[16
	channels (ASICs)			distinguished by firing spikes.	
	Bitter taste receptors]	MgSO ₄ , denatonium, and salicin	Bitter substances were discriminated via	[17
				extracellular recording and PCA analysis.	
	Multiple taste receptors	Electrochemical:	Tastant mixture*/HCl	Lower detection limit: 3.3×10^{-13} M;	[21
		Serotonin-sensitive LAPSs		Sensitivity: 19.1 mV per concentration decade	_
	Multiple taste receptors	Electrochemical:	Tastant mixture*	A dose-dependent response to ATP at	[24
		ATP-sensitive LAPSs		concentrations from 10^{-8} to 10^{-4} M was obtained.	-
Bioengineered HEK-293 cells	Bitter taste receptor:	Electrochemical: LAPSs for	Denatonium	Sensitivity: 1.0 mV/s; a dose-dependent response	[27
5	hT2R4	acidification measurement		at concentrations of 50, 200 and 500 nmol/L.	-
Bioengineered human	Sweet taste receptors:	Electrochemical: carbon	HCl, NaCl, MgSO ₄ , and sucrose	Four basic tastants and different concentrations of	[28
enteroendocrine NCI-H716 cells	T1R2/T1R3	screen printed electrodes	-, -, -, -, -,	sucrose were distinguished.	
Bioengineered human	Bitter taste receptors:	(CSPEs)	Quinine, nphenylthiourea, and	Different concentrations of bitter substances were	[29
enteroendocrine STC-1 cells	T2Rs		6-propyl-2-thiouracil	distinguished.	
Bioengineered human	Polycystic kidney	Electrochemical : MEAs	нсі	Distinct responses to sour stimuli were recorded in	[35
embryonic kidney (HEK)-293	disease (PKD) channels			a non-invasive way for a long-term.	•
Rat taste epithelium	Multiple taste receptors		HCl, NaCl, quinine-HCl, glucose,	Different spatiotemporal patterns were recorded	[36
·			and sodium glutamate	for different tastants.	
	Bitter taste receptors	1	Quinine, denatonium and	Dose-dependent signals were recorded at 10 μ M,	[37
			cycloheximide	1 mM and 10 mM of bitter tastents.	-
Primary olfactory cells of rats	Multiple olfactory	Electrochemical: LAPSs for	Acetic acid and glutamic acid	Characteristic signals at a unique frequency (24	[38
. , ,	receptors	extracellular recording		Hz) were obtained.	
			Acetic acid, octanal, cineole,	Inhibitory and enhancive effects on olfactory	[39
			hexanal and 2-heptatone	signals were recorded.	-
Bioengineered rat olfactory cells	ODR-10		Diacetyl	The amplitude patterns of the temporal firing	[4(
				were obtained at 0.1 μ M to 100 μ M diacetyl.	-
Bioengineered HEK-293 cells	ODR-10	Electrochemical: LAPSs for	Diacetyl	A dose-dependent response: at 10, 50 and 100	[27
-		acidification measurement		nmol/L of diacetyl. Sensitivity: 9.8 mV/s	
Primary olfactory cells of rats	Multiple olfactory	Electrochemical: MEAs	DI-limonene and isoamyle	Two odorants at different concentrations were	[41
	receptors		acetate	distinguished.	
Bioengineered HEK-293 cells	Olfactory receptor 17	Electrochemical: planar	Octanal	A dose-dependent extracellular potential response	[42
_		microelectrode		was obtained at 1, 5 and 10 mM of octanal.	
Bioengineered X. laevis oocytes	BmOR1, BmOR3,	Electrochemical: capillary	2-heptanone, bombykol,	Dynamic ranges: 10 nM–1 μM; Sensitivity: a few	[43
- /	PxOR1, and DOr85b	Ag/AgCl electrodes	bombykal, and Z11-16:Ald	parts per billion (ppb)	44

47 48

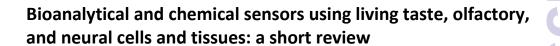
		Optical: SPR	Diacetyle	A dose-dependent response was obtained at 0.01, 0.1 and 1 mM of diacetyle.	[45
	ORI7		Octanal	A dose-dependent response was obtained at 0.1, 1.0, 10 and 100 mM of octanal.	[46
Bioengineered yeast cells	Olfr226	Optical: fluorometry	2,4-dinitrotoluene	Lower detection limit: 25 μ M	[4]
Intact antennae of Colorado	Multiple olfactory	Electrochemical: FETs for	(Z)-3-hexen-1-ol	0.1 parts per million (ppm) to 100 ppm/0.1 ppb to	[43
potato beetle	receptors	extracellular recording		100 ppm	49
An olfactory sensillum of a		Electrochemical:	1,4-diaminobutane, 1-hexanol,	Diaminobutane: a few ppb-100 ppm; hexanol: 8	[5
blowfly		microelectrodes	and butanoic acid	ppm-500 ppm; butanoic acid: ppm-200 ppm	
Rat olfactory epithelium		Electrochemical : MEAs	Ethyl ether, acetic acid,	Different firing modes were recorded in response	[5]
	4		butanedione, and acetone	to different odorants.	53
Intact rat olfactory epithelium and bulb slices			Isoamyl acetate and I-carvone	The frequency of spiking activity was obtained in a concentration-dependent manner.	[54
Rat olfactory bulb slices	Glutamic acid receptors		Glutamic acid	The amplitudes and firing rates increased with the	[5!
				concentration of glutamic acid.	
Rat olfactory bulb <i>in vivo</i>		Electrochemical: microwire	Carvone and isoamyl acetate	Temporal features and rate features of firing	[5
		electrode array		patterns were distinguished. Accuracies: 83-96%.	
Rat olfactory epithelium	Multiple olfactory	Electrochemical: LAPSs for	Acetic acid and butanedione	Different frequencies and firing modes were	[5
	receptors	extracellular recording		elicited in response to different odorants.	
The olfactory system of the D.		Optical: fluorometry	Volatiles from five different	Characteristic response vectors were achieved	[5
<i>melanogaster</i> fruit fly			cancer cell lines	upon different volatiles.	
W1 and W2 neurons from L.	5-HT receptors	Electrochemical: glass	5-HT	Responses to 5-HT at concentrations of 10^{-6} M to	[6
stagnalis		capillary microelectrodes		10^{-3} M were obtained.	
H19-7 hippocampal neurons	Multiple membrane receptors and channels	Electrochemical : MEAs	Ethanol, H_2O_2 , pyrethroids, and	Lower detection limits: 9 ppm, 19 ppm, 280 ppb	[6
			EDTA	and 180 ppm for each analyte.	
			Ethanol, pyrethroid, and H_2O_2	Lower detection limits: 9 ppm, 180 ppb and 19 ppm for each analyte.	[6
			Diesel and gasoline	Diesel and gasoline were detected at 30 ppb and	[6
			_	280 ppb, respectively.	
Single neuron	Multiple membrane		Ethanol	The background noise was decreased by a factor	[6
-	receptors			of 1.3 by increasing the microelectrode diameter.	
Dorsal root ganglia neurons			N/A	Changes in the solution temperature had a strong	[6
from adult mice				effect on the firing characteristics of the neurons.	
Primary cultures of murine	Multiple membrane		Strychnine, biculline, and gpl20	Distinct burst patterns were obtained for	[6
spinal cord neurons	receptors and channels			distinguishing different chemical substances.	
Neural networks of			Electrical current stimulation	Electrical activity was elicited and distinct	[6
chick/mouse embryos				amplitude spikes were recorded for several weeks.	
Spinal cord or frontal cortex	Sodium/potassium		Tetrodotoxin (TTX) and	Lower detection limit: 2 nM; resolve extracellular	[6
	channels		tityustoxin	potentials as small as 40 μ V.	

Analyst

Taste sensation	Taste stimuli	Taste receptors/molecules
Sourness	HCI	Acid-sensing ionic channels (ASICs) ^{15,16} ,
		polycystic kidney disease (PKD) channels ³⁵ ,
Sweetness	Sucrose	T1R2+T1R3 ²⁸
Bitterness	MgSO ₄ , salicin, denatonium, quinine, <i>N</i> -phenylthiourea, and	T2Rs ^{29,17,27,37}
	6-propyl-2-thiouracil, cycloheximide	
Saltiness	NaCl	Epithelial Na channel (ENaC) ^{14,28,36}
Umami	Glutamate	T1R1+T1R3 ^{14,36}

Chunsheng Wu,^{a,b} Peter B. Lillehoj^c and Ping Wang,^{a,b}*

ANALYST


1

MINIREVIEW

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based optical and electrical sensors. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are general, characterized by high sensitivity and specificity. This short review summarizes the state of the art in tissue- and cell-base biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices a employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode a (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced autom on While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

1. Introduction

Tissues and cells are complex biological systems which can detect multiple chemical and biochemical signals in complex environments with a high level of performance that currently cannot be matched by artificial devices. For example, vertebrate olfactory systems can recognize and discriminate thousands of odorants at trace levels due to the highly developed sensing capabilities of olfactory cells and epithelial tissues.¹⁻³ Similarly, taste cells and taste buds can simultaneously sense multiple taste signals elicited by different tastants.⁴⁻⁷ These capabilities are also exhibited by neurons and neural networks, which can respond to multiple biochemical signals transmitted via neurotransmitters.⁸⁻¹⁰ For these reasons, cells and tissues are promising candidates as recognition and sensing elements for bioanalytical and sensors.

Rapid advancements in microfabrication technologies have paved the way for the development of miniature biosensors that can be coupled with living cells and tissues.¹¹⁻¹³ These devices employ transducers that are typically on the order of 10's to 100's of microns in size, which facilitates their coupling with biological elements. Thoughtful device design and

- ^a Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang
- University, Hangzhou 310027, China

and tissues onto sensors with high efficiency and a negligible loss of functionality, which can improve the detection responsive signals from target compounds. The integration of biosensors with microfluidics can offer additional advantager including small liquid volumes, which can significantly redule sample and reagent consumption, and increased analyte transport (i.e. diffusion). Furthermore, microfluidic biosensc s can offer enhanced automation which minimizes the time and error due to manual sample processing. A variety of tissuand cell-based biosensing platforms have been developed which utilize common analytical detection techniques such electrochemistry, potentiometry and fluorometry.

integration strategies have enabled the incorporation of cen-

In this review, we summarize the state of the art in tissueand cell-based biosensors for chemical sensing and biochemical analysis focusing on those using taste, olfactory, and neural cells and tissues. A comprehensive comparison of these technologies is presented in Table 1. Since many of the systems employ similar integration strategies, this review is organized according to the types of sensors that are use mainly microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs) Key innovations and limitations of these systems will be discussed as well as future opportunities and prospects for tissue- and cell-based biosensing systems.

2. Biosensors based on taste sensation

Biological taste systems are natural chemical sensing system that can distinguish the five "basic" tastes (sweet, bitter, so salty, and umami) providing organisms with essential

^{b.} State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China

^c Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA

^{*} Corresponding author: Ping Wang (cnpwang@zju.edu.cn, Tel/Fax: 86-571-87952832)

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

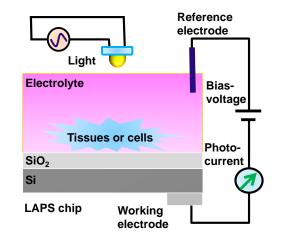
56

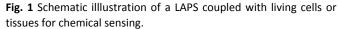
57

58

59

60


MINIREVIEW


information on the quality and nutrition of food. Taste cells and taste buds are key components of biological taste systems and exhibit unique characteristics for the detection of chemical signals in response to tastants. Taste sensation is facilitated through taste receptors, which are located on the surfaces of taste cells and taste buds. The most common taste receptors and corresponding tastants utilized for taste biosensors is summarized in Table 2.

2.1 Taste cell-based biosensors

Taste cells coupled with LAPSs. A LAPS is a semiconductorbased sensor that uses light to detect changes in the surface potential. Due to its ability to perform spatially resolved measurements, LAPSs are useful for monitoring extracellular signals from cells. Fig. 1 shows the basic mechanism of a LAPS based on an electrolyte-insulator[SiO₂]-semiconductor[Si] substrate. Upon illumination of light, the LAPS semiconductor surface produces electron-hole pairs due to the absorption of light energy. A bias voltage is applied to the LAPS chip, via a reference electrode and working electrode, to avoid the rapid recombination of the electron and hole. As a result, a photocurrent is generated which can be detected by a peripheral circuit. When cells or tissues are cultured on a LAPS surface, changes in their extracellular potential will subsequently alter the local surface potential of the sensor which can be detected by measuring fluctuations in the photocurrent.

Compared with other types of sensors, such as MEAs or FETs, LAPSs can achieve high spatial resolution by simply focusing the light on the target cells, which avoids the need for complicated cell positioning. One of the earliest demonstrations of a taste-based LAPS was reported by Zhang et al. for extracellular potential recordings of rat taste receptor cells (TRCs) in response to a tastant mixture.¹⁴ It was observed that extracellular signals from the tastant mixture (NaCl, HCl, MgSO₄, sucrose and glutamate) generated different burst shapes and amplitudes compared with the signals from a control sample (cell culture media), demonstrating the feasibility of this this technology. To explore the possibility of

discriminating distinct tastants from LAPS extracellular recording measurements, Chen et al. developed a LAPS to analyze the temporal firing rate of TRCs in response to HCl and a tastant mixture.¹⁵ Distinct firing responses were observed HCl, the tastant mixture (MgSO₄, sucrose and monosodiu . glutamate (MSG)) and a control sample. Additionally, the firin rate was observed to be dose-dependent for HCl. This device was also able to distinguish different types of TRCs based (n temporal firing responses by employing principal component analysis (PCA) for signal processing, and was used 🕗 demonstrate the enhancive and inhibitory effects c exogenous adenosine triphosphate (ATP) on the spontaneor s firing rate. This work was further developed by incorporation computational models of acid-sensing TRCs to simulate their action potentials which improved the analysis of the extracellular signals.¹⁶ Bitter-sensitive TRCs have also been coupled with a LAPS device for bitter substance detection. Similar to the approach by Chen et al., signal processing of the extracellular signals was performed using PCA, which enable the discrimination of three distinct tastants including MgSO₄, denatonium, and salicin.

In addition to detecting potential changes from _____ directly attached on LAPS surfaces, sensitive membranes have been integrated onto LAPSs to detect specific analytes. Based on this approach, LAPS devices have been used for tre detection of neurotransmitters released by TRCs, which plaan important role in taste signal transduction and transmissic ... In particular, serotonin (5-hydroxytryptamine, 5-HT) and A are common neurotransmitters associated with taste cell-thcell communication.¹⁸⁻²⁰ Chen et al. developed a LAPS which was modified with a thin serotonin-sensitive polyvinyl chlorice (PVC) membrane for the detection of 5-HT by TRCs.²¹ The serotonin-sensitive PVC membrane exhibited inhibitory effects to Na⁺, K⁺ and quaternary ammonium ions and good stability h. solutions with pH 2–9, which is very important for taste c_{i} measurements that need to be performed in comple. microenvironments (e.g. acid-sensitive cells need to 📂 stimulated by solutions with low pH values).^{22,23} This biosens. could detect 5-HT released from TRCs upon the application of HCl and a tastant mixture (MgSo₄, sucrose and MSG) wisca lower detection limit of 3.3×10^{-13} M and a sensitivity of 19.1 mV per concentration decade. In addition to serotonin detection, the detection of ATP secreted from TRCs unit LAPSs has also been explored. Wu et al. developed a LAPS functionalized with ATP-sensitive aptamers for the detection of ATP released from TRCs during cell-to-cell communication Compared with using an analyte-specific PVC membrane, ATPsensitive aptamers are more stable since they are less sensitive to environmental, chemical and temperature changes. Local ATP secretion from a single TRC could be detected in respone to a simulated tastant mixture (MgSO₄, sucrose, MSG) by monitoring the working potential shifts of the LAPS. The biosensor exhibited a dose-dependent response to ATP 📄 concentrations from 10⁻⁸ to 10⁻⁴ M. Measurements were also performed in response to octanol, an inhibitor of TRCs. T results showed a significant decrease in the working potential,

MINIREVIEW

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

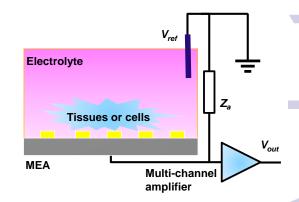
58

59

60

validating the inhibitory effects of octanol on ATP secretion from TRCs.

While isolating primary TRCs from rats is a relatively straightforward process,^{25,26} collecting a sufficient amount of cells is challenging due to the limited number of cells in a rat tongue and the low efficiency of cell isolation. In addition, the types of receptors expressed in primary taste cells are not well defined, which can result in inconsistent responses from similar taste substances. To address these issues, bioengineered TRCs have been used as sensing elements which are generated by expressing defined taste receptors in a heterologous cell system. Compared with primary taste cells, bioengineered taste cells can respond to specific tastants in a more stable and repeatable manner due to their homogeneity. Du et al. coupled bioengineered TRCs with a LAPS device for label-free functional assays of chemical receptors.²⁷ Human embryonic kidney (HEK)-293 cells, engineered to express hT2R4 taste receptors, were cultured on the LAPS surface. The specific ligand binding function of the receptors was monitored localized extracellular acidification by measurements, which detects changes in proton generation by the cells. A dose-dependent response to the bitter compound denatonium was observed at concentrations of 50, 200 and 500 nmol/L. Since LAPSs are sensitive to changes in the electrical charge of the surface, the main advantage of localized extracellular acidification measurements over extracellular potential recording measurements is that the sensor surface does not need to be modified which greatly simplifies device fabrication.


Taste cells coupled with carbon screen-printed electrodes. Carbon screen-printed electrodes (CSPEs) are a type of electrochemical sensor which can be used to detect changes in electrical impedance at an electrolyte-electrode interface. When cells or tissues are coupled to the surface of a CSPE, morphological changes in response to specific stimuli will alter their impedance, which can be detected by the electrodes. Compared with LAPS extracellular measurement, which are only suitable for electrically excitable cells, impedance measurements using CSPEs can monitor extracellular signals from non-electrically excitable cells.

Bioengineered tasted receptor cells have been combined with CSPEs for the detection of sweet and bitter substances. Human colorectal carcinoma NCI-H716 cell lines expressed with α -gustducin and the sweet taste receptor T1R1/T1R3 were coupled with CSPEs to develop a sweet cell-based biosensor.²⁸ The response of the cells to HCl, NaCl, MgSO₄ and different concentrations of sucrose solutions was monitored by electrochemical impedance spectrum measurements. Bistable stochastic resonance (BSR) was employed for data processing and signal amplification, which couples additional noise to a bistable nonlinear system and enables weaker signals to be distinguished from the background noise. Using BSR analysis, the four basic tastants and sucrose concentrations from 17-200 mM could be distinguished from each other. Based on a similar platform, G protein-coupled receptors (GPCRs) and type 2 member (T2R) receptors expressed in human enteroendocrine STC-1 cells were used as

recognition elements for the detection of different concentrations of bitter substances including quinine, *N*-Phenylthiourea and 6-propyl-2-thiouracil.²⁹ This biosensor could selectively respond to various concentration of the ebitter compounds while generating a negligible response sucrose.

Hui et al. also developed a CSPE biosensor for impedance measurements of taste cells in response to sweet and bitt r tastants.³⁰ In contrast to prior works using this technology, this device employed NCI-H716 cells expressing GPCRs and T1R1/T1R3 receptors and STC-1 cells expressing GPCRs and T2R receptors. A unique double-layered cascaded series stochastic resonance (DCSSR) method was used for da processing and signal amplification, where several stochas resonance systems are connected in series so the output of the first single-layered stochastic resonance signal is used as the input of the second single-layered stochastic resonan e signal. This approach was able to achieve improveu discriminating abilities and higher sensitivity f 4 sucrose/quinine tastant mixtures than the more commonly used bistable stochastic resonance method.

Taste cells coupled with MEAs. A MEA is a device comprised of multiple microelectrodes to per simultaneous measurements at multiple sites on the sensor surface. Fig. 2 shows the coupling of cells or tissues with a chip for extracellular recording measurements of c II membrane potential. The physical mechanism behind MEA biosensors is based on the principle that cells and tissu s generate a transmembrane current in response to specific stimulations, which is caused by the opening of ion channels the cell membrane. This alters the cell membrane potenti, which subsequently changes the electric field across the cellular membrane and polarizes the microelectrodes that arc in contact with the cells. The charge distribution at t. • interface between the electrode and electrolyte can be measured by the microelectrodes, which are commor v coupled with external electronics for signal amplification, processing and analysis. A major advantage of MEA biosense is over LAPSs or FETs is that they enable high throughput measurements due to having a large number of electrode This is particularly useful when they are coupled with bioengineered cells which generally suffer from poor

Fig. 2 Schematic illustration of a MEA coupled with cells or tissufor extracellular recording measurements.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

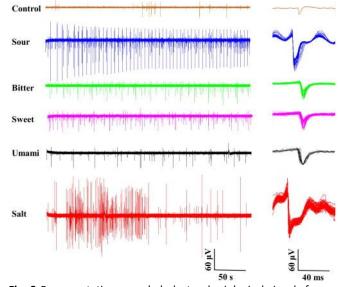
56

57

58

59

60


MINIREVIEW

transfection efficiency.

As with all taste sensations, there are a variety of taste cells responsible for the sour sensation. Polycystic kidney disease (PKD) channels, which belong to a family of transient receptor potential ion channels, are generally used as molecular sensors for sour sensation because of their acid sensing capability and well-known biological mechanisms.³¹⁻³⁴ Wu et al. developed a cell-based biosensor using HEK-293 cells expressing PKD channels coupled with a 6×6 MEA.³⁵ Extracellular recording measurements were monitored in response to HCl and a tastant mixture containing MgSO₄, sucrose and MSG. Extracellular recording signals from the sour tastant were up to 4× as large as those from the mixture sample and control sensors, which contained HEK-293 cells without PKD channels. Compared with the onset response of acidic stimuli recorded by LAPSs,¹⁶ this biosensor is able to record the unique "offresponse" of PKD channels when stimulated by a set of sour stimuli (pH 7.0-2.5-7.0-4.0), which indicates that acid-activated PKD channels do not generate a transmembrane current until the removal of acid stimulus.

2.2 Taste tissue-based biosensors

Taste epithelium coupled with MEAs. Epithelia tissue from the tongue contains various types of taste buds, which are specialized structures that can simultaneously respond to multiple tastants. Upon application of a tastant, the detected signals are converted into cellular responses, such as changes in the membrane potential or the release of neurotransmitters. Due to its unique capability for taste sensation, taste epithelium has been used as a sensitive element for biosensors. While this approach has the potential to achieve multiplexing and high sensitivity measurements, the responsive behaviors of taste epithelium are complicated and unclear, which makes

Fig. 3 Representative recorded electrophysiological signals from a tongue epithelium MEA biosensor in response to the five basic tastants. The recorded potentials of the complete waveform are shown on the left and the spike sorting maps are on the right. (Reproduced with permission from ref. 36. Copyright 2013 Elsevier)

it difficult to obtain distinct and stable sensing signals, and interpret the data. As a result, there are only a few studies that report on the utilization of taste epithelium as sensitive elements for bioanalytical and chemical sensors.

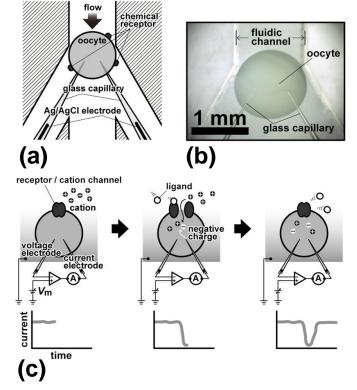
Liu et al. developed a MEA biosensor using epithelium fro . a rat to detect the five basic tastants via extracellular potential recordings.³⁶ Representative electrophysiological signals recorded by one channel of the MEA, in response to HCl, Na⁻¹, quinine–HCl, glucose and MSG are shown in Fig. 3. This data shows that the presence of taste stimuli generates significate action potentials compared with the native activities from the control sample. Additionally, the response patterns ard waveforms from different stimuli are unique, which reflect the distinct properties of these tastants.

A similar MEA taste epithelium-based biosensor was developed by Liu et al. for the detection of bitter compounds.³⁷ Electrophysiological activities, including t. e firing rate, amplitude and power spectrum, of taste epithelium before and after application of quinine, denatonium at a cycloheximide were measured. Each of these tastants exhibited unique field potentials with respect to the duration and amplitude of the signal. In addition, dose-dependent responses for three concentrations (10 μ M, 1 mM and 10 of these tastants were observed. Specifically, the amplitude and firing rates of extracellular potentials increased in higher tastant concentrations. The authors also noted that measurements could be performed up to 24 hrs after tissue isolation with a negligible loss in the signal.

3. Biosensing based on olfaction

The olfactory system is a biological sensory system capable recognizing and discriminating thousands of odorants even 7 trace levels. The fundamental elements of the olfacto. system are olfactory cells which contain numerous olfactory receptors. Olfactory cells are located in olfactory epithelium mammals and olfactory sensilla in insect antennae. Due to their unique sensing ability, olfactory cells and sensilla ha been utilized in biosensors for various applications including the detection of drugs, toxins and explosive reside. Researchers have also focused on the development u. electronic noses that can recognize and detect odors and flavors. These devices typically consist of an olfactory-based biosensor array coupled with pattern recognition systems to mimic the human olfaction process. The responsive signals from an olfactory biosensor usually exhibit characteristic features in the time or frequency domain, which can be extracted and analyzed by pattern recognition or classification techniques such as PCA, artificial neural networks (ANN), and genetic algorithm (GA).

3.1 Olfactory cell-based biosensors


Olfactory cells coupled with LAPSs. Similar to taste cells, olfactory cells can be obtained from animals or bioengineered methods. Primary olfactory cells are generally isolated 1. To rodents, which is convenient, but limited due to the fact that

MINIREVIEW

ANALYST

olfactory cells contain many different types of olfactory receptors. This could potentially influence the performance of the biosensor since different types of olfactory receptors can generate different responsive signals to the same odorant. In contrast, bioengineered olfactory cells can be generated by expressing specific olfactory receptors in a heterologous cell system, which offers better-defined sensing capabilities. Cells obtained from both methods have been coupled with LAPS devices for odorant detection and studies on olfactory signal transduction.

Liu et al. employed primary olfactory cells isolated from rats, which were directly cultured on a LAPS surface for the detection of acetic acid and glutamic acid.³⁸ Changes in the membrane potential of the olfactory cells were monitored in response to these two chemical stimuli via extracellular recording measurements. The recorded signals were processed using fast Fourier transform (FFT) analysis which resulted in characteristic signals at a unique frequency (24 Hz). To better understand the mechanisms behind the generation of extracellular signals using LAPSs, Wu et al. used a similar biosensing platform to perform measurements on olfactory signal intracellular transduction pathways using MDL12330A and LY294002, which are compounds that inhibit and enhance the adenylyl cyclase and phosphatidylinositol 3-kinase (PI3K), respectively.³⁹ Extracellular recordings of rat olfactory receptor neurons (ORNs) revealed that the application of MDL12330A

Fig. 4 Schematic illustration (a) and photograph (b) of a *X. laevis* oocyte trapped inside a microchannel and connected to two capillary electrodes. (c) Principle of cell membrane potential monitoring by the two-electrode voltage clamp method (TEVC). (Reproduced with permission from ref. 43. Copyright (2010) National Academy of Sciences, U.S.A.)

significantly decreased the number of firing spikes compared with control samples. Conversely, application of LY294002 significantly increased the number of firing spikes compared with the control measurements. This work showed that addition to odorant detection, olfactory cell-based biosense can be useful for studying the biological mechanism behin olfactory signals transduction.

Olfactory cell-based biosensors have also been coupled with bioengineered olfactory cells, which are expressed with well-defined olfactory receptors and can offer improved sensitivity, repeatability and device stability. Toward this enu, Du et al. developed a LAPS-based platform for odora t detection using bioengineered ORNs.⁴⁰ ODR-10, an olfacto receptor of C. elegances, was expressed in rat ORNs whi were cultured on the sensor surface. Extracellular recordings of the ORNs were performed in response to different concentrations of diacetyl, a natural ligand of ODR-10. A dos dependent response was observed from 0.1 µM to 100 µlvi, where the amplitude patterns of the temporal firi g corresponded to the concentration of diacetyl. Additionally, specific firing patterns were observed under low/ <... concentrations. ODR-10 has also been expressed in HEK-293 cells and coupled with a LAPS for localized extrace acidification measurements.²⁷ A dose-dependent response was observed for diacetyl concentrations of 10, 50 and 100 nm Additional studies were performed using MDL12330A, In inhibitor of adenylyl cyclase, which resulted in diminished cellular signals compared with measurements using or y diacetyl.

Olfactory cells coupled with microelectrodes. Ling et ... employed a 60-channel MEA to monitor the membrar potential changes of primary ORNs upon the application odorant stimuli.⁴¹ ORNs were cultured on the MEA surface and extracellular signals of ORNs were monitored in respon to increasing concentrations of dl-limonene and isoamyla acetate. The firing spikes occurred when the od r concentration exceeded $1.9\times10^{\text{-5}}~3.3\times10^{\text{-5}}$ mol/L for dIlimonene and 4×10^{-6} - 1.6×10^{-6} mol/L for isoamyle acetat \ge Lee et al. developed a microfabricated planar electrode coupled with HEK-293 cells expressing the olfactory recent 17 and transfected with the gustatory cyclic nucleotide gau (CNG) channel.⁴² CNG channels were used to amplify the membrane potential. Measurements of HEK-293 cells expressing I7 and cells co-expressing I7 and the CNG channel were performed upon application of a 10 mM octar J solution. A 2.5× larger field potential (~10 mV) was observe. for co-expressed cells compared with cells only expressing ... (~4 mV). Measurements were also performed using 1, 5 ar 10 mM octanal solutions, which exhibited a dose-depen extracellular potential response.

To improve the integration of cells with microelectrode, Misawa et al. developed a microfluidic biosensor for odorant sensing.⁴³ X. *laevis* oocytes expressed with four insert olfactory receptors (BmOR1, BmOR3, PxOR1, and DOr85b) were immobilized inside a microchannel trap. Measurement were performed by the two-electrode voltage clamping (TEV method using two glass capillary Ag/AgCl electrodes, as

59

60

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52 53

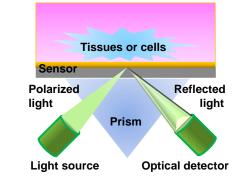
54

55

56 57

58

59


60

MINIREVIEW

shown in Fig. 4a and b. Changes in the cell membrane potential were observed in response to different concentrations of 2-heptanone (odorant) and three pheromones (bombykol, bombykal, Z11-16:Ald)(Fig. 4c). For all of these analytes, the sensor exhibited dynamic ranges of 10 nM–1 μ M and a sensitivity of a few parts per billion (ppb). This platform was further developed by Tomida et al. by incorporating microfabricated gold electrodes within the microchannels.⁴⁴ The microfluidic network was designed to separate and trap single oocytes at individual electrodes for TEVC measurements. A dose-dependent response upon application of 0.3, 1.0 and 3.0 M KCl solutions was observed.

Olfactory cells coupled with surface plasmon resonance (SPR) sensors. SPR biosensors are based on the principal of surface plasmon resonance, where a plasmon wave is generated at the interface of a negative and positive permittivity material by incident light. Fig. 5 shows the physical mechanism of a SPR biosensor coupled with cells or tissues. The typical configuration of a SPR sensor consists of a prism with one face covered by a thin metal film, a light source, and an optical detector. The refractive index at which the surface plasmon resonance occurs is measured to monitor the physical property changes on the sensor surface (usually within a few hundred nanometers). When the tissues or cells respond to specific stimuli, changes in the intracellular components within the basal portion of the cells will subsequently shift the refractive index of the reflected light. Compared with LAPSs or MEAs, SPR biosensors can directly measure changes in intracellular components in regions near the sensor surface.

J.Y. Lee et al. developed a SPR biosensor using bioengineered HEK-293 cells for odorant detection.⁴⁵ ODR-10 was expressed in HEK-293 cells and cultured on the gold SPR sensor, which was precoated with poly-D-lysine to aid cell adhesion. The binding of odorant molecules initiates a cascade of intracellular signal transduction, resulting in an increase of cytosolic Ca²⁺ within the basal portion of the cells. This increase in ion concentration results in changes in the cell morphology near the sensor surface which can be detected by monitoring the shift in the resonance angle of the SPR waves. Measurements were performed using 0.01, 0.1 and 1 mM of diacetyle, a natural ligand of ODR-10, which revealed a dosedependent response. S.H. Lee et al. developed a similar SPR biosensor which employed HEK-293 cells expressing ORI7,

another olfactory receptor.⁴⁶ This device exhibited a dosedependent response to octanal, a natural ligand of ORI7, at concentrations of 0.1, 1.0, 10 and 100 mM. Octanal solutions above 100 mM (i.e. 1 M) resulted in non-reproducible Jux, signals, which the authors attributed to toxicity effects of the olfactory cells. The authors noted that the sensitivity of the biosensor could be improved by incorporating high influx icn channels into the cell membrane or modifying the plasmoric structure.

Olfactory cells coupled with fluorometry. A fluorescencebased olfactory biosensor was developed by Radhika et al. fu. chemical sensing of explosive compounds.⁴⁷ S. cerevisiae yea t cells were constructed and expressed with Olfr226, olfactory receptor, which was coupled with a gree fluorescent protein (GFP) reporter system. The expression of the GFP gene is driven by the cyclic adenosine monophosphate (cAMP) response element binding protein promoter, which s sensitive to changes in intracellular cAMP levels. The binding of odorant molecules to olfactory receptors increases t' e concentration of cAMP, which promotes the expression of the GFP gene and generates a fluorescence signal. Bioengine cells expressed with R7, a specific olfactory receptor responded to octylaldehyde at concentrations down to 25 Additionally, the fluorescence signals showed a timedependent response which steadily increased after 1 hr reached the maximal intensity at 3 hr. Measurements we e also performed using bioengineered cells expressed with Olfr226 to sense 2,4-dinitrotoluene, an explosive resid e mimic, which could be detected at concentrations down to 25 μM.

3.2 Olfactory sensilla and tissue-based biosensors

Insect antennae combined with FET devices. FETs a *e* another type of commonly used transducer for extracellula. recordings of cells or tissues that can detect membrar *e* potential changes in response to specific stimuli. Fig. 6 show, the configuration of a FET device coupled with cells or tissues on the gate surface via an electrolyte solution, where reference electrode is placed in the electrolyte solution. Upon exposure to specific stimuli, the membrane potential of the cells or tissues changes and alters the channel conductance

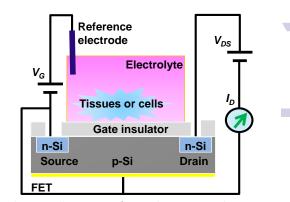
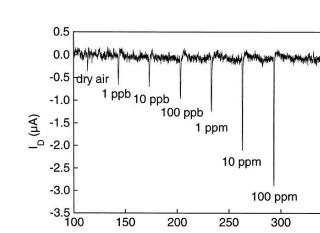
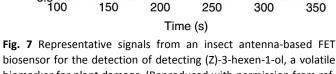



Fig. 6 Schematic illustration of a FET biosensor with tissues or collection of the second sec


Fig. 5 Schematic illustration of a SPR sensor coupled with tissues or cells for chemical sensing.

60

ANALYST

1

biosensor for the detection of detecting (Z)-3-hexen-1-ol, a volatile biomarker for plant damage. (Reproduced with permission from ref. 49. Copyright 2000 Elsevier)

under the gate surface. Changes in the channel conductance are detected by monitoring the drain current with respect to the electrolyte conductance. An advantage of FETs over LAPSs for extracellular recording measurements is their high input impedance, which enables direct coupling of the cells with the gate surface of the FET sensor. This simplifies device fabrication and improves the mechanical and electrical stability of the cell-sensor surface.

Antennal olfactory sensilla are specialized organs found in many insects which enable them to sense environmental chemical compounds. Intact antennae of L. decemlineata (Colorado potato beetle) have been used as sensitive elements for the detection of specific odorants.⁴⁸ The antenna was connected to the gate of a FET device using a hemolymph Ringer solution as an electrolyte. This device was used to detect (Z)-3-hexen-1-ol, a volatile biomarker for plant damage, which could be detected from 0.1 parts per million (ppm) to 100 ppm. Additionally, this device exhibited a response time of < 1 sec and high reversibility in air. A similar biosensor was employed by Schütz et al. for monitoring plant damage in a greenhouse setting.⁴⁹ This biosensor could detect (Z)-3-hexen-1-ol from 0.1 ppb to 100 ppm in air (Fig. 7), which the authors claimed can distinguish a single mechanically or beetledamaged plant among 1,000 undamaged plants in a greenhouse. The authors also noted that the lifetime of their biosensor was ~ 4 hrs.

Olfactory tissue coupled with microelectrodes. Rather than using intact insect antennae, which can be difficult to prepare, olfactory cells isolated from antennae have been employed for olfactory biosensors. Huotari coupled microelectrodes with ORNs in an olfactory sensillum of a blowfly for the detection of several odorants including 1,4diaminobutane, 1-hexanol, and butanoic acid.50 Measurements were performed by analyzing the action potential rates in response to the application of these odorant compounds. This device could detect 1,4-diaminobutane from a few ppb to 100 ppm, 1-hexanol from 8 ppm to 500 ppm and butanoic acid from 20 ppm to 200 ppm. The author noted that

MINIREVIEW

the upper detection limit of this biosensor is due to odorant saturation of the ORNs, which hinders action potential production.

MEA biosensors for electrophysiological recording measurements using olfactory epithelium isolated from the noses of rats were developed by Liu et al.51-53 The use MEAs enabled simultaneous measurements at multiple citor on the tissue for spatio-temporal analysis. Analysis of electrophysiological recording measurements revealed that different firing modes were elicited in response to differe τ odorant stimuli, such as ethyl ether, acetic acid, butanedione, and acetone. In addition to intact olfactory epithelium, r t olfactory epithelium sagittal slices with intact connection the olfactory bulb were coupled with a 8 × 8 MEA device f spatial odor detection.⁵⁴ Parallel multi-site extracellular recordings showed that the application of isoamyl acetate or I-carvone increased the frequency of spiking activity in a dos :dependent manner. The enhancive effects of forskolin and 3isobutyl-1-methylxanthine were also observed using the biosensor, which resulted a unique, partially overlapping spatial distribution pattern compared with those of iso acetate and I-carvone. Olfactory bulb slices from rats have also been coupled with a MEA device for multi electrophysiological recording measurements of neural networks.⁵⁵ The recorded electrophysiological activities evaluated by spike detection and cross-correlation analysis n response to glutamic acid. These results revealed that higher concentrations of glutamic acid increased the amplitude of t e signals as well as the firing rates. Additionally, preliminary results showed that different sites of the bulb slice elicity different electrophysiological characteristics and firir patterns in response to glutamic acid, which could be detected at concentrations down to 100 µM. The authors noted that further studies are needed to improve device sensitivity and determine a possible correlation between odorant stimulation and site-specific response.

While the majority of tissue and cell-based biosensors employ biological materials isolated from animals, Dong et I. undertook an alternative approach by implanting a 16-channei microwire electrode array into the olfactory bulb of a rat for vivo extracellular potential monitoring.⁵⁶ The extracelular potential of mitral/tufted (M/T) cells was monitored in response to carvone and isoamyl acetate at concentrations from 10^{-15} M to 10^{-5} M. From these experiments, the fining patterns showed noticeable differences in temporal and ra e features in response to different odorant stimuli and concentrations. An algorithm based on population vecto. similarity and support vector machine (SVM) was employed classify the odorants, which exhibited accuracies betweer 96%. Based on these results, the authors claimed a detection limit of some odorants as low as 1 ppm, which is ~10× low r than the detection limit of biosensors using in vitro olfactor bulb as sensing elements.⁵⁵ However, the utilization of in v_i , γ olfactory tissues requires much more complicated surgery on animals and well-controlled animal status dur: o measurements. While further characterization is required, to... in vivo biosensor represents a promising technology for the

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

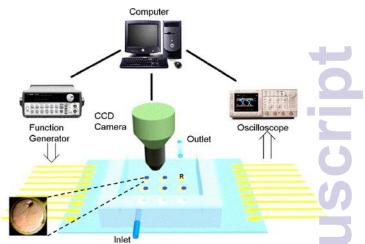
57

58

59

60

MINIREVIEW


detection of various drug and explosive compounds and for brain-machine interface (BMI) research.

Olfactory tissue coupled with LAPS. Liu et al. combined olfactory epithelium with a LAPS for odorant detection.⁵⁷ Olfactory mucosa epithelium was affixed to the surface of a LAPS, and measurements were performed in response to acetic acid and butanedione. The results showed that different frequencies and firing modes were elicited in response to these two odorants. Specifically, butanedione stimulation elicited an increase in signal at 6.1 Hz and 9.2 Hz, while a characteristic peak at 7.6 Hz was registered for acetic acid stimulation. When using fresh isolated tissue, the authors noted that their biosensor exhibited a lifetime of up to 2 hrs. Compared with using olfactory cells, obtaining precise extracellular recording measurements using olfactory epithelium is complicated due to the superposition of extracellular potentials from adjacent cells in the tissue, which can lead to difficulties in analyzing the recorded signals.

Olfactory tissue coupled with fluorometry. Recently, Strauch et al. developed a biosensor utilizing the olfactory system of the D. melanogaster fruit fly for the discrimination of cancer cells from non-cancer cells.⁵⁸ This approach is based on the detection of distinct volatile compounds emitted by cancer cells, which has been previously reported as a noninvasive technique for cancer screening.^{59,60} Briefly, GCaMP, a green fluorescence reporter protein with a Ca²⁺ binding domain, was expressed in antennal ORNs. Fruit flies were then exposed to different odorants taken from the headspace of the culture media of five different cancer cell line samples. The presence of odorants from cancer cells resulted in an increase in Ca²⁺ concentration, generating a higher fluorescent signal. Multidimensional analysis was performed on the recorded responses of the antenna, which indicated that characteristic response vectors could be achieved upon stimulations by volatiles elicited from different cancer cell types. Furthermore, it could be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This proof of concept work shows that olfactory-based biosensors could be an effective technology for non-invasive diagnosis of cancer or other diseases. Compared with insect antenna FET biosensors, which can only provide measurement from a single location on the sensor surface (i.e. the gate of the FET), this fluorescence biosensor is able to read out multiple olfactory receptors from various sites on an insect antenna. However, the time resolution of fluorescence imaging is several orders of magnitude lower compared with extracellular recordings measurements using electrical sensors.

4. Biosensors based on neural cells and tissues

While biosensors based on taste and olfactory cells and tissues are the most common due to their natural capabilities for chemical sensing, many other types of cells and tissues have been employed in biosensors for chemical and biochemical analysis. In this section, we focus on devices that employ neurons and neural networks integrated with electrical transducers such as microelectrodes, MEAs, and FETs.

Fig. 8 Schematic illustration of a neuron-based MEA biosensor for chemical sensing. This system employs dielectrophoretic traps o manipulate single neurons, which are monitored electrically and optically in response to chemical stimuli. (Reproduced with permission from ref. 61. Copyright 2004 Elsevier)

4.1 Neuron-based biosensors

Neurons are electrically excitable cells that generate action potentials in response to electrical or chemical stimuli. This makes them ideal candidates for the development of electrical biosensors for chemical sensing. Prasad et al. developed a neuron-based MEA biosensor which employed positi e dielectrophoretic traps to position single neurons on individua. electrodes.⁶¹ As shown in Fig. 8, this biosensor is able monitor single neurons electrically and optically in response * chemical stimuli. The MEA was encapsulated in a silicon microfluidic chamber and the entire device was enclosed in an environmental chamber maintained at 37°C and 5% CO₂. T e extracellular potential signals of H19-7 hippocampal neurons were processed and analyzed using FFT and wavelet transfor n analysis. The lower detection limits for a single neuron was 9 ppm, 19 ppm, 280 ppb and 180 ppm for ethanol, hydrog n peroxide, pyrethroids and ethylene diamine tetra acetic aciu (EDTA), respectively. An additional study was carried out to determine if this single neuron-based biosensor cuid distinguish chemical agents in an unknown sample by exploiting the unique electrical identifiers generated by the neurons.⁶² The authors showed that their biosensor exhibition a prediction capability for identifying ethanol, pyrethroid, ar hydrogen peroxide in an unknown test sample. Furthermor their device exhibited lower detection limits of 9 ppm, 180 p and 19 ppm for ethanol, pyrethroid and hydrogen peroxide respectively. Prasad et al. further applied this single-neuron MEA biosensor for the detection of unburned fossil fuel compounds.⁶³ Two types of fuels, diesel and gasoline, we e measured, which could be detected at concentrations down to 30 ppb and 280 ppb, respectively.

While neuron-based biosensors have shown tremendous promise for bioanalysis and chemical sensing, the performance can be influenced by multiple factors inclue. the size of the microelectrodes and the local temperature of

MINIREVIEW

ANALYST

the neurons. Studies were performed by Yang et al. to investigate the influence of electrode geometry and environmental parameters on the performance of singleneuron MEA biosensors.⁶⁴ They observed a ~1.3× decrease in the background noise by increasing the diameter of microelectrodes from 80 μ m to 110 μ m. In addition, fully immersing the microelectrodes in media solution and achieving a good microchamber seal reduced the noise level by a factor of ~1.5. To investigate the influence of temperature on neural sensing properties, Kurdikar et al. developed a biosensor integrating W1 and W2 neurons from L. stagnalis (great pond snail) with glass capillary microelectrodes.⁶⁵ Changes in the maximum firing frequency in response to 5-HT at concentrations of 10⁻⁶ M to 10⁻³ M were measured between 20-32°C. An increase in maximum firing frequency and sensitivity with higher temperatures was observed up to 32°C, which demonstrate the capability of neural biosensors to operate at elevated temperatures.

Alternatively, Pearce et al. developed a microfluidic MEA biosensor to measure the electrical activity of neurons under controllable fluid conditions.⁶⁶ Dorsal root ganglia neurons from adult mice were cultured onto a MEA. The local temperature of neurons was dynamically controlled by the fluid flow inside the microchannels. Extracellular recording measurements indicated that changes in the solution temperature had a strong effect on the firing characteristics of the neurons. Warm solution (35°C) resulted in the firing rate of neurons to drop to almost 0 spikes/s. Conversely, cold (16°C) solution caused the firing rate to increase to ~1 spikes/s.

4.2 Neural network-based biosensors

Biological neural networks consist of a series of neurons that are interconnected via synapses to dendrites on other neurons. Since neural networks retain the connectivity between neurons, they can provide measurements with improved sensitivity compared with individual neurons. In addition, neural networks can provide faster response signals than those from individual neurons. Generally, these devices monitor changes in the action potential patterns based on extracellular potential recordings generated from MEAs, FETs or LAPSs.

Gross et al. developed a neural network-based biosensor using MEAs for odor, drug and toxin analysis.⁶⁷ Primary cultures of murine spinal cord neurons were coupled with a 64-channel MEA for electrophysiological recording measurements. Measurements of neural networks upon applications of strychnine (synaptically active agents), biculline (competitive antagonist of gamma-aminobutyric acid A receptors), and gpl20 (protein of the AIDS virus) resulted in distinct burst patterns, demonstrating its ability to distinguish different chemical substances. The authors also noted that cultured neural networks exhibited different burst patterns in response to different strychnine application protocols (e.g. gradual vs. sudden application). Morin et al. developed neural network biosensing platforms comprised of three-dimensional PDMS microwells and channels integrated with MEAs.⁶⁸ Neural networks of primary cells from chick or mouse embryos were cultured on the sensor surface. Extracellular recordings of the cell cultures were monitored upon electrical stimulation, which resulted in distinct amplitude spikes. It was noted that electrical activity from primary cultures could be elicited . . more than four weeks, which demonstrates the stability of the technique for long term-measurements.

Towards a fully integrated, portable biosensing platform with temperature and flow control, Pancrazio et al. develop a neural network MEA biosensor for neurotoxin detection.⁶⁹ two-stage thermal control system with integrated fluidics w s employed to maintain a temperature of 36-37°C for neura network cultures. Cells from spinal cord or frontal cort murine tissue were cultured on MEA surfaces within PDN 1 microstructures. Extracellular recording measurements we performed in response to tetrodotoxin (TTX) and tityustoxin (ion channel blockers) which could be detected at concentrations down to 2 nM. Furthermore, this recording system could readily resolve extracellular potentials as small as 40 μ V. While the authors suggest that further development needed to integrate additional neural networks and improve signal analysis, this work demonstrates one of the functional and portable biosensing systems using living cells/tissues.

5. Conclusions

Tissue and cell-based biosensors are a promising biomedical technology which can be used to detect and analyze a wice spectrum of targets with a high degree of sensitivity and specificity. Many of these devices employ natural cells and tissues isolated from animals in order to preserve t' a recognition and sensing capabilities of these elements. Effor have also focused on the use of bioengineered cells and tissur which can enable greater flexibility in regards to analy recognition and signal transduction. Biosensors have also ber developed which employ intact biological structures (e. insect antenna) to maintain their natural functionality. While many promising proof of concept devices have be demonstrated, there are several issues that need to be addressed before these platforms can be used outside of ... settings. For instance, scalable methods to generate high quality living cells and tissues for use as recognition and sensing elements are needed. Current advancements in sten cell and tissue engineering may provide useful approaches to address this issue through the development of efficie t bioreactors.^{70,71} In addition, methods for improving the integrity and stability of living tissue- and cell-based biosensors are required. Progress in micro-/nanofabrication and surfale chemistry to improve the biocompatibility of sensor surfaces can improve device stability and facilitate sign ... transduction.⁷² Lastly, new approaches to integrate biosenso. with microfluidic components are desired to enhan automation and make these systems more user-friend Specifically, researchers are devising new methods for simplifying the integration of biosensors with microfl components and systems.^{73,74} With the emergence of new micro-/nanofabrication technologies and biotechnologies, we

56

57

58

59

60

MINIREVIEW

anticipate that next generation tissue- and cell-based biosensors will offer enhanced robustness, sensitivity and scalability. These efforts, combined with the use of different types of tissues and cells, will help to make this technology more useful for high impact applications such as environmental and food quality monitoring, toxin detection and disease diagnosis.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 31470956, 61320106002), the Zhejiang Provincial Natural Science Foundation of China (grant no. LY13H180002), and the Doctoral Fund of Education Ministry of China (grant no. 20120101130011).

Notes and references

- 1 H. Breer, Anal. Bioanal. Chem., 2003, **377**, 427.
- 2 L. Buck, and R. Axel, Cell, 1991, 65(1), 175.
- 3 A. Rinaldi, EMBO Reports, 2007, 8 (7), 629.
- 4 R.A. DeFazio, G. Dvoryanchikov, Y. Maruyama, J.W. Kim, E. Pereira, S.D. Roper and N. haudhari, *J. Neurosci.*, 2006, 26, 3971.
- 5 H. Matsunami, J.P. Montmayeur and L.B. Buck, *Nature*, 2000, **404**, 601.
- 6 J. Chandrashekar, M.A. Hoon, N.J. Ryba and C.S. Zuker, *Nature*, 2006, **444**, 288.
- 7 T.A. Gilbertson, J.D. Boughter, H. Zhang and D.V. Smith, *J. Neurosci.*, 2001, **21**, 4931.
- 8 A.K. Engel, P. Fries and W. Singer, *Nat. Rev. Neurosci.*, 2001, **2**, 704.
- 9 G. Buzsaki, Nat. Neurosci., 2004, 7, 446.
- 10 G. Buzsáki, C.A. Anastassiou and C. Koch, *Nat. Rev. Neurosci.*, 2012, **13**, 407
- 11 C.M. Ho and Y.C. Tai, Ann. Rev. Fluid Mech., 1998, **30**, 579.
- 12 R. Bashir, Adv. Drug Delivery Rev., 2004, **56**(11), 1565.
- 13 A.C.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, L.I. Yawen, M.J. Cima and R. Langer, PROC. IEEE, 2004, 92(1), 6.
- 14 W. Zhang, Y. Li, Q.J. Liu, Y. Xu, H. Cai and P. Wang, Sens. Actuators, B, 2008, **131**, 24.
- 15 P.H. Chen, B.Q. Wang, G. Cheng and P. Wang, *Biosens. Bioelectron.*, 2009, **25**, 228.
- 16 P.H. Chen, X.D. Liu, B.Q. Wang, G. Cheng G and P. Wang, Sens. Actuators, B, 2009, 139, 576.
- 17 C.S. Wu, L.P. Du, L.H. Mao and P. Wang, J. Innovat. Opt. Health Sci., 2012, 5(2), 1.
- 18 T.E. Finger, V. Danilova, J. Barrows, D.L. Bartel, A.J. Vigers, L. Stone, G. Hellekant and S.C. Kinnamon, *Science*, 2005, **310**, 1495.
- 19 R.A. Romanov, O.A. Rogachevskaja, A.A. Khokhlov and S.S. Kolesnikov, *J. Gen. Physiol.*, 2008, **132**, 731.
 - 20 N. Kaya, T. Shen, S.G. Lu, F.L. Zhao and S. Herness, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, **286**(4), R649.
 - 21 P.H. Chen, W. Zhang, P. Chen, Z.Y. Zhou, C. Chen, J.S. Hu and P. Wang, *Biosens. Bioelectron.*, 2011, **26**, 3054.
 - 22 T. Katsu and H. Hirodo, Anal. Sci., 2000, 16, 789.
- 23 K. Ueda, R. Yonemoto, K. Komagoe, K. Masuda, N. Hanioka, S. Marimatsu and T. Katsu, Anal. Chim. Acta, 2006, 565, 36.
- 24 C.S. Wu, L.P. Du, L. Zou, L.H. Zhao and P. Wang, *Biomed. Microdev.*, 2012, **14**, 1047.
- 25 C.J. Ruiz, L.M. Stone, M. McPheeters, T. Ogura, B. Böttger, R.S. Lasher, T.E. Figner and S.C. Kinnamon, *Chem. Senses*, 2001, **26**, 861.

- 26 H. Ozdener, K.K. Yee, J. Cao, J.G. Brand, J.H. Teeter and N.E. Rawson, *Chem. Senses*, 2006, **31**, 279.
- 27 L.P. Du, L. Zou, L.H. Zhao, L.Q. Huang, P. Wang and C.S. Wu, *Biosens. Bioelectron.*, 2014, **54**, 623.
- 28 T.H. Wang, G.H. Hui and S.P. Deng, Biosens. Bioelectro..., 2010, 26, 929.
- 29 G.H. Hui, S.S. Mi and S.P. Deng, *Biosens. Bioelectron.*, 201 35, 429.
- 30 G.H. Hui, S.S. Mi, S.Y. Ye, J.J. Jin, Q.Q. Chen and Z. Yu, *Electrochim. Acta*, 2014, **136**, 75.
- 31 A.L. Huang, X. Chen, M.A. Hoon, J. Chandrashekar, W. Guo, D. Trankner, N.J. Ryba and C.S. Zuker, *Nature*, 2006, 442, 934.
- 32 Y. Ishimaru, H. Inada, M. Kubota, H. Zhuang, M. Tominab and H. Matsunami, Proc. Nat. Acad. Sci. United States Amer, 2006, 103, 12569.
- 33 H. Inada, F. Kawabata, Y. Ishimaru, T. Fushiki, H. Matsunanir and M. Tominaga, *EMBO Rep.*, 2008, 9, 690.
- 34 R.B. Chang, H. Waters and E.R. Liman, Proc. Nat. Acad. Sci United States Amer., 2010, 107, 22320.
- 35 C.S. Wu, L.P. Du, L. Hu, W. Zhang, L.H. Zhao and P. War , IEEE Sens. J., 2012, **12**(11), 3113.
- 36 Q.J. Liu, F.N. Zhang, D.M. Zhang, N, Hu, K.J. Hsia and P. Wang Biosens. Bioelectron., 2013, **43**, 186.
- 37 Q.J. Liu, D.M. Zhang, F.N. Zhang, Y. Zhao, K.J. Hsia and F. Wang, Sens. Actuators, B, 2013, **176**, 497.
- 38 Q.J. Liu, H. Cai, Y. Xu, Y. Li, R. Li and P. Wang, *Biosens. Bioelectron.*, 2006, **22**, 318.
- 39 C.S. Wu, P. Chen, H. Yu, Q.J. Liu, X.L. Zong, H. Cai anα P. Wang, *Biosens. Bioelectron.*, 2009, **24**, 1498.
- 40 L.P. Du, C.S. Wu, H. Peng, L.H. Zhao and P. Wang, *Bio Bioelectron.*, 2013, **40**, 401.
- 41 S.C. Ling, T.Y. Gao, J. Liu, Y.Q. Li, J. Zhou, J. Li, C.C. Zhou, C.L. Tu, F. Han and X.S. Ye, *Biosens. Bioelectron.*, 2010, **26**, 1124
- 42 S.H. Lee, S.B. Jun, H.J. Ko, S.J. Kim, T.H. Park, *Biosen Bioelectron.*, 2009, **24**, 2659.
- 43 N. Misawa, H. Mitsuno, R. Kanzaki and S. Takeuchi, Proc. Inc.. Acad. Sci. United States Amer., 2010, **107** (35), 15340.
- 44 M. Tomida, Y. Murakami and N. Misawa, *Proc. IEEE MEMS* 4. 2014, 318.
- 45 J.Y. Lee, H.J. Ko, S.H. Lee and T.H. Park, *Enzyme Microb. Tec* , 2006, **39**, 375.
- 46 S.H. Lee, H.J. Ko and T.H. Park, Biosens. Bioelectron., 200° 25, 55.
- V. Radhika, T. Proikas-Cezanne, M. Jayaraman, D. Onesime, J.H. Ha and D.N. Dhanasekaran, Nat. Chem. Biol., 2007, 325.
- 48 M.J. Schöning, S. Schütz, P. Schroth, B. Weißbecker, A. Steffen, P. Kordos, H.E. Hummel and H. Lüth, Sens. Actuater, B, 1998, 47, 235.
- 49 S. Schütz, M.J. Schöning, P. Schroth, U. Malkoc, B. Weißbecker, P. Kordos, H. Lüth and H.E. Hummel HE, Sens. Actuators, B, 2000, 65, 291.
- 50 M.J. Huotari, Sens. Actuators, B, 2000, 71, 212.
- 51 Q.J. Liu, W.W. Ye, L.D. Xiao, L.P. Du, N. Hu and P. War , *Biosens. Bioelectron.*, 2010, **25**, 2212.
- 52 Q.J. Liu, N. Hu, W.W. Ye, H. Cai, F.N. Zhang and P. War Biosens. Bioelectron., 2011, **27**, 12.
- 53 Q.J. Liu, N. Hu, F.N. Zhang, D.M. Zhang, K.J. Hsia and P. Wang, Biomed. Microdev., 2012, **14**, 1055.
- 54 E. Micholta, D. Jans, G. Callewaert, C. Bartic, J. Lammertyn, Nicolaï, Sens. Actuators, B, 2013, **184**, 40.
- 55 Q.M. Chen, L.D. Xiao, Q.J. Liu, S.C. Ling, Y.F. Yin, Q. Dong and P. Wang, *Biosens. Bioelectron.*, 2011, **26**, 3313.
- 56 Q. Dong, L.P. Du, L.J. Zhuang, R. Li, Q.J. Liu and P. Wang Biosens. Bioelectron., 2013, **49**, 263.
- 57 Q.J. Liu, W.W. Ye, N. Hu, H. Cai, H. Yu, P. Wang, *Bioselectron.*, 2010, **26**, 1672.

This journal is © The Royal Society of Chemistry 2015

ANALYST

- 58 M. Strauch, A. Lüdke, D. Münch, T. Laudes, C.G. Galizia, E. Martinelli, L. Lavra, R. Paolesse, A. Ulivieri, A. Catini, R. Capuano and C.D. Natale, *Sci. Rep.*, 2014, 4, 3576, 1.
- 59 M. Phillips, K. Gleeson, J.M.B. Hughes, J. Greenberg, R.N. Cataneo, L. Baker and W.P. McVay, *Lancet.*, 1999, **353**, 1930.
- 60 M. Phillips, R.N. Cataneo, A.R. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, R.A. Maxfield and W.N. Rom, *Chest*, 2003, **123**, 2115.
- 61 S. Prasad, X. Zhang, M. Yang, C.S. Ozkan and M. Ozkan, Biosens. Bioelectron., 2004, **19**, 1599.
- 62 S. Prasad, E. Tuncel and M. Ozkan, *Biosens. Bioelectron.*, 2006, **21**, 1045.
- 63 S. Prasad, X. Zhang, C.S. Ozkan and M. Ozkan, *Electrophoresis*, 2004, **25**, 3746.
- 64 M. Yang, X. Zhang and C.S. Ozkan, *Sens. Actuators, B*, 2005, **104**, 163.
- 65 D.L. Kurdikar, R.S. Skeen and B.J. Van Wie, *Anal. Chim. Acta*, 1992, **262**, 1.
- 66 T.M. Pearce, J.A. Wilson, S.G. Oakes, S.Y. Chiu SY and J.C. Williams, *Lab Chip*, 2005, **5**, 97.
- 67 G.W. Gross, A. Harsch, B.K. Rhoades and W. Göpel, *Biosens. Bioelectron.*, 1997, **12**, 373.
- 68 F. Morin, N. Nishimura, L. Griscom, B. LePioufle, H. Fujita, Y. Takamura and E. Tamiya, *Biosens. Bioelectron.*, 2006, **21**, 1093.
- 69 J.J. Pancrazio, S.A. Gray, Y.S. Shubin, N. Kulagina, D.S. Cuttino, K.M. Shaffer, K. Eisemann, A. Currand, Z. Zimd, G.W. Grossd and T.J. O'Shaughnessy, *Biosens. Bioelectron.*, 2003, 18, 1339.
 70 P. Bianco, P.G. Robey, *Nature*, 2001, 414, 118.
- 71 J. El-Ali, P.K. Sorger, K.F. Jensen, *Nature*, 2006, **442**, 403.
- 72 H.B. Yao, H.Y. Fang, X.H. Wang, S.H. Yu, Chem. Soc. Rev., 2011, 40, 3764.
- 73 C. Rivetb, H. Leea, A. Hirscha, S. Hamiltona, H. Lu, *Chem. Eng. Sci.*, 2011, **66**, 1490.
- 74 S. Kumar, S. Kumar, A. Ali, P. Anand, V.V. Agrawal, R. John, S. Maji, B.D. Malhotra, *Biotech. J.*, 2013, **8**, 1267.