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Identification of accelerants, fuels and post-combustion residues 

using a colorimetric sensor array 

Zheng Li,
a
 Minseok Jang,

a
 Jon R. Askim

a
 and Kenneth S. Suslick*

a 

A linear (1x36) colorimetric sensor array has been integrated with a pre-oxidation technique for detection and 

identification of a variety of fuels and post-combustion residues. The pre-oxidation method permits the conversion of fuel 

vapor into more detectable species and therefore greatly enhances the sensitivity of the sensor array. The pre-oxidation 

technique used a packed tube of chromic acid on an oxide support and was optimized in terms of the support and 

concentration. Excellent batch to batch reproducibility was observed for preparation and use of the disposable pre-

oxidation tubes. Twenty automotive fuels including gasolines and diesel from five gasoline retailers were individually 

identifiable with no confusions or misclassifications in quintuplicate trials.  Limits of detection were at sub-ppm 

concentrations for gasoline and diesel fuels. In addition, burning tests were performed on commonly used fire accelerants, 

and clear differentiation was achieved among both the fuels themselves and their volatile residues after burning. 

Introduction  

Fire incidents, both accidental and malicious, have become a 

pressing issue in modern life due to their threat to human life, 

property, and environmental safety. According to reports from 

the US Fire Administration, over 1.5 million fires occurred 

throughout the US in 2013 which caused over 3000 deaths, 

17,000 injuries and $10 billion in property damage.
1
 

11
Automotive fuels and other petroleum products such as 

gasoline, diesel, and kerosene are commonly employed as 

accelerants in case of arson; rapid discrimination among 

accelerants is therefore particularly important for fire scene 

investigation.
2-7

 Additionally, the need for simple field-

deployable quality control of automotive fuels has drawn great 

attention because of the negative effects caused by the 

adulteration of gasoline or diesel (e.g., engine damage and air 

pollution),
8, 9

 and the fuel oil industry has suffered from 

fraudulent mixing of low-priced reagents with higher-priced 

fuels.
10

 

Currently, the detection of fire accelerants is generally 

determined by standard analytical methods including 

electrochemistry,
9, 11

 fluorescence,
12

 Fourier transform 

infrared spectroscopy (FTIR),
13-15

 Raman spectroscopy,
2, 16, 17

 

GC
13, 18

 or GC–MS,
19-21

 most of which demand non-portable 

and expensive instrumentation. Canine teams offer a more 

easily fielded approach for detecting accelerants in fire debris, 

though results are less reliable than traditional analytical 

methods as they are subject to human interpretation of a 

dog’s responses; in addition, training dogs requires substantial 

time and effort.
22

 Some commercialized hydrocarbon gas 

analyzers can detect and quantify flammable accelerants by 

vapor sampling, but are unable to identify specifically which 

accelerant is present.
23, 24

 Numerous other detection methods 

still suffer from high cost, low sensitivity, lack of 

reproducibility, interference from humidity, or changeable 

responses due to sensor aging.
25, 26

 For these reasons, the 

development a high-performance portable sensor for the on-

site analysis of fire accelerants or quality control of fuels 

remains an important goal. 

In the past decade, the use of disposable colorimetric sensor 

arrays (CSAs) has been developed for a variety of vapor 

analyses.
27-29

 CSAs use strong chemical interactions between 

the analytes and a diverse set of cross-responsive 

chemoresponsive dyes; digital imaging of the arrays permits 

identification of a composite pattern of response as the 

“fingerprint” for a given odorant.
27-33

 These arrays take 

advantage of plasticized films or organically modified siloxanes 

(ormosils) as matrices for colorants whose color changes are 

affected by polarity/dipolarity, Brønsted and Lewis acid-base 

interactions, redox reactions, and π-π interactions.
27-29

  

Although colorimetric sensor arrays perform well for a 

variety of gases and volatile liquids,
34-36

 they have not shown 

high sensitivity to less-reactive analytes, such as aliphatic and 

aromatic hydrocarbons or halocarbons.
30, 37

 A typical gasoline 

consists of 30-50% alkanes, 5-10% alkenes and 20-40% 

aromatics and therefore does not respond to a sensor array 

designed for strong chemical interactions. We have previously 

shown that substantial improvements in the detection, 

identification, and quantitation of less-reactive volatiles can be 

made by employing a pre-treatment technique in which the 

analyte gas stream is subjected to partial oxidation and thus 
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converted into more easily detected oxidation products (e.g., 

aldehydes and carboxylic acids).
37

 We demonstrate here that 

this technique can be extended for the identification of 

complex fuel mixtures and have examined discrimination 

among a large number of commercial fuels, differentiating 

among both the fuels themselves and their volatile residues 

after burning. 

Experimental 

Chemicals and Materials  

For the gasolines used in these experiments, we provide their 

brand name and average octane number (ON = (R+M)/2, 

where R is the research octane number and M is the motor 

octane number).
38

 Three different grades of gasoline (i.e., 

regular, ON87; plus, ON89; and premium, ON93) and diesel 

fuel were purchased from five local gasoline distributors (i.e., 

Mobil, Marathon, Shell, BP and Schnucks). Ethanol, i-propanol, 

kerosene, mineral oil, aluminum oxides (Brockmann I, Sigma-

Aldrich), silica gels (Davisil, Sigma-Aldrich) and all other 

reagents were of analytical-reagent grade and used without 

further purification unless otherwise specified. Lubricant (WD-

40 type 110071), vegetable oil (Great Value) and nylon carpet 

(Guardian, platinum series) were purchased from a local 

supermarket. 

 

Formulations, Preparation and Sensor Array Printing 

Sol-gel pigments were prepared as previously described.
39, 40

 

Sol-gel formulations were obtained via the acid catalyzed 

hydrolysis of silane precursors (e.g., mixtures of 

tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), 

octyltriethoxysilane (octyl-TEOS)). The resulting ormosil 

formulations after hydrolysis were added to the 36 selected 

dyes (ESI†, Table S1) and then loaded into a 36-hole Teflon 

inkwell. Sensor arrays were printed on a robotic microarray 

printer (Arraylt Co., Mountain View, CA) by dipping slotted 

pins into the inkwell and delivering the formulation (~100 nL) 

to a polyvinylidene difluoride (PVDF) membrane (Fig. 1a). Once 

printed, the arrays were stored in a N2-filled glove bag for 

three days. Each array was then cut into strips and mounted in 

a custom made aluminum flow cell, with channel dimensions 

of 3.0 × 0.5 × 57 mm (Fig. 1b). A Viton o-ring is placed in a 

groove around the channel and a standard glass microscope 

slide is clamped to create a leak-free seal that permits a gas 

analyte stream to flow over the sensor array. 

 

Preparation of Pre-oxidation Tube  

The oxidizing agent (chromic acid loaded on an inert oxide 

support) was made as previously reported
37

 by mixing alumina 

or silica (2.5 g), Na2Cr2O7 (1.0 g), 98% H2SO4 (1.0 mL), and H2O 

(10.0 mL). Water was removed under vacuum at 60 
o
C for 0.5 

h. The resulting gel was further dried by flowing dry nitrogen 

for 4 h. 40 mg of oxidizing agent were packed into the middle 

of a Teflon tube (3.2 mm inner diameter), sealed with glass 

wool on both ends (ESI†, Fig. S1). 

 

Fig. 1  Photographs of the colorimetric sensor array used for fuel detection. (a) Linear 

36-spot colorimetric sensor array containing metalloporphyrins, acid- or base-treated 

pH indicators, solvatochromic/vapochromic and metal-containing dyes; (b) colorimetric 

sensor array mounted in an aluminum holder with an o-ring placed in a groove and a 

glass slide cover in place; this provides a nearly ideal flow path for the analyte stream 

with a flow volume of ~85 µL.  

Analyte Vapor Generation  

Analyte flow streams were produced by bubbling dry nitrogen 

through the liquid fuels (ESI†, Fig. S2A), or by flushing dry 

nitrogen over a carpet sample (2.5x2.5 cm nylon carpet 

samples loaded with 1 mL of accelerant with or without 

burning for 1 min, as shown in ESI†, Fig. S2B). The resulting 

vapor streams were then mixed with a diluting stream of dry 

and wet nitrogen to attain the desired concentrations at 50% 

relative humidity (RH) by using MKS digital mass flow 

controllers (MFCs). For all the experiments performed in this 

study, the flow rate was 500 sccm. The response of the sensor 

array essentially reaches equilibrium during the first minute 

and is not dependent (after equilibration) on flow rate or dose. 

All data was compared after equilibration after 1 min exposure 

to the analyte flow. 

 

Digital Imaging and Data Analysis  

For all sensing experiments, sensor arrays were imaged on a 

flatbed scanner (Epson Perfection V600). The array was 

equilibrated with 50% RH nitrogen for 1 min at a flow rate of 

500 sccm to capture the before-exposure image, and after-

exposure image was acquired after 1 min exposure to the fuel 

or post-combustion vapor at 500 sccm. Difference maps were 

obtained by subtracting the red, green, and blue (RGB) values 

of before-exposure images from those of after-exposure 

images; each sensor spot was ~100 pixels, the values of which 

were averaged. Digitization of the color differences was 

performed using a customized software package, SpotFinder 

1.0.6 (iSense LLC., Mountain View, CA). Chemometric analysis 

was carried out on 108-dimensional color difference vectors 

(36 sets of ΔR, ΔG and ΔB values) using Multi-Variate Statistical 

Package
TM

 (MVSP v.3.1, Kovach Computing); minimum 

variance (i.e., “Ward’s Method”) was used for hierarchical 

cluster analysis (HCA) in all cases. The full digital database of 

sensor array responses is provided in the ESI† (Table S2, S3 and 

S4). 
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Results and discussion  

The chemical basis for discrimination among fuels is of course 

due to differences in their chemical composition. For gasolines 

and other complex fuel mixtures, there are three sources of 

such differences: (1) there are gross distinctions in 

composition between gasoline and diesel fuels (gasolines 

contain hydrocarbons that are generally lower molecular 

weight and more volatile); (2) composition depends on octane 

rating values (a relative measure of anti-knocking properties), 

which are sensitive to the concentrations of aromatic 

hydrocarbons or alcohols; and (3) each brand of gasoline has 

specific additives to the base gasoline that are brand specific 

and treated as trade secrets.  

 

Optimization of Pre-oxidation Method 

Substantial improvements in the detection, identification, and 

quantitation of less-reactive volatiles by colorimetric sensor 

arrays have been made by employing a pre-oxidation 

treatment in which the analyte gas stream is subjected to 

partial oxidation that creates more easily detected oxidation 

products (e.g., aldehydes and carboxylic acids).
37

 For the 

application to fuels, the choice of oxidizing reagent type was 

optimized by examining the performance of chromic acid 

loaded on nine separate supporting materials (alumina or silica 

gel) with different surface areas, ranging from 40 to 250 m
2
/g 

for alumina and from 300 to 675 m
2
/g for silica. Exposure to 

Marathon Regular (ON87) gasoline at 10% of its saturated 

vapor pressure for 1 min was used as a standardized 

evaluation of sensor array response for all optimization 

experiments. Surface area in this case is a double-edged 

sword: materials with high surface area tend to absorb 

oxidation products while materials with low surface area do 

not offer enough retention time or active surface area for 

analytes to react with the pre-oxidation media (Fig. 2 and S3A). 

The optimal support material was found to be alumina powder 

with ~100 m
2
/g surface area. The dependence of array 

response on the amount of the oxidation reagent was 

investigated; as shown in Fig. S3B, array responses are 

optimized at ~40 mg of supported oxidant. The optimal 

response time was illustrated in the response curves of various 

pre-oxidation reagents over 5 min of exposure (Fig. S3C); array 

responses fully equilibrated within the first min. For studies to 

demonstrate differentiation among fuels or post-oxidation 

residues, these optimized conditions for the pre-oxidation 

method were fixed to a load of 40 mg of 30 wt% chromic acid 

on alumina (surface area ~100 m
2
/g), 500 sccm flow rate, and 

1 min exposure time.  

 

Discrimination of Automotive Fuels 

In prior studies using colorimetric sensor arrays to identify and 

quantify various volatile organic chemicals (VOCs) and toxic 

industrial chemicals (TICs), the range of concentrations that 

are important are well defined by the permissible exposure 

limits (PELs) and immediately dangerous to life or health (IDLH) 

concentrations,
28, 37, 39, 40

  In contrast, there are no explicit 

standards for essential detection concentrations of accelerants; 

for our studies here, two concentrations were arbitrarily 

chosen: 10% of the saturated vapor pressure as an upper 

concentration level and 1% of saturation (e.g., ~ 7 ppm for 

diesel at 20 
o
C) as lower level.  

 

Fig. 2  Color difference maps for nine kinds of pre-oxidation reagents with chromic acid 

on different oxide supports after 1 min exposure to Mobil 87 gasoline at 10% of 

saturation. For display purposes, the color range has been expanded from 5 bits (4-35) 

to 8 bits (0-255).  

In the absence of pre-oxidation, the colorimetric sensor 

array is not particularly sensitive to fuels or hydrocarbons.
37

 

We are able to gain significant response, however, to the 

partial oxidation products produced from fuels using our pre-

oxidation technique:  representative difference maps of 20 

automotive fuels from 5 gas distributors (Mobil, Marathon, 

Shell, BP and Schnucks) at 10% of their saturated vapor 

pressure after 1 min exposure are shown in Fig. 3. The partial 

oxidation products (e.g., aldehydes and carboxylic acids) 

interact with sensor spots containing acid-treated pH 

indicators (i.e., spots 7–16) and metal-dye complexes (i.e., 

spots 35 and 36). There are clearly strong similarities among all 

of the fuels color difference maps presented in Fig. 3. A more 

quantitative analysis of the color differences, however, 

requires a classification algorithm that makes use of the full 

dimensionality of the data. To that end, a simple and model-

free method, hierarchical cluster analysis (HCA),
41-43

 was used 

for a quantitative analysis of the database of array responses.  
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Fig. 3  Representative color difference maps showing quintuplicate analyses of 20 

automotive fuels after pre-oxidation (Octane Number 87, ON89, ON93 gasolines and 

diesel from 5 commercial distributor brands) and a control after 1 min exposure at 10% 

of saturation. For display purposes, the color range has been expanded from 5 bits (4-

35) to 8 bits (0-255). 

HCA generates a dendrogram based on the grouping of 

array response data in the 108-dimensional vector space (i.e., 

3 x 36 color difference changes in red, green and blue (RGB) 

values from the 36 chemically responsive colorants that make 

up the sensor array). The HCA dendrogram (Fig. 4) shows 

excellent clustering into fuel types. There is a clear subdivision 

among the fuel analytes into gasoline versus diesel samples; 

this is due in part to the difference in their vapor pressures. 

Surprisingly, detailed clustering shows clear separation based 

on individual gasoline octane numbers and brands. Clustering 

by brand first and octane number second was clearly observed 

for Shell, BP and Schnucks brands, while Marathon ON93 

clustered more closely to Mobil ON93 gasoline samples than 

other Marathon gasoline samples. Within the individual fuel 

types (brand and ON), among the quintuplicate trials of all 20 

fuels at 10% of saturation and a blank control, there were no 

misclusterings observed in 105 cases. 

Similar studies were done at 1% of saturation for the same 

fuels in order to probe the ability of the colorimetric sensor 

array to monitor low levels of vapors from automotive fuels. 

As with the higher-concentration samples, an exposure time of 

1 min was sufficient to equilibrate the array response (ESI†, Fig. 

S4). The color difference maps are similar among the fuels at 1% 

of saturation, but again with subtle differences (ESI†, Fig. S5). 

The HCA dendrogram for the response of automotive fuels at 1% 

of saturation are shown in Fig. 5; again accurate discrimination 

among all 20 analytes and the nitrogen control is observed 

with no confusions or misclusterings out of 105 cases. Just as 

with the data collected at 10% of saturation, differentiation by 

brand and ON is seen for clustering of data at 1% of saturation. 

 

 

Fig. 4  Hierarchical cluster analysis (HCA) for 20 separate automotive fuels and one 

control. Each analyte name represents quintuplicate trials after 1 min exposure at 10% 

of saturated vapor pressure. No misclassifications or confusions were observed out of 

105 total trials. 

 

Fig. 5  Hierarchical cluster analysis (HCA) for 20 separate automotive fuels and one 

control. Each analyte name represents quintuplicate trials after 1 min exposure at 1% 

of saturated vapor pressure. No misclassifications or confusions were observed out of 

105 total trials. 

Limit of detection (LOD) and Limit of Recognition (LOR) 

We estimate the LOD for two fuel samples (Mobil ON87 and 

Mobil diesel) by extrapolating from the observed array 

responses at a series of five concentrations, as shown in ESI†, 

Fig. S6. LOD is defined as the concentration of the analyte 

needed to obtain three times the S/N vs. background for the 

largest signal among the 108 color changes. The detection 

limits are estimated to be 0.7 ppm for gasoline (i.e., 0.003% of 

saturated vapor pressure) and 0.4 ppm for diesel (i.e., 0.06% of 

saturated vapor pressure) based on their one minute 

response. 
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Limits of recognition are, by definition, dependent upon the 

choice of analytes.  The perfect clustering observed in the HCA 

dendrogram for 20 separate automotive fuels at 1% of their 

saturated vapor pressure and one control, as shown in Figure 5, 

establishes that our limits of recognition, for these analytes, 

are well below those concentrations (e.g., roughly 250 ppm for 

gasolines and 7 ppm for diesel). 

 

Detection of Pre- or Post-combustion Residues 

In an attempt to test accelerants after a simulated fire scenario, 

the colorimetric sensor array was used to detect and 

differentiate ignitable residues prior to or after combustion. To 

that end, 1 mL of each fire accelerant was dropped on a piece 

of nylon carpet (2.5x2.5 cm) and then ignited using a propane 

torch and allowed to burn for 1 min. After burning, carpet 

samples were allowed to cool down for 1 min and then 

transferred into a gas flow chamber for array analysis. 1 min 

cool-down was sufficient to bring the carpet sample to 

ambient temperature. Unburned ignitable residues were 

tested for comparison, and carpet samples without added 

accelerant (both burned and unburned) were used as controls. 

The same pre-oxidation technique described above was used 

in these studies.  

Color difference maps of nine sets of burned or unburned 

residues plus two controls are shown in Fig. 6. Compared to 

the difference maps of fuels, the patterns shown for burned or 

unburned residues show a much broader range of response, 

which reflects the broader range of analytes present. The HCA 

dendrogram shown in Fig. 7 demonstrates excellent 

discrimination among all eighteen analytes and two controls. 

All twenty groups of analytes and controls were separated 

without confusions or misclusterings among 100 individual 

trials.  There are two clearly distinct clusters: burned versus 

unburned samples with the exception of the four most weakly-

responding analytes (burned and unburned vegetable oil and 

carpet).   

 

Fig. 6  Representative color difference maps showing quintuplicate runs of common fire 

accelerants and two controls after 1 min exposure at 10% of saturation using alumina 

pre-oxidation. For display purposes, the color range has been expanded from 5 bits (4-

35) to 8 bits (0-255).  

Accelerants after burning generally show weaker responses 

than the unburned ones, likely due both to analyte 

evaporation and to the formation of gaseous combustion 

products (i.e., CO2 or CO) to which the sensor array is less 

responsive. Carpet samples burned in the absence of 

accelerates produce only very weak responses from the sensor 

array (Fig. 6). The somewhat stronger responses observed 

from burned accelerant samples are therefore attributable to 

the trace amounts of unburned volatiles or other byproducts 

from incomplete combustion of the accelerants. 

 

Fig. 7  Hierarchical cluster analysis (HCA) of unburned and burned accelerants from 

quintuplicate trials with 1 min exposure at 10% of saturation. Two separate clusters of 

burned and unburned residues were clearly observed, except for the most weakly-

responding analytes (vegetable oil and controls). 

 

Principal Component Analysis (PCA) 

Principal component analysis (PCA)
41-44

 was employed to 

provide an estimation of the dimensionality of the data 

acquired with the colorimetric sensor array, which is itself a 

measure of the dimensionality of the chemical reactivity space 

probed by the sensor array. PCA is an unsupervised and 

model-free statistical approach that generates a set of 

orthogonal eigenvectors (i.e., principal components) using a 

linear combination of array response vectors to maximize the 

amount of variance in the fewest possible principal 

components.  

If we consider all data collected in these studies (305 trials in 

61 classes, as represented in Fig. S4, 5, and 7), PCA reveals that 

10 dimensions are required to capture 95% of the total 

variance and 28 dimensions are needed to capture 99%, as 

shown in the scree plot given in Fig. 8. There are also three 

subsets of the library database that have been analyzed 

individually by PCA: fuels at 10% of saturation (Fig. 4), fuels at 

1% of saturation (Fig. 5), and the burn vs. unburned study (Fig. 

7). For fuels at 10% of saturation, PCA required 4 dimensions 

to capture 95% of total variance and 12 dimensions for 99% 

(ESI†, Fig. S7A); for fuels at 1% of saturation, PCA required 6 

dimensions for 95% of total variance and 13 dimensions for 99% 

(ESI†, Fig. S7B); and for the burned/unburned data, 8 
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dimensions for 95% of variance and 15 dimensions for 99% 

(ESI†, Fig. S7C). The high dimensionality shown in all of these 

studies reflects both the range of individual components 

produced during the pre-oxidation method and the broad 

range of chemical interactions probed by the chemically-

responsive colorants that make up the sensor array.
27, 30, 34, 36

 

 

Classification by Support Vector Machines (SVM) 

We have used a common machine learning tool, SVM,
45

 for a 

test of predictive classification of our datasets, making use of 

LIBSVM, an open-source SVM library.
46

 Inherently, model-free 

clustering analyses, such as PCA or HCA, are not well suited for 

predictive (i.e., classification) use. In contrast, SVM is a 

predictive approach that is designed to classify incoming data 

that does not belong to a pre-existing training database.  SVM 

classifies an incoming test data point based on whether it lies 

above or below an optimized decision boundary for each 

possible choice between pairs of analyte classes. Classification 

accuracy can be estimated using cross-validation methods 

which split the database into training and evaluation subsets; 

the classifiers based on the training subset are tested with 

evaluation data subset. To test our SVM model, we have used 

a leave-one-out permutation method of cross-validation. As 

included in the digital database (ESI†, Table S5), in the 

permutated cross-validation of 305 trials in 61 classes, no 

errors in predictive classification are observed:  i.e., SVM 

predictions show an error rate of <0.3% in cross-validation 

classification tests. Similarly, if SVM cross-validation is applied 

to each of the three subsets of data, no errors are observed. 

 

Fig. 8  Scree plot from a PCA for all 305 trials used in this study. 10 dimensions were 

required to capture 95% of the total variance. 

Reproducibility 

To evaluate the reproducibility of our colorimetric sensor array, 

3 new samples of previously tested BP gasolines (BP 87, 89 and 

93) were purchased six months later and were tested in 

quintuplicate as new entries into the database at 1% of 

saturation; as a further test of reproducibility, the sensor 

arrays came from multiple printings in these studies. As shown 

in ESI†, Fig. S8, the two different sets of the three gasolines 

gave nearly identical array responses, and discrete clusters as a 

function of the octane numbers were still observed in the HCA 

for each kind of BP gasoline.  

The reproducibility of the pre-oxidation method is also 

critical to our ability to differentiate among similar fuels. Given 

the inherent reactivity of chromic acid, issues of reproducible 

preparation of the oxidation tubes might have been a potential 

problem. To test this issue, we prepared three separate 

batches of chromic acid on alumina were prepared and tested 

each batch in quintuplicate with Mobil diesel fuel at 1% of 

saturation. As shown in ESI†, Fig. S9, excellent reproducibility 

of the oxidizing reagent is observed among the three batches, 

and in all cases, Mobil diesel is well differentiated from the 

other four brands of diesel fuel. 

Conclusions 

A disposable colorimetric sensor array has been developed in 

combination with pre-oxidation technique that shows 

substantial capability of detecting and identifying a variety of 

automotive fuels and commonly used fire accelerants. By 

testing the partial oxidation products produced by passing fuel 

vapor streams through an oxidant tube (chromic acid on 

alumina), the sensor array could distinguish among subtle 

differences in common fuels (type, octane ratings, and brand) 

at both high (10% of saturation) and low (1% of saturation) 

vapor concentration levels. Limits of detection are estimated 

to be 0.7 ppm for gasoline (i.e., 0.003% of saturated vapor 

pressure) and 0.4 ppm for diesel (i.e., 0.06% of saturated vapor 

pressure) based on their one minute response. Limits of 

recognition (which are analyte choice dependent) are well 

below 1% of saturated vapor pressure for the library of 20 

separate automotive fuels and the control. Simulated burning 

tests also showed significant discrimination among other 

common fire accelerants such as kerosene, oils, and alcohols. 

Principal component analysis demonstrated high 

dimensionality in the data from the colorimetric sensor arrays 

with the pre-oxidation tube (10 dimensions to capture 90% of 

the total variance). As a consequence, hierarchical cluster 

analysis showed excellent discrimination among 61 classes of 

analytes, and support vector machine analysis showed no 

errors (<0.3% among 305 trials) in cross-validation 

classification tests. Finally, the colorimetric sensor array 

showed excellent reproducibility towards different purchases 

of the same fuel and different batches of the oxidizing reagent. 

This technology may find applications for quality control of fuel 

production and distribution as well as forensic investigation of 

fire scenes. 
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